1
|
Mesenteric Neural Crest Cells Are the Embryological Basis of Skip Segment Hirschsprung's Disease. Cell Mol Gastroenterol Hepatol 2020; 12:1-24. [PMID: 33340715 PMCID: PMC8082118 DOI: 10.1016/j.jcmgh.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Defective rostrocaudal colonization of the gut by vagal neural crest cells (vNCCs) results in Hirschsprung's disease (HSCR), which is characterized by aganglionosis in variable lengths of the distal bowel. Skip segment Hirschsprung's disease (SSHD), referring to a ganglionated segment within an otherwise aganglionic intestine, contradicts HSCR pathogenesis and underscores a significant gap in our understanding of the development of the enteric nervous system. Here, we aimed to identify the embryonic origin of the ganglionic segments in SSHD. METHODS Intestinal biopsy specimens from HSCR patients were prepared via the Swiss-roll technique to search for SSHD cases. NCC migration from the neural tube to the gut was spatiotemporally traced using targeted cell lineages and gene manipulation in mice. RESULTS After invading the mesentery surrounding the foregut, vNCCs separated into 2 populations: mesenteric NCCs (mNCCs) proceeded to migrate along the mesentery, whereas enteric NCCs invaded the foregut to migrate along the gut. mNCCs not only produced neurons and glia within the gut mesentery, but also continuously complemented the enteric NCC pool. Two new cases of SSHD were identified from 183 HSCR patients, and Ednrb-mutant mice, but not Ret-/- mice, showed a high incidence rate of SSHD-like phenotypes. CONCLUSIONS mNCCs, a subset of vNCCs that migrate into the gut via the gut mesentery to give rise to enteric neurons, could provide an embryologic explanation for SSHD. These findings lead to novel insights into the development of the enteric nervous system and the etiology of HSCR.
Collapse
|
2
|
Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, Hruska K, Coplen D, Liapis H, Mitra R, Druley T, Austin P, Jain S. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet 2012; 131:1725-38. [PMID: 22729463 PMCID: PMC3551468 DOI: 10.1007/s00439-012-1181-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/15/2012] [Indexed: 12/12/2022]
Abstract
Signaling by the glial cell line-derived neurotrophic factor (GDNF)-RET receptor tyrosine kinase and SPRY1, a RET repressor, is essential for early urinary tract development. Individual or a combination of GDNF, RET and SPRY1 mutant alleles in mice cause renal malformations reminiscent of congenital anomalies of the kidney or urinary tract (CAKUT) in humans and distinct from renal agenesis phenotype in complete GDNF or RET-null mice. We sequenced GDNF, SPRY1 and RET in 122 unrelated living CAKUT patients to discover deleterious mutations that cause CAKUT. Novel or rare deleterious mutations in GDNF or RET were found in six unrelated patients. A family with duplicated collecting system had a novel mutation, RET-R831Q, which showed markedly decreased GDNF-dependent MAPK activity. Two patients with RET-G691S polymorphism harbored additional rare non-synonymous variants GDNF-R93W and RET-R982C. The patient with double RET-G691S/R982C genotype had multiple defects including renal dysplasia, megaureters and cryptorchidism. Presence of both mutations was necessary to affect RET activity. Targeted whole-exome and next-generation sequencing revealed a novel deleterious mutation G443D in GFRα1, the co-receptor for RET, in this patient. Pedigree analysis indicated that the GFRα1 mutation was inherited from the unaffected mother and the RET mutations from the unaffected father. Our studies indicate that 5% of living CAKUT patients harbor deleterious rare variants or novel mutations in GDNF-GFRα1-RET pathway. We provide evidence for the coexistence of deleterious rare and common variants in genes in the same pathway as a cause of CAKUT and discovered novel phenotypes associated with the RET pathway.
Collapse
Affiliation(s)
- Rajshekhar Chatterjee
- Department of Internal Medicine (Renal division), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Enrique Ramos
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Mary Hoffman
- Department of Internal Medicine (Renal division), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jessica VanWinkle
- Department of Internal Medicine (Renal division), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Daniel R Martin
- Department of Internal Medicine (Renal division), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Thomas K Davis
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Masato Hoshi
- Department of Internal Medicine (Renal division), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Stanley P Hmiel
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Anne Beck
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Keith Hruska
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Doug Coplen
- Department of Surgery (Urology), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Helen Liapis
- Department of Internal Medicine (Renal division), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Robi Mitra
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Todd Druley
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Paul Austin
- Department of Surgery (Urology), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Sanjay Jain
- Department of Internal Medicine (Renal division), Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 2008; 82:344-51. [PMID: 18252215 DOI: 10.1016/j.ajhg.2007.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 12/31/2022] Open
Abstract
In animal models, kidney formation is known to be controlled by the proteins RET, GDNF, and GFRA1; however, no human studies to date have shown an association between abnormal kidney development and mutation of these genes. We hypothesized that stillborn fetuses with congenital renal agenesis or severe dysplasia would possess mutations in RET, GDNF, or GFRA1. We assayed for mutations in these genes in 33 stillborn fetuses that had bilateral or unilateral renal agenesis (29 subjects) or severe congenital renal dysplasia (4 subjects). Mutations in RET were found in 7 of 19 fetuses with bilateral renal agenesis (37%) and 2 of 10 fetuses (20%) with unilateral agenesis. In two fetuses, there were two different RET mutations found, and a total of ten different sequence variations were identified. We also investigated whether these mutations affected RET activation; in each case, RET phosphorylation was either absent or constitutively activated. A GNDF mutation was identified in only one fetus with unilateral agenesis; this subject also had two RET mutations. No GFRA1 mutations were seen in any fetuses. These data suggest that in humans, mutations in RET and GDNF may contribute significantly to abnormal kidney development.
Collapse
|
4
|
Jain S, Encinas M, Johnson EM, Milbrandt J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 2006; 20:321-33. [PMID: 16452504 PMCID: PMC1361703 DOI: 10.1101/gad.1387206] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms that lead to congenital anomalies of kidneys and the lower urinary tract (CAKUT) are poorly understood. To elucidate the molecular basis for signaling specificity of GDNF-mediated RET signaling in kidney development, we characterized mice that exclusively express either the human RET9 or RET51 isoform, or express these isoforms with individual mutations in docking tyrosines for PTB and SH2-domain-containing adaptors Src (Y981), PLCgamma (Y1015), and Shc (Y1062). Our results provide evidence for differential and isoform-specific roles of these docking sites in murine kidney development. Homozygous Ret(RET9) and Ret(RET51) mice were viable and show normally developed kidneys, indicating redundant roles of human RET isoforms in murine kidney development. In the context of the RET51 isoform, only mutation of the docking Tyr 1015 (Y1015F) resulted in severe renal anomalies. These included bilateral megaureters and multicystic kidneys that were caused by supernumerary ureteric buds that fail to separate from the wolffian duct as well as decreased branching morphogenesis. Similar kidney and ureter defects were observed in RET9(Y1015F) mice that contain the Y1015F mutation in the RET9 isoform. Interestingly, loss of RET9(Y1062)-mediated AKT/MAPK activation resulted in renal agenesis or kidney rudiments, whereas mutation of this residue in RET51 had no obvious effect on AKT/MAPK activity and renal development. These results reveal novel roles of key RET-dependent signaling pathways in embryonic kidney development and provide murine models and new insights into the molecular basis for CAKUT.
Collapse
Affiliation(s)
- Sanjay Jain
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|