Zhao J, Singleton PA, Brown ME, Dudek SM, Garcia JGN. Phosphotyrosine protein dynamics in cell membrane rafts of sphingosine-1-phosphate-stimulated human endothelium: role in barrier enhancement.
Cell Signal 2009;
21:1945-60. [PMID:
19755153 DOI:
10.1016/j.cellsig.2009.09.002]
[Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/02/2009] [Indexed: 02/06/2023]
Abstract
Sphingosine-1-phosphate (S1P), a lipid growth factor, is critical to the maintenance and enhancement of vascular barrier function via processes highly dependent upon cell membrane raft-mediated signaling events. Anti-phosphotyrosine 2 dimensional gel electrophoresis (2-DE) immunoblots confirmed that disruption of membrane raft formation (via methyl-beta-cyclodextrin) inhibits S1P-induced protein tyrosine phosphorylation. To explore S1P-induced dynamic changes in membrane rafts, we used 2-D techniques to define proteins within detergent-resistant cell membrane rafts which are differentially expressed in S1P-challenged (1microM, 5min) human pulmonary artery endothelial cells (EC), with 57 protein spots exhibiting >3-fold change. S1P induced the recruitment of over 20 cell membrane raft proteins exhibiting increasing levels of tyrosine phosphorylation including known barrier-regulatory proteins such as focal adhesion kinase (FAK), cortactin, p85alpha phosphatidylinositol 3-kinase (p85alphaPI3K), myosin light chain kinase (nmMLCK), filamin A/C, and the non-receptor tyrosine kinase, c-Abl. Reduced expression of either FAK, MLCK, cortactin, filamin A or filamin C by siRNA transfection significantly attenuated S1P-induced EC barrier enhancement. Furthermore, S1P induced cell membrane raft components, p-caveolin-1 and glycosphingolipid (GM1), to the plasma membrane and enhanced co-localization of membrane rafts with p-caveolin-1 and p-nmMLCK. These results suggest that S1P induces both the tyrosine phosphorylation and recruitment of key actin cytoskeletal proteins to membrane rafts, resulting in enhanced human EC barrier function.
Collapse