1
|
Cullen JM, Malarkey D, Foster JR. Classic Lesions of the Biliary Tree. Toxicol Pathol 2024; 52:353-362. [PMID: 39189794 DOI: 10.1177/01926233241257912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Abnormal findings in the biliary tree are frequently encountered in response to acute and chronic exposures to various compounds. The more common findings are described here in an overview of previous publications such as the INHAND Proliferative and Nonproliferative Lesions of the Rodent Liver and the Liver-Nonneoplastic Lesion Atlas NTP with comments regarding current considerations. This was presented at the 2023 Annual Meeting of the Society of Toxicologic Pathology. Histologic descriptions and some discussions regarding the pathogenesis of the various categories of non-neoplastic lesions in the biliary tree are presented. Discussions regarding the use of the term oval cell versus ductular reaction and the potentially neoplastic nature of cholangiofibrosis are presented in some detail.
Collapse
Affiliation(s)
- John M Cullen
- North Carolina State University, Raleigh, North Carolina, USA
| | - David Malarkey
- National Institute of Environmental Health Science, Durham, North Carolina, USA
| | | |
Collapse
|
2
|
Harafuji N, Yang C, Wu M, Thiruvengadam G, Gordish-Dressman H, Thompson RG, Bell PD, Rosenberg AZ, Dafinger C, Liebau MC, Bebok Z, Caldovic L, Guay-Woodford LM. Differential regulation of MYC expression by PKHD1/Pkhd1 in human and mouse kidneys: phenotypic implications for recessive polycystic kidney disease. Front Cell Dev Biol 2023; 11:1270980. [PMID: 38125876 PMCID: PMC10731465 DOI: 10.3389/fcell.2023.1270980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Chaozhe Yang
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Maoqing Wu
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Girija Thiruvengadam
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | | | - R. Griffin Thompson
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - P. Darwin Bell
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Zsuzsanna Bebok
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M. Guay-Woodford
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
3
|
Khare S, Jiang L, Cabrara DP, Apte U, Pritchard MT. Global Transcriptomics of Congenital Hepatic Fibrosis in Autosomal Recessive Polycystic Kidney Disease using PCK rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524760. [PMID: 36711494 PMCID: PMC9882327 DOI: 10.1101/2023.01.19.524760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Congenital hepatic fibrosis / Autosomal recessive polycystic kidney disease (CHF/ARPKD) is an inherited neonatal disease induced by mutations in the PKHD1 gene and characterized by cysts, and robust pericystic fibrosis in liver and kidney. The PCK rat is an excellent animal model which carries a Pkhd1 mutation and exhibits similar pathophysiology. We performed RNA-Seq analysis on liver samples from PCK rats over a time course of postnatal day (PND) 15, 20, 30, and 90 using age-matched Sprague-Dawley (SD) rats as controls to characterize molecular mechanisms of CHF/ARPKD pathogenesis. A comprehensive differential gene expression (DEG) analysis identified 1298 DEGs between PCK and SD rats. The genes overexpressed in the PCK rats at PND 30 and 90 were involved cell migration (e.g. Lamc2, Tgfb2 , and Plet1 ), cell adhesion (e.g. Spp1, Adgrg1 , and Cd44 ), and wound healing (e.g. Plat, Celsr1, Tpm1 ). Connective tissue growth factor ( Ctgf ) and platelet-derived growth factor ( Pdgfb ), two genes associated with fibrosis, were upregulated in PCK rats at all time-points. Genes associated with MHC class I molecules (e.g. RT1-A2 ) or involved in ribosome assembly (e.g. Pes1 ) were significantly downregulated in PCK rats. Upstream regulator analysis showed activation of proteins involved tissue growth (MTPN) and inflammation (STAT family members) and chromatin remodeling (BRG1), and inhibition of proteins involved in hepatic differentiation (HNF4α) and reduction of fibrosis (SMAD7). The increase in mRNAs of four top upregulated genes including Reg3b, Aoc1, Tm4sf20 , and Cdx2 was confirmed at the protein level using immunohistochemistry. In conclusion, these studies indicate that a combination of increased inflammation, cell migration and wound healing, and inhibition of hepatic function, decreased antifibrotic gene expression are the major underlying pathogenic mechanisms in CHF/ARPKD.
Collapse
|
4
|
Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
|
5
|
Masyuk TV, Masyuk AI, LaRusso NF. Polycystic Liver Disease: Advances in Understanding and Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:251-269. [PMID: 34724412 DOI: 10.1146/annurev-pathol-042320-121247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| |
Collapse
|
6
|
Fine-scale visualizing the hierarchical structure of mouse biliary tree with fluorescence microscopy method. Biosci Rep 2021; 40:223572. [PMID: 32364232 PMCID: PMC7218221 DOI: 10.1042/bsr20193757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
The liver is a vital organ and the hepatic lobule serves as the most basic structural and functional unit which is mainly assembled with parenchymal cells including hepatocytes and biliary epithelial cells. The continuous tubular arrangement of biliary cells which constitutes the biliary tracts is critical for liver function, however, the biliary tracts are often disrupted in many liver diseases such as cirrhosis and some congenital disorders. Visualization of the biliary tracts in fine-scale and three-dimension will help to understanding the structure basis of these liver diseases. In the present study, we established several biliary tract injury mouse models by diet feeding, surgery or genetic modification. The cytoplasm and nuclei of the parenchymal cells were marked by active uptake of fluorescent dyes Rhodamine B (red) and Hoechst (blue), respectively. After the removal of liver en bloc, the biliary tracts were retrogradely perfused with green fluorescent dye, fluorescein isothiocyanate (FITC). The liver was then observed under confocal microscopy. The fine-scale and three-dimensional (3D) structure of the whole biliary tree, particularly the network of the end-terminal bile canaliculi and neighboring hepatocytes were clearly visualized. The biliary tracts displayed clear distinct characteristics in normal liver and diseased liver models. Taken together, we have developed a simple and repeatable imaging method to visualize the fine-scale and hierarchical architecture of the biliary tracts spreading in the mouse liver.
Collapse
|
7
|
Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. J Hepatol 2021; 74:394-406. [PMID: 32950589 PMCID: PMC8157180 DOI: 10.1016/j.jhep.2020.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple fluid-filled biliary cysts. Most PLD-causative genes participate in protein biogenesis and/or transport. Post-translational modifications (PTMs) are implicated in protein stability, localization and activity, contributing to human pathobiology; however, their role in PLD is unknown. Herein, we aimed to unveil the role of protein SUMOylation in PLD and its potential therapeutic targeting. METHODS Levels and functional effects of SUMOylation, along with response to S-adenosylmethionine (SAMe, inhibitor of the SUMOylation enzyme UBC9) and/or short-hairpin RNAs (shRNAs) against UBE2I (UBC9), were evaluated in vitro, in vivo and/or in patients with PLD. SUMOylated proteins were determined by immunoprecipitation and proteomic analyses by mass spectrometry. RESULTS Most SUMOylation-related genes were found overexpressed (mRNA) in polycystic human and rat liver tissue, as well as in cystic cholangiocytes in culture compared to controls. Increased SUMOylated protein levels were also observed in cystic human cholangiocytes in culture, which decreased after SAMe administration. Chronic treatment of polycystic (PCK: Pkdh1-mut) rats with SAMe halted hepatic cystogenesis and fibrosis, and reduced liver/body weight ratio and liver volume. In vitro, both SAMe and shRNA-mediated UBE2I knockdown increased apoptosis and reduced cell proliferation of cystic cholangiocytes. High-throughput proteomic analysis of SUMO1-immunoprecipitated proteins in cystic cholangiocytes identified candidates involved in protein biogenesis, ciliogenesis and proteasome degradation. Accordingly, SAMe hampered proteasome hyperactivity in cystic cholangiocytes, leading to activation of the unfolded protein response and stress-related apoptosis. CONCLUSIONS Cystic cholangiocytes exhibit increased SUMOylation of proteins involved in cell survival and proliferation, thus promoting hepatic cystogenesis. Inhibition of protein SUMOylation with SAMe halts PLD, representing a novel therapeutic strategy. LAY SUMMARY Protein SUMOylation is a dynamic post-translational event implicated in numerous cellular processes. This study revealed dysregulated protein SUMOylation in polycystic liver disease, which promotes hepatic cystogenesis. Administration of S-adenosylmethionine (SAMe), a natural UBC9-dependent SUMOylation inhibitor, halted polycystic liver disease in experimental models, thus representing a potential therapeutic agent for patients.
Collapse
|
8
|
Caballero‐Camino FJ, Rivilla I, Herraez E, Briz O, Santos‐Laso A, Izquierdo‐Sanchez L, Lee‐Law PY, Rodrigues PM, Munoz‐Garrido P, Jin S, Peixoto E, Richard S, Gradilone SA, Perugorria MJ, Esteller M, Bujanda L, Marin JJ, Banales JM, Cossío FP. Synthetic Conjugates of Ursodeoxycholic Acid Inhibit Cystogenesis in Experimental Models of Polycystic Liver Disease. Hepatology 2021; 73:186-203. [PMID: 32145077 PMCID: PMC7891670 DOI: 10.1002/hep.31216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/11/2020] [Accepted: 02/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of symptomatic biliary cysts. Current surgical and pharmacological approaches are ineffective, and liver transplantation represents the only curative option. Ursodeoxycholic acid (UDCA) and histone deacetylase 6 inhibitors (HDAC6is) have arisen as promising therapeutic strategies, but with partial benefits. APPROACH AND RESULTS Here, we tested an approach based on the design, synthesis, and validation of a family of UDCA synthetic conjugates with selective HDAC6i capacity (UDCA-HDAC6i). Four UDCA-HDAC6i conjugates presented selective HDAC6i activity, UDCA-HDAC6i #1 being the most promising candidate. UDCA orientation within the UDCA-HDAC6i structure was determinant for HDAC6i activity and selectivity. Treatment of polycystic rats with UDCA-HDAC6i #1 reduced their hepatomegaly and cystogenesis, increased UDCA concentration, and inhibited HDAC6 activity in liver. In cystic cholangiocytes UDCA-HDAC6i #1 restored primary cilium length and exhibited potent antiproliferative activity. UDCA-HDAC6i #1 was actively transported into cells through BA and organic cation transporters. CONCLUSIONS These UDCA-HDAC6i conjugates open a therapeutic avenue for PLDs.
Collapse
Affiliation(s)
- Francisco J. Caballero‐Camino
- Department of Organic Chemistry ICenter of Innovation in Advanced Chemistry (ORFEO‐CINQA)University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU)Donostia International Physics Center (DIPC)Donostia‐San SebastianSpain,Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain
| | - Ivan Rivilla
- Department of Organic Chemistry ICenter of Innovation in Advanced Chemistry (ORFEO‐CINQA)University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU)Donostia International Physics Center (DIPC)Donostia‐San SebastianSpain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEFARM)Biomedical Research Institute of Salamanca (IBSAL)University of SalamancaSalamancaSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)Carlos III National Institute of HealthMadridSpain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM)Biomedical Research Institute of Salamanca (IBSAL)University of SalamancaSalamancaSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)Carlos III National Institute of HealthMadridSpain
| | - Alvaro Santos‐Laso
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain
| | - Laura Izquierdo‐Sanchez
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)Carlos III National Institute of HealthMadridSpain
| | - Pui Y. Lee‐Law
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain
| | - Patricia Munoz‐Garrido
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain
| | - Sujeong Jin
- The Hormel InstituteUniversity of MinnesotaAustinMN,Masonic Cancer CenterUniversity of MinnesotaMinneapolisMN
| | - Estanislao Peixoto
- The Hormel InstituteUniversity of MinnesotaAustinMN,Masonic Cancer CenterUniversity of MinnesotaMinneapolisMN
| | - Seth Richard
- The Hormel InstituteUniversity of MinnesotaAustinMN,Masonic Cancer CenterUniversity of MinnesotaMinneapolisMN
| | - Sergio A. Gradilone
- The Hormel InstituteUniversity of MinnesotaAustinMN,Masonic Cancer CenterUniversity of MinnesotaMinneapolisMN
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)Carlos III National Institute of HealthMadridSpain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain,Centro de Investigacion Biomedica en Red Cancer (CIBERONC)MadridSpain,Institucio Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain,Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of Barcelona (UB)BarcelonaSpain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)Carlos III National Institute of HealthMadridSpain
| | - Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM)Biomedical Research Institute of Salamanca (IBSAL)University of SalamancaSalamancaSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)Carlos III National Institute of HealthMadridSpain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUPV/EHUDonostia‐San SebastianSpain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd)Carlos III National Institute of HealthMadridSpain,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Fernando P. Cossío
- Department of Organic Chemistry ICenter of Innovation in Advanced Chemistry (ORFEO‐CINQA)University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU)Donostia International Physics Center (DIPC)Donostia‐San SebastianSpain
| |
Collapse
|
9
|
Sato Y, Qiu J, Miura T, Kohzuki M, Ito O. Effects of Long-Term Exercise on Liver Cyst in Polycystic Liver Disease Model Rats. Med Sci Sports Exerc 2020; 52:1272-1279. [PMID: 31880641 DOI: 10.1249/mss.0000000000002251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Polycystic liver disease (PLD) is a hereditary liver disease with progressive enlargement of fluid-filled liver cysts, which causes abdominal discomfort and worsens quality of life. Long-term exercise has beneficial effects in various organs, but the effects of long-term exercise on PLD are unclear. Therefore, the aim of this study was to investigate whether long-term exercise inhibits liver cyst formation and fibrosis. METHODS Polycystic kidney (PCK) rats, a model of PLD, were randomly divided into a sedentary group and a long-term exercise group, which underwent treadmill running for 12 wk (28 m·min, 60 min·d, 5 d·wk). Sprague-Dawley (SD) rats were set as a control group. After 12 wk, exercise capacity, histology, and signaling cascades of PLD were examined. RESULTS Compared with control SD rats, PCK rats showed a low exercise capacity before exercise protocol. After 12 wk, the exercise improved the exercise capacity and ameliorated liver cyst formation and fibrosis. The exercise significantly decreased the number of Ki-67-positive cells; the expression of cystic fibrosis transmembrane conductance regulator, aquaporin 1, transforming growth factor β, and type 1 collagen; and the phosphorylation of extracellular signal-regulated kinase, mammalian target of rapamycin and S6. It also increased the phosphorylation of AMP-activated protein kinase in the liver of PCK rats. CONCLUSIONS The present results indicated that long-term moderate-intensity exercise ameliorates liver cyst formation and fibrosis with the inhibition of signaling cascades responsible for cellular proliferation and fibrosis in PCK rats.
Collapse
Affiliation(s)
- Yoichi Sato
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - Jiahe Qiu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - Takahiro Miura
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, JAPAN
| | | |
Collapse
|
10
|
Molinari E, Srivastava S, Dewhurst RM, Sayer JA. Use of patient derived urine renal epithelial cells to confirm pathogenicity of PKHD1 alleles. BMC Nephrol 2020; 21:435. [PMID: 33059616 PMCID: PMC7559414 DOI: 10.1186/s12882-020-02094-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background PKHD1 is the main genetic cause of autosomal recessive polycystic kidney disease (ARPKD), a hereditary hepato-renal fibrocystic disorder which is the most important cause of end-stage renal disease during early childhood. ARPKD can also present in adulthood with milder phenotypes. In this study, we describe a 24-year-old woman with atypical polycystic kidney, no family history of renal disease and no obvious extra-renal manifestations who was referred for genetic investigation. Methods We used a combination of next generation sequencing, Sanger sequencing and RNA and microscopy studies performed on urine-derived renal epithelial cells (URECs) to provide a genetic diagnosis of ARPKD. Results A next generation sequencing panel of cystic ciliopathy genes allowed the identification of two heterozygous sequence changes in PKHD1 (c.6900C > T; p.(Asn2300=) and c.7964A > C; p.(His2655Pro)). The pathogenicity of the synonymous PKHD1 variant is not clear and requires RNA studies, which cannot be carried out efficiently on RNA extracted from proband blood, due to the low expression levels of PKHD1 in lymphocytes. Using URECs as a source of kidney-specific RNA, we show that PKHD1 is alternatively spliced around exon 43, both in control and proband URECs. The variant p.(Asn2300=) shifts the expression ratio in favour of a shorter, out-of-frame transcript. To further study the phenotypic consequence of these variants, we investigated the ciliary phenotype of patient URECs, which were abnormally elongated and presented multiple blebs along the axoneme. Conclusions We confirm the power of URECs as a tool for functional studies on candidate variants in inherited renal disease, especially when the expression of the gene of interest is restricted to the kidney and we describe, for the first time, ciliary abnormalities in ARPKD patient cells.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Shalabh Srivastava
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rebecca M Dewhurst
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK. .,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK. .,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Santos-Laso A, Izquierdo-Sanchez L, Rodrigues PM, Huang BQ, Azkargorta M, Lapitz A, Munoz-Garrido P, Arbelaiz A, Caballero FJ, Fernandez-Barrena MG, Jimenez-Agüero R, Argemi J, Aragon T, Elortza F, Marzioni M, Drenth JP, LaRusso NF, Bujanda L, Perugorria MJ, Banales JM. Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: New therapeutic targets. Liver Int 2020; 40:1670-1685. [PMID: 32378324 PMCID: PMC7370945 DOI: 10.1111/liv.14485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple biliary cysts. Recently, novel PLD-causative genes, encoding for endoplasmic reticulum (ER)-resident proteins involved in protein biogenesis and transport, were identified. We hypothesized that aberrant proteostasis contributes to PLD pathogenesis, representing a potential therapeutic target. METHODS ER stress was analysed at transcriptional (qPCR), proteomic (mass spectrometry), morphological (transmission electron microscopy, TEM) and functional (proteasome activity) levels in different PLD models. The effect of ER stress inhibitors [4-phenylbutyric acid (4-PBA)] and/or activators [tunicamycin (TM)] was tested in polycystic (PCK) rats and cystic cholangiocytes in vitro. RESULTS The expression levels of unfolded protein response (UPR) components were upregulated in liver tissue from PLD patients and PCK rats, as well as in primary cultures of human and rat cystic cholangiocytes, compared to normal controls. Cystic cholangiocytes showed altered proteomic profiles, mainly related to proteostasis (ie synthesis, folding, trafficking and degradation of proteins), marked enlargement of the ER lumen (by TEM) and hyperactivation of the proteasome. Notably, chronic treatment of PCK rats with 4-PBA decreased liver weight, as well as both liver and cystic volumes, of animals under baseline conditions or after TM administration compared to controls. In vitro, 4-PBA downregulated the expression (mRNA) of UPR effectors, normalized proteomic profiles related to protein synthesis, folding, trafficking and degradation and reduced the proteasome hyperactivity in cystic cholangiocytes, reducing their hyperproliferation and apoptosis. CONCLUSIONS Restoration of proteostasis in cystic cholangiocytes with 4-PBA halts hepatic cystogenesis, emerging as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain;,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Bing Q. Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mikel Azkargorta
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain;,Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Patricia Munoz-Garrido
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Francisco J. Caballero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain;,Department of Organic Chemistry I, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Maite G. Fernandez-Barrena
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain;,Division of Hepatology, CIMA-University of Navarra, Pamplona, Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | | | - Tomas Aragon
- Division of Hepatology, CIMA-University of Navarra, Pamplona, Spain
| | - Felix Elortza
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain;,Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Joost P.H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain;,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain;,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain;,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastian, Spain;,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain;,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Cilia and polycystic kidney disease. Semin Cell Dev Biol 2020; 110:139-148. [PMID: 32475690 DOI: 10.1016/j.semcdb.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
Abstract
Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.
Collapse
|
13
|
Gilloteaux J. Primary cilia in the Syrian hamster biliary tract: Bile flow antennae and outlooks about signaling on the hepato-biliary-pancreatic stem cells. TRANSLATIONAL RESEARCH IN ANATOMY 2020. [DOI: 10.1016/j.tria.2020.100063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Barten TRM, Bernts LHP, Drenth JPH, Gevers TJG. New insights into targeting hepatic cystogenesis in autosomal dominant polycystic liver and kidney disease. Expert Opin Ther Targets 2020; 24:589-599. [DOI: 10.1080/14728222.2020.1751818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thijs R. M. Barten
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Lucas H. P. Bernts
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Tom J. G. Gevers
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| |
Collapse
|
15
|
Olson RJ, Hopp K, Wells H, Smith JM, Furtado J, Constans MM, Escobar DL, Geurts AM, Torres VE, Harris PC. Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models. J Am Soc Nephrol 2019; 30:2113-2127. [PMID: 31427367 PMCID: PMC6830782 DOI: 10.1681/asn.2019020150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocystin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD's mild phenotype in murine models versus in humans has hampered investigating its pathogenesis. METHODS To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. RESULTS The genetic interaction was synergistic in both species, with digenic animals exhibiting phenotypes of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction between Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached. Pkhd1 loss did not alter expression, maturation, or localization of the ADPKD polycystin proteins, with no interaction detected between the ARPKD FPC protein and polycystins. RNA-seq analysis in the digenic and monogenic mouse models highlighted the ciliary compartment as a common dysregulated target, with enhanced ciliary expression and length changes in the digenic models. CONCLUSIONS These data indicate that FPC and the polycystins work independently, with separate disease-causing thresholds; however, a combined protein threshold triggers the synergistic, cystogenic response because of enhanced dysregulation of primary cilia. These insights into pathogenesis highlight possible common therapeutic targets.
Collapse
Affiliation(s)
- Rory J Olson
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, Colorado
| | - Harrison Wells
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Jessica M Smith
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Jessica Furtado
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Sciences, Rochester, Minnesota
- Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, Connecticut; and
| | - Megan M Constans
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Diana L Escobar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Aron M Geurts
- Gene Editing Rat Resource Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Sciences, Rochester, Minnesota;
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Bezençon J, Beaudoin JJ, Ito K, Fu D, Roth SE, Brock WJ, Brouwer KLR. Altered Expression and Function of Hepatic Transporters in a Rodent Model of Polycystic Kidney Disease. Drug Metab Dispos 2019; 47:899-906. [PMID: 31160314 PMCID: PMC6657211 DOI: 10.1124/dmd.119.086785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common form of inherited polycystic kidney disease (PKD) and is a leading cause of kidney failure. Fluid-filled cysts develop in the kidneys of patients with ADPKD, and cysts often form in their liver and other organs. Previous data have shown that bile acids are increased in the liver of polycystic kidney (PCK) rats, a rodent model of PKD; these changes may be associated with alterations in liver transporter expression and function. However, the impact of PKD on hepatic transporters has not been characterized. Therefore, this preclinical study was designed to investigate hepatic transporter expression and function in PCK compared with wild-type (WT) Sprague-Dawley rats. Transporter gene expression was measured by quantitative polymerase chain reaction, and protein levels were quantified by Western blot and liquid chromatography-tandem mass spectroscopy (LC-MS/MS)-based proteomic analysis in rat livers. Transporter function was assessed in isolated perfused livers (IPLs), and biliary and hepatic total glutathione content was measured. Protein expression of Mrp2 and Oatp1a4 was decreased 3.0-fold and 2.9-fold, respectively, in PCK rat livers based on Western blot analysis. Proteomic analysis confirmed a decrease in Mrp2 and a decrease in Oatp1a1 expression (PCK/WT ratios, 0.368 ± 0.098 and 0.563 ± 0.038, respectively; mean ± S.D.). The biliary excretion of 5(6)-carboxy-2',7'-dichlorofluorescein, a substrate of Oatp1a1, Mrp2, and Mrp3, was decreased 28-fold in PCK compared with WT rat IPLs. Total glutathione was significantly reduced in the bile of PCK rats. Differences in hepatic transporter expression and function may contribute to altered disposition of Mrp2 and Oatp substrates in PKD.
Collapse
Affiliation(s)
- Jacqueline Bezençon
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.B., J.J.B., K.I., D.F., K.L.R.B.); DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, Montgomery Village, Maryland (W.J.B.)
| | - James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.B., J.J.B., K.I., D.F., K.L.R.B.); DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, Montgomery Village, Maryland (W.J.B.)
| | - Katsuaki Ito
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.B., J.J.B., K.I., D.F., K.L.R.B.); DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, Montgomery Village, Maryland (W.J.B.)
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.B., J.J.B., K.I., D.F., K.L.R.B.); DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, Montgomery Village, Maryland (W.J.B.)
| | - Sharin E Roth
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.B., J.J.B., K.I., D.F., K.L.R.B.); DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, Montgomery Village, Maryland (W.J.B.)
| | - William J Brock
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.B., J.J.B., K.I., D.F., K.L.R.B.); DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, Montgomery Village, Maryland (W.J.B.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.B., J.J.B., K.I., D.F., K.L.R.B.); DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, Montgomery Village, Maryland (W.J.B.)
| |
Collapse
|
17
|
Fabris L, Fiorotto R, Spirli C, Cadamuro M, Mariotti V, Perugorria MJ, Banales JM, Strazzabosco M. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019; 16:497-511. [PMID: 31165788 PMCID: PMC6661007 DOI: 10.1038/s41575-019-0156-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile duct epithelial cells, also known as cholangiocytes, regulate the composition of bile and its flow. Acquired, congenital and genetic dysfunctions in these cells give rise to a set of diverse and complex diseases, often of unknown aetiology, called cholangiopathies. New knowledge has been steadily acquired about genetic and congenital cholangiopathies, and this has led to a better understanding of the mechanisms of acquired cholangiopathies. This Review focuses on findings from studies on Alagille syndrome, polycystic liver diseases, fibropolycystic liver diseases (Caroli disease and congenital hepatic fibrosis) and cystic fibrosis-related liver disease. In particular, knowledge on the role of Notch signalling in biliary repair and tubulogenesis has been advanced by work on Alagille syndrome, and investigations in polycystic liver diseases have highlighted the role of primary cilia in biliary pathophysiology and the concept of biliary angiogenic signalling and its role in cyst growth and biliary repair. In fibropolycystic liver disease, research has shown that loss of fibrocystin generates a signalling cascade that increases β-catenin signalling, activates the NOD-, LRR- and pyrin domain-containing 3 inflammasome, and promotes production of IL-1β and other chemokines that attract macrophages and orchestrate the process of pericystic and portal fibrosis, which are the main mechanisms of progression in cholangiopathies. In cystic fibrosis-related liver disease, lack of cystic fibrosis transmembrane conductance regulator increases the sensitivity of epithelial Toll-like receptor 4 that sustains the secretion of nuclear factor-κB-dependent cytokines and peribiliary inflammation in response to gut-derived products, providing a model for primary sclerosing cholangitis. These signalling mechanisms may be targeted therapeutically and they offer a possibility for the development of novel treatments for acquired cholangiopathies.
Collapse
Affiliation(s)
- Luca Fabris
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Romina Fiorotto
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Carlo Spirli
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | | | - Valeria Mariotti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA.
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
18
|
Brock WJ, Beaudoin JJ, Slizgi JR, Su M, Jia W, Roth SE, Brouwer KLR. Bile Acids as Potential Biomarkers to Assess Liver Impairment in Polycystic Kidney Disease. Int J Toxicol 2019; 37:144-154. [PMID: 29587557 DOI: 10.1177/1091581818760746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycystic kidney disease is characterized by the progressive development of kidney cysts and declining renal function with frequent development of cysts in other organs including the liver. The polycystic kidney (PCK) rat is a rodent model of polycystic liver disease that has been used to study hepatorenal disease progression and evaluate pharmacotherapeutic interventions. Biomarkers that describe the cyst progression, liver impairment, and/or hepatic cyst burden could provide clinical utility for this disease. In the present study, hepatic cyst volume was measured by magnetic resonance imaging in PCK rats at 12, 16, and 20 weeks. After 20 weeks, Sprague Dawley (n = 4) and PCK (n = 4) rats were sacrificed and 42 bile acids were analyzed in the liver, bile, serum, and urine by liquid chromatography coupled to tandem mass spectrometry. Bile acid profiling revealed significant increases in total bile acids (molar sum of all measured bile acids) in the liver (13-fold), serum (6-fold), and urine (3-fold) in PCK rats, including those speciated bile acids usually associated with hepatotoxicity. Total serum bile acids correlated with markers of liver impairment (liver weight, total liver bile acids, total hepatotoxic liver bile acids, and cyst volume [ r > 0.75; P < 0.05]). Based on these data, serum bile acids may be useful biomarkers of liver impairment in polycystic hepatorenal disease.
Collapse
Affiliation(s)
- William J Brock
- 1 Brock Scientific Consulting, LLC, Montgomery Village, MD, USA
| | - James J Beaudoin
- 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason R Slizgi
- 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mingming Su
- 3 Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Wei Jia
- 3 Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Kim L R Brouwer
- 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Beaudoin JJ, Bezençon J, Cao Y, Mizuno K, Roth SE, Brock WJ, Brouwer KLR. Altered Hepatobiliary Disposition of Tolvaptan and Selected Tolvaptan Metabolites in a Rodent Model of Polycystic Kidney Disease. Drug Metab Dispos 2018; 47:155-163. [PMID: 30504136 DOI: 10.1124/dmd.118.083907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Tolvaptan, a vasopressin V2-receptor antagonist, has demonstrated efficacy in slowing kidney function decline in patients with autosomal dominant polycystic kidney disease (ADPKD). In the pivotal clinical trial, the incidence of elevated liver enzymes was higher in patients receiving tolvaptan compared with placebo. Adjudication by a panel of expert hepatologists concluded a causal link of tolvaptan to liver injury in patients with ADPKD. An ex situ isolated perfused liver (IPL) study of tolvaptan disposition was undertaken in a rodent model of ADPKD, the polycystic kidney (PCK) rat (n = 5), and compared with wild-type (WT) Sprague-Dawley rats (n = 6). Livers were perfused with tolvaptan, followed by a tolvaptan-free washout phase. Total recovery (mean ± S.D. percentage of dose; PCK vs. WT) of tolvaptan and two metabolites, DM-4103 and DM-4107, quantified by liquid chromatography-tandem mass spectroscopy, was 58.14% ± 24.72% vs. 43.40% ± 18.11% in liver, 20.10% ± 9.15% vs. 21.17% ± 12.51% in outflow perfusate, and 0.08% ± 0.01% vs. 0.39% ± 0.32% in bile. DM-4103 recovery (mean ± S.D. percentage of dose) was decreased in PCK vs. WT bile (<0.01% ± <0.01% vs. 0.02% ± 0.01%; P = 0.0037), and DM-4107 recovery was increased in PCK vs. WT outflow perfusate (1.60% ± 0.57% vs. 0.43% ± 0.29%; P = 0.0017). A pharmacokinetic compartmental model assuming first-order processes was developed to describe the rate vs. time profiles of tolvaptan and DM-4103 + DM-4107 in rat IPLs. The model-derived estimate of tolvaptan's biliary clearance was significantly decreased in PCK compared with WT IPLs. The model predicted greater hepatocellular concentrations of tolvaptan and DM-4103 + DM-4107 in PCK compared with WT IPLs. Increased hepatocellular exposure to tolvaptan and metabolites may contribute to the hepatotoxicity in patients with ADPKD treated with tolvaptan.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Jacqueline Bezençon
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Katsuhiko Mizuno
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Sharin E Roth
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - William J Brock
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (J.J.B., J.B., Y.C., K.L.R.B.); Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan (K.M.); Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland (S.E.R.); and Brock Scientific Consulting, LLC, Montgomery Village, Maryland (W.J.B.)
| |
Collapse
|
20
|
Masyuk TV, Masyuk AI, LaRusso NF. Therapeutic Targets in Polycystic Liver Disease. Curr Drug Targets 2018; 18:950-957. [PMID: 25915482 DOI: 10.2174/1389450116666150427161743] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 02/06/2023]
Abstract
Polycystic liver diseases (PLD) are a group of genetic disorders initiated by mutations in several PLD-related genes and characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. PLD co-exists with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Autosomal Recessive PKD as well as occurs alone (i.e., Autosomal Dominant Polycystic Liver Disease [ADPLD]). PLD associated with ADPKD and ARPKD belong to a group of disorders known as cholangiociliopathies since many disease-causative and disease-related proteins are expressed in primary cilia of cholangiocytes. Aberrant expression of these proteins in primary cilia affects their structures and functions promoting cystogenesis. Current medical therapies for PLD include symptomatic management and surgical interventions. To date, the only available drug treatment for PLD patients that halt disease progression and improve quality of life are somatostatin analogs. However, the modest clinical benefits, need for long-term maintenance therapy, and the high cost of treatment justify the necessity for more effective treatment options. Substantial evidence suggests that experimental manipulations with components of the signaling pathways that influence cyst development (e.g., cAMP, intracellular calcium, receptor tyrosine kinase, transient receptor potential cation channel subfamily V member 4 (TRPV4) channel, mechanistic target of rapamycin (mTOR), histone deacetylase (HDAC6), Cdc25A phosphatase, miRNAs and metalloproteinases) attenuate growth of hepatic cysts. Many of these targets have been evaluated in pre-clinical trials suggesting their value as potential new therapies. This review outlines the current clinical and preclinical treatment strategies for PLD.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW Rochester, Minnesota, MN 55905, United States
| |
Collapse
|
21
|
Masyuk AI, Masyuk TV, Lorenzo Pisarello MJ, Ding JF, Loarca L, Huang BQ, LaRusso NF. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology 2018; 67:1088-1108. [PMID: 29023824 PMCID: PMC5826832 DOI: 10.1002/hep.29577] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
UNLABELLED Polycystic liver disease (PLD) is a group of genetic disorders with limited treatment options and significant morbidity. Hepatic cysts arise from cholangiocytes exhibiting a hyperproliferative phenotype. Considering that hyperproliferation of many cell types is associated with alterations in autophagy, we hypothesized that autophagy is altered in PLD cholangiocytes, contributes to hepatic cystogenesis, and might represent a potential therapeutic target. We employed functional pathway cluster analysis and next-generation sequencing, transmission electron microscopy, immunofluorescence confocal microscopy, and western blotting to assess autophagy in human and rodent PLD cholangiocytes. A three-dimensional culture model was used to study the effects of molecular and pharmacologic inhibition of autophagy on hepatic cystogenesis in vitro, and the polycystic kidney disease-specific rat, an animal model of PLD, to study the effects of hydroxychloroquine, a drug that interferes with the autophagy pathway, on disease progression in vivo. Assessment of the transcriptome of PLD cholangiocytes followed by functional pathway cluster analysis revealed that the autophagy-lysosomal pathway is one of the most altered pathways in PLD. Direct evaluation of autophagy in PLD cholangiocytes both in vitro and in vivo showed increased number and size of autophagosomes, lysosomes, and autolysosomes; overexpression of autophagy-related proteins (Atg5, Beclin1, Atg7, and LC3); and enhanced autophagic flux associated with activation of the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway. Molecular and pharmacologic intervention in autophagy with ATG7 small interfering RNA, bafilomycin A1 , and hydroxychloroquine reduced proliferation of PLD cholangiocytes in vitro and growth of hepatic cysts in three-dimensional cultures. Hydroxychloroquine also efficiently inhibited hepatic cystogenesis in the polycystic kidney disease-specific rat. CONCLUSION Autophagy is increased in PLD cholangiocytes, contributes to hepatic cystogenesis, and represents a potential therapeutic target for disease treatment. (Hepatology 2018;67:1088-1108).
Collapse
Affiliation(s)
- Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Jingyi Francess Ding
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Lorena Loarca
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Bing Q Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| |
Collapse
|
22
|
Jiang L, Sun L, Edwards G, Manley M, Wallace DP, Septer S, Manohar C, Pritchard MT, Apte U. Increased YAP Activation Is Associated With Hepatic Cyst Epithelial Cell Proliferation in ARPKD/CHF. Gene Expr 2017; 17:313-326. [PMID: 28915934 PMCID: PMC5705408 DOI: 10.3727/105221617x15034976037343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autosomal recessive polycystic kidney disease/congenital hepatic fibrosis (ARPKD/CHF) is a rare but fatal genetic disease characterized by progressive cyst development in the kidneys and liver. Liver cysts arise from aberrantly proliferative cholangiocytes accompanied by pericystic fibrosis and inflammation. Yes-associated protein (YAP), the downstream effector of the Hippo signaling pathway, is implicated in human hepatic malignancies such as hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma, but its role in hepatic cystogenesis in ARPKD/CHF is unknown. We studied the role of the YAP in hepatic cyst development using polycystic kidney (PCK) rats, an orthologous model of ARPKD, and in human ARPKD/CHF patients. The liver cyst wall epithelial cells (CWECs) in PCK rats were highly proliferative and exhibited expression of YAP. There was increased expression of YAP target genes, Ccnd1 (cyclin D1) and Ctgf (connective tissue growth factor), in PCK rat livers. Extensive expression of YAP and its target genes was also detected in human ARPKD/CHF liver samples. Finally, pharmacological inhibition of YAP activity with verteporfin and short hairpin (sh) RNA-mediated knockdown of YAP expression in isolated liver CWECs significantly reduced their proliferation. These data indicate that increased YAP activity, possibly through dysregulation of the Hippo signaling pathway, is associated with hepatic cyst growth in ARPKD/CHF.
Collapse
Affiliation(s)
- Lu Jiang
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lina Sun
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Genea Edwards
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Manley
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P. Wallace
- †Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Septer
- §Department of Gastroenterology, Children’s Mercy Hospital, Kansas City, KS, USA
| | - Chirag Manohar
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T. Pritchard
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
23
|
Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1254-1261. [PMID: 28709963 DOI: 10.1016/j.bbadis.2017.06.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
In the last 25years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled 'core' pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
|
24
|
Evidence for a "Pathogenic Triumvirate" in Congenital Hepatic Fibrosis in Autosomal Recessive Polycystic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4918798. [PMID: 27891514 PMCID: PMC5116503 DOI: 10.1155/2016/4918798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe monogenic disorder that occurs due to mutations in the PKHD1 gene. Congenital hepatic fibrosis (CHF) associated with ARPKD is characterized by the presence of hepatic cysts derived from dilated bile ducts and a robust, pericystic fibrosis. Cyst growth, due to cyst wall epithelial cell hyperproliferation and fluid secretion, is thought to be the driving force behind disease progression. Liver fibrosis is a wound healing response in which collagen accumulates in the liver due to an imbalance between extracellular matrix synthesis and degradation. Whereas both hyperproliferation and pericystic fibrosis are hallmarks of CHF/ARPKD, whether or not these two processes influence one another remains unclear. Additionally, recent studies demonstrate that inflammation is a common feature of CHF/ARPKD. Therefore, we propose a "pathogenic triumvirate" consisting of hyperproliferation of cyst wall growth, pericystic fibrosis, and inflammation which drives CHF/ARPKD progression. This review will summarize what is known regarding the mechanisms of cyst growth, fibrosis, and inflammation in CHF/ARPKD. Further, we will discuss the potential advantage of identifying a core pathogenic feature in CHF/ARPKD to aid in the development of novel therapeutic approaches. If a core pathogenic feature does not exist, then developing multimodality therapeutic approaches to target each member of the "pathogenic triumvirate" individually may be a better strategy to manage this debilitating disease.
Collapse
|
25
|
Han JS, Lee BS, Han SR, Han HY, Chung MK, Min BS, Seok JH, Kim YB. A subchronic toxicity study of Radix Dipsaci water extract by oral administration in F344 rats. Regul Toxicol Pharmacol 2016; 81:136-145. [PMID: 27477088 DOI: 10.1016/j.yrtph.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022]
Abstract
Radix Dipsaci, the dried root of Dipsacus asperoides C.Y. Cheng & T.M.Ai, has therapeutic effects on various disorders, and in particular, bone and joint disease. Despite such ethnomedicinal benefits, there is very little information regarding its in vivo toxicity or adverse effects. This study was conducted to evaluate the potential toxicity of the Radix Dipsaci water Extract (RD-wE) by using F344 rats. The RD-wE was administered orally to rats at doses of 0, 125, 250, 500, 1000, and 2000 mg/kg body weight (bw)/day for 13 weeks. During the treatment period there were no mortalities attributed to RD-wE. Moreover, no toxic effects were observed with regard to body weight, clinical pathology (hematology, clinical biochemistry, and urinalysis), and anatomic pathology (gross findings, organ weight, and microscopic examination). The changes related to the treatment were excessive salivation at the mouth and soft feces, observed in male and female rats at 1000 or 2000 mg/kg bw/day, but these were not accompanied by any microscopic correlate or other pathophysiological changes. Based on these results, the oral no-observed-adverse-effect level of the RD-wE was considered to be 2000 mg/kg bw/day in both genders, although the target organs were not determined under the current experimental conditions.
Collapse
Affiliation(s)
- Ji-Seok Han
- Research Center for Toxicologic Pathology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea
| | - Byoung-Seok Lee
- Research Center for Toxicologic Pathology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea
| | - So-Ri Han
- Research Center for General and Applied Toxicology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea
| | - Hyoung-Yun Han
- Research Center for General and Applied Toxicology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea
| | - Moon-Koo Chung
- Research Center for General and Applied Toxicology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, 13-13 Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, 712-702, Republic of Korea
| | - Ji Hyeon Seok
- Toxicological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Yong-Bum Kim
- Research Center for Toxicologic Pathology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea.
| |
Collapse
|
26
|
Gao Y, Erokwu BO, DeSantis DA, Croniger CM, Schur RM, Lu L, Mariappuram J, Dell KM, Flask CA. Initial evaluation of hepatic T1 relaxation time as an imaging marker of liver disease associated with autosomal recessive polycystic kidney disease (ARPKD). NMR IN BIOMEDICINE 2016; 29:84-9. [PMID: 26608869 PMCID: PMC4707433 DOI: 10.1002/nbm.3442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 05/08/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a potentially lethal multi-organ disease affecting both the kidneys and the liver. Unfortunately, there are currently no non-invasive methods to monitor liver disease progression in ARPKD patients, limiting the study of potential therapeutic interventions. Herein, we perform an initial investigation of T1 relaxation time as a potential imaging biomarker to quantitatively assess the two primary pathologic hallmarks of ARPKD liver disease: biliary dilatation and periportal fibrosis in the PCK rat model of ARPKD. T1 relaxation time results were obtained for five PCK rats at 3 months of age using a Look-Locker acquisition on a Bruker BioSpec 7.0 T MRI scanner. Six three-month-old Sprague-Dawley (SD) rats were also scanned as controls. All animals were euthanized after the three-month scans for histological and biochemical assessments of bile duct dilatation and hepatic fibrosis for comparison. PCK rats exhibited significantly increased liver T1 values (mean ± standard deviation = 935 ± 39 ms) compared with age-matched SD control rats (847 ± 26 ms, p = 0.01). One PCK rat exhibited severe cholangitis (mean T1 = 1413 ms), which occurs periodically in ARPKD patients. The observed increase in the in vivo liver T1 relaxation time correlated significantly with three histological and biochemical indicators of biliary dilatation and fibrosis: bile duct area percent (R = 0.85, p = 0.002), periportal fibrosis area percent (R = 0.82, p = 0.004), and hydroxyproline content (R = 0.76, p = 0.01). These results suggest that hepatic T1 relaxation time may provide a sensitive and non-invasive imaging biomarker to monitor ARPKD liver disease.
Collapse
Affiliation(s)
- Ying Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bernadette O. Erokwu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David A. DeSantis
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Colleen M. Croniger
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rebecca M. Schur
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lan Lu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jose Mariappuram
- CWRU Center for the Study of Kidney Disease and Biology, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Katherine M. Dell
- CWRU Center for the Study of Kidney Disease and Biology, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Corresponding author: Chris A. Flask, PhD, Associate Professor of Radiology, 11100 Euclid Ave / Bolwell B115, Cleveland, OH 44106, 216-844-4963,
| |
Collapse
|
27
|
Shimomura Y, Brock WJ, Ito Y, Morishita K. Age-Related Alterations in Blood Biochemical Characterization of Hepatorenal Function in the PCK Rat. Int J Toxicol 2015; 34:479-90. [DOI: 10.1177/1091581815611075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PCK rats develop age-related polycystic kidney disease (PKD) and liver disease and have been used to investigate pharmacotherapies to ameliorate hepatorenal lesions for patients with PKD. The PCK rat may be useful to understand the possible susceptibility to hepatotoxicity observed in the patient with PKD having hepatic polycystic lesions. Therefore, the purpose of this study was to investigate the background blood biochemical changes that reflect the hepatorenal function of PCK rats as well as the terminal histopathology in order to determine whether this model would be suitable for extrapolating the susceptibility of hepatotoxicity in patients. The blood biochemical parameters of hepatorenal function and histopathology were investigated in PCK rats at ages 5 to 19 weeks and compared to those outcomes in the Sprague Dawley (SD) rat. There were notable blood biochemical changes possibly due to biliary dysgenesis in the PCK rat as early as 5 weeks of age. High levels of γ-glutamyl transpeptidase, alkaline phosphatase, alanine aminotransferase, and total bile acids persisted throughout the study compared to the SD rat. Increased aspartate aminotransferase, total bilirubin, and hyperlipidemia and a decrease in albumin were also evident at 10 to 19 weeks of age possibly due to progression of cholestatic liver dysfunction secondary to age-related liver cystic progression. Increased liver weights generally correlated with the severity of biliary and hepatic histopathological changes. In male PCK rats, age-related increases in blood urea nitrogen and creatinine at 10 to 19 weeks of age were observed, and the cystic progression was more severe than that in females. These data indicate that the PCK rat showed notable blood biochemical changes reflecting alteration of the liver function compared to the SD rat. Also, there was a large individual variation in these parameters possibly due to variable progression rate of biliary dysgenesis and subsequent liver damages in PCK rats.
Collapse
Affiliation(s)
- Yuichi Shimomura
- Otsuka Pharmaceutical Co, Ltd, Tokushima Research Institute, Tokushima, Japan
| | - William J. Brock
- Otsuka Pharmaceuticals, Rockville, MD, USA
- Brock Scientific Consulting, LLC, Montgomery Village, MD, USA
| | - Yuko Ito
- Otsuka Pharmaceutical Co, Ltd, Tokushima Research Institute, Tokushima, Japan
| | - Katsumi Morishita
- Otsuka Pharmaceutical Co, Ltd, Tokushima Research Institute, Tokushima, Japan
| |
Collapse
|
28
|
Munoz-Garrido P, Marin JJG, Perugorria MJ, Urribarri AD, Erice O, Sáez E, Uriz M, Sarvide S, Portu A, Concepcion AR, Romero MR, Monte MJ, Santos-Laso A, Hijona E, Jimenez-Agüero R, Marzioni M, Beuers U, Masyuk TV, LaRusso NF, Prieto J, Bujanda L, Drenth JP, Banales JM. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J Hepatol 2015; 63:952-61. [PMID: 26044126 PMCID: PMC4575914 DOI: 10.1016/j.jhep.2015.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive biliary cystogenesis. Current therapies show short-term and/or modest beneficial effects. Cystic cholangiocytes hyperproliferate as a consequence of diminished intracellular calcium levels ([Ca(2+)]i). Here, the therapeutic value of ursodeoxycholic acid (UDCA) was investigated. METHODS Effect of UDCA was examined in vitro and in polycystic (PCK) rats. Hepatic cystogenesis and fibrosis, and the bile acid (BA) content were evaluated from the liver, bile, serum, and kidneys by HPLC-MS/MS. RESULTS Chronic treatment of PCK rats with UDCA inhibits hepatic cystogenesis and fibrosis, and improves their motor behaviour. As compared to wild-type animals, PCK rats show increased BA concentration ([BA]) in liver, similar hepatic Cyp7a1 mRNA levels, and diminished [BA] in bile. Likewise, [BA] is increased in cystic fluid of PLD patients compared to their matched serum levels. In PCK rats, UDCA decreases the intrahepatic accumulation of cytotoxic BA, normalizes their diminished [BA] in bile, increases the BA secretion in bile and diminishes the increased [BA] in kidneys. In vitro, UDCA inhibits the hyperproliferation of polycystic human cholangiocytes via a PI3K/AKT/MEK/ERK1/2-dependent mechanism without affecting apoptosis. Finally, the presence of glycodeoxycholic acid promotes the proliferation of polycystic human cholangiocytes, which is inhibited by both UDCA and tauro-UDCA. CONCLUSIONS UDCA was able to halt the liver disease of a rat model of PLD through inhibiting cystic cholangiocyte hyperproliferation and decreasing the levels of cytotoxic BA species in the liver, which suggests the use of UDCA as a potential therapeutic tool for PLD patients.
Collapse
Affiliation(s)
- Patricia Munoz-Garrido
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Jose J. G. Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - María J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,IKERBASQUE, Basque Foundation for Science
| | - Aura D. Urribarri
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Oihane Erice
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elena Sáez
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Miriam Uriz
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Sarai Sarvide
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Ainhoa Portu
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Axel R. Concepcion
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Marta R. Romero
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Maria J. Monte
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Marco Marzioni
- Department of Gastroenterology, “Università Politecnica delle Marche”, Ancona, Italy
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Tatyana V. Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jesús Prieto
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Joost P.H. Drenth
- Department of Gastroenterology & Hepatology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Jesús M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital –, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,IKERBASQUE, Basque Foundation for Science,Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| |
Collapse
|
29
|
Lee CH, O'Connor AK, Yang C, Tate JM, Schoeb TR, Flint JJ, Blackband SJ, Guay-Woodford LM. Magnetic resonance microscopy of renal and biliary abnormalities in excised tissues from a mouse model of autosomal recessive polycystic kidney disease. Physiol Rep 2015; 3:3/8/e12517. [PMID: 26320214 PMCID: PMC4562597 DOI: 10.14814/phy2.12517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Accepted: 08/02/2015] [Indexed: 06/04/2023] Open
Abstract
Polycystic kidney disease (PKD) is transmitted as either an autosomal dominant or recessive trait and is a major cause of renal failure and liver fibrosis. The cpk mouse model of autosomal recessive PKD (ARPKD) has been extensively characterized using standard histopathological techniques after euthanasia. In the current study, we sought to validate magnetic resonance microscopy (MRM) as a robust tool for assessing the ARPKD phenotype. We used MRM to evaluate the liver and kidney of wild-type and cpk animals at resolutions <100 μm and generated three-dimensional (3D) renderings for pathological evaluation. Our study demonstrates that MRM is an excellent method for evaluating the complex, 3D structural defects in this ARPKD mouse model. We found that MRM was equivalent to water displacement in assessing kidney volume. Additionally, using MRM we demonstrated for the first time that the cpk liver exhibits less extensive ductal arborization, that it was reduced in volume, and that the ductal volume was disproportionately smaller. Histopathology indicates that this is a consequence of bile duct malformation. With its reduced processing time, volumetric information, and 3D capabilities, MRM will be a useful tool for future in vivo and longitudinal studies of disease progression in ARPKD. In addition, MRM will provide a unique tool to determine whether the human disease shares the newly appreciated features of the murine biliary phenotype.
Collapse
Affiliation(s)
- Choong H Lee
- Department of Neuroscience, University of Florida, Gainesville, Florida McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Amber K O'Connor
- Center for Translational Science, Children's National Health System, Washington, District of Columbia
| | - Chaozhe Yang
- Center for Translational Science, Children's National Health System, Washington, District of Columbia
| | - Joshua M Tate
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy J Flint
- Department of Neuroscience, University of Florida, Gainesville, Florida McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Stephen J Blackband
- Department of Neuroscience, University of Florida, Gainesville, Florida McKnight Brain Institute, University of Florida, Gainesville, Florida National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
30
|
Feeding soy protein isolate and n-3 PUFA affects polycystic liver disease progression in a PCK rat model of autosomal polycystic kidney disease. J Pediatr Gastroenterol Nutr 2015; 60:467-73. [PMID: 25822773 DOI: 10.1097/mpg.0000000000000649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE In polycystic liver disease (PCLD), multiple cysts cause liver enlargement, structural damage, and loss of function. Soy protein and dietary ω-3 polyunsaturated fatty acids (n-3 PUFAs) have been found to decrease cyst proliferation and inflammation in polycystic kidney disease. Therefore, the aim of the study was to investigate whether soy protein and n-3 PUFA supplementation attenuates PCLD. METHODS Young (age 28 days) female PCK rats were fed (n = 12 per group) either casein + corn oil (casein + CO), casein + soybean oil (casein + SO), soy protein isolate + soybean oil (SPI + SO), or SPI + 1:1 soybean/salmon oil blend (SPI + SB) diet for 12 weeks. Liver histology, gene expression by real-time quantitative polymerase chain reaction, and serum markers of liver injury were determined. RESULTS Diet had no effect on PCLD progression as indicated by no significant differences in liver weight and hepatic proliferation gene expression between diet groups. PCK rats fed SPI + SB diet, however, had the greatest (P < 0.05) histological evidence of hepatic cyst obstruction, portal inflammation, steatosis, and upregulation (P = 0.03) of fibrosis-related genes. Rats fed SPI + SB diet also had the lowest (P < 0.001) serum cholesterol and higher (P < 0.05) serum alkaline phosphatase and bilirubin concentrations. CONCLUSIONS Feeding young female PCK rats SPI and n-3 PUFA failed to attenuate PCLD progression. Furthermore, feeding SPI + SB diet resulted in complications of hepatic steatosis attributable to cysts obstruction of bile duct and hepatic vein. Based on the results, it was concluded that diet intervention alone was not effective at attenuating PCLD associated with autosomal recessive polycystic kidney disease.
Collapse
|
31
|
Maditz KH, Smith BJ, Miller M, Oldaker C, Tou JC. Feeding soy protein isolate and oils rich in omega-3 polyunsaturated fatty acids affected mineral balance, but not bone in a rat model of autosomal recessive polycystic kidney disease. BMC Nephrol 2015; 16:13. [PMID: 25886405 PMCID: PMC4357150 DOI: 10.1186/s12882-015-0005-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Polycystic kidney disease (PKD), a genetic disorder characterized by multiple cysts and renal failure at an early age. In children, kidney disease is often accompanied by disordered mineral metabolism, failure to achieve peak bone mass, and reduced adult height. Optimizing bone health during the growth stage may preserve against bone loss associated with early renal dysfunction in PKD. Dietary soy protein and omega-3 polyunsaturated fatty acid (n-3 PUFA) have been reported to ameliorate PKD and to promote bone health. The study objective was to determine the bone effects of feeding soy protein and/or n-3 PUFAs in a rat model of PKD. Methods Weanling female PCK rats (n = 12/group) were randomly assigned to casein + corn oil (Casein + CO), casein + soybean oil (Casein + SO), soy protein isolate + soybean oil (SPI + SO) or soy protein isolate + 1:1 soybean oil:salmon oil blend (SPI + SB) for 12 weeks. Results Rats fed SPI + SO diet had shorter (P = 0.001) femur length than casein-fed rats. Rats fed SPI + SO and SPI + SB diet had higher (P = 0.04) calcium (Ca) and phosphorus (P) retention. However, there were no significant differences in femur and tibial Ca, P or bone mass between diet groups. There were also no significant difference in bone microarchitecture measured by micro-computed tomography or bone strength determined by three-point bending test between diet groups. Conclusions Early diet management of PKD using SPI and/or n-3 PUFAs influenced bone longitudinal growth and mineral balance, but neither worsened nor enhanced bone mineralization, microarchitecture or strength.
Collapse
Affiliation(s)
- Kaitlin H Maditz
- Division of Animal and Nutritional Sciences, West Virginia University, 1038 Agricultural Sciences Bldg, P.O. Box 6108, Evansdale Campus, Morgantown, West Virginia, 26505, USA.
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Matthew Miller
- Division of Animal and Nutritional Sciences, West Virginia University, 1038 Agricultural Sciences Bldg, P.O. Box 6108, Evansdale Campus, Morgantown, West Virginia, 26505, USA.
| | - Chris Oldaker
- Division of Animal and Nutritional Sciences, West Virginia University, 1038 Agricultural Sciences Bldg, P.O. Box 6108, Evansdale Campus, Morgantown, West Virginia, 26505, USA.
| | - Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, 1038 Agricultural Sciences Bldg, P.O. Box 6108, Evansdale Campus, Morgantown, West Virginia, 26505, USA.
| |
Collapse
|
32
|
Abstract
A plasma membrane-bound G protein-coupled receptor, TGR5, that transmits bile acid signaling into a cellular response primarily via the cAMP pathway is expressed in human and rodent cholangiocytes and is localized to multiple, diverse subcellular compartments, including primary cilia. Ciliary-associated TGR5 plays an important role in cholangiocyte physiology and may contribute to a group of liver diseases referred to as the 'cholangiociliopathies', which include polycystic liver disease (PLD) and, possibly, cholangiocarcinoma and primary sclerosing cholangitis. Based on our observations that (1) ciliated and nonciliated cholangiocytes respond to TGR5 activation differently (i.e. the level of cAMP increases in nonciliated cholangiocytes but decreases in ciliated cells) and (2) hepatic cysts are derived from cholangiocytes that are characterized by both malformed cilia and increased cAMP levels, we hypothesized that TGR5-mediated cAMP signaling in cystic cholangiocytes contributes to hepatic cystogenesis. Indeed, our studies show that TGR5 is overexpressed and mislocalized in cystic cholangiocytes, and when activated by ligands, results in increased intracellular cAMP levels, cholangiocyte hyperproliferation and cyst growth. Our studies also show that genetic elimination of TGR5 in an animal model of PLD inhibits hepatic cystogenesis. Collectively, these data suggest the involvement of TGR5 in PLD and that TGR5 targeting in cystic cholangiocytes may have therapeutic potential.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minn., USA
| | | | | |
Collapse
|
33
|
Abstract
Polycystic liver diseases are genetic disorders characterized by progressive bile duct dilatation and/or cyst development. The large volume of hepatic cysts causes different symptoms and complications such as abdominal distension, local pressure with back pain, hypertension, gastro-oesophageal reflux and dyspnea as well as bleeding, infection and rupture of the cysts. Current therapeutic strategies are based on surgical procedures and pharmacological management, which partially prevent or ameliorate the disease. However, as these treatments only show short-term and/or modest beneficial effects, liver transplantation is the only definitive therapy. Therefore, interest in understanding the molecular mechanisms involved in disease pathogenesis is increasing so that new targets for therapy can be identified. In this Review, the genetic mechanisms underlying polycystic liver diseases and the most relevant molecular pathways of hepatic cystogenesis are discussed. Moreover, the main clinical and preclinical studies are highlighted and future directions in basic as well as clinical research are indicated.
Collapse
|
34
|
Franchi F, Peterson KM, Xu R, Miller B, Psaltis PJ, Harris PC, Lerman LO, Rodriguez-Porcel M. Mesenchymal Stromal Cells Improve Renovascular Function in Polycystic Kidney Disease. Cell Transplant 2014; 24:1687-98. [PMID: 25290249 DOI: 10.3727/096368914x684619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common cause of end-stage renal failure, for which there is no accepted treatment. Progenitor and stem cells have been shown to restore renal function in a model of renovascular disease, a disease that shares many features with PKD. The objective of this study was to examine the potential of adult stem cells to restore renal structure and function in PKD. Bone marrow-derived mesenchymal stromal cells (MSCs, 2.5 × 10(5)) were intrarenally infused in 6-week-old PCK rats. At 10 weeks of age, PCK rats had an increase in systolic blood pressure (SBP) versus controls (126.22 ± 2.74 vs. 116.45 ± 3.53 mmHg, p < 0.05) and decreased creatinine clearance (3.76 ± 0.31 vs. 6.10 ± 0.48 µl/min/g, p < 0.01), which were improved in PKD animals that received MSCs (SBP: 114.67 ± 1.34 mmHg, and creatinine clearance: 4.82 ± 0.24 µl/min/g, p = 0.001 and p = 0.003 vs. PKD, respectively). MSCs preserved vascular density and glomeruli diameter, measured using microcomputed tomography. PCK animals had increased urine osmolality (843.9 ± 54.95 vs. 605.6 ± 45.34 mOsm, p < 0.01 vs. control), which was improved after MSC infusion and not different from control (723.75 ± 56.6 mOsm, p = 0.13 vs. control). Furthermore, MSCs reduced fibrosis and preserved the expression of proangiogenic molecules, while cyst size and number were unaltered by MSCs. Delivery of exogenous MSCs improved vascular density and renal function in PCK animals, and the benefit was observed up to 4 weeks after a single infusion. Cell-based therapy constitutes a novel approach in PKD.
Collapse
Affiliation(s)
- Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gradilone SA, Habringer S, Masyuk TV, Howard BN, Masyuk AI, Larusso NF. HDAC6 is overexpressed in cystic cholangiocytes and its inhibition reduces cystogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:600-8. [PMID: 24434010 DOI: 10.1016/j.ajpath.2013.11.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 02/07/2023]
Abstract
Polycystic liver disease (PLD) is a member of the cholangiopathies, a group of liver diseases in which cholangiocytes, the epithelia lining of the biliary tree, are the target cells. PLDs are caused by mutations in genes involved in intracellular signaling pathways, cell cycle regulation, and ciliogenesis, among others. We previously showed that cystic cholangiocytes have abnormal cell cycle profiles and malfunctioning cilia. Because histone deacetylase 6 (HDAC6) plays an important role in both cell cycle regulation and ciliary disassembly, we examined the role of HDAC6 in hepatic cystogenesis. HDAC6 protein was increased sixfold in cystic liver tissue and in cultured cholangiocytes isolated from both PCK rats (an animal model of PLD) and humans with PLD. Furthermore, pharmacological inhibition of HDAC6 by Tubastatin-A, Tubacin, and ACY-1215 decreased proliferation of cystic cholangiocytes in a dose- and time-dependent manner, and inhibited cyst growth in three-dimensional cultures. Importantly, ACY-1215 administered to PCK rats diminished liver cyst development and fibrosis. In summary, we show that HDAC6 is overexpressed in cystic cholangiocytes both in vitro and in vivo, and its pharmacological inhibition reduces cholangiocyte proliferation and cyst growth. These data suggest that HDAC6 may represent a potential novel therapeutic target for cases of PLD.
Collapse
Affiliation(s)
| | - Stefan Habringer
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tatyana V Masyuk
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Brynn N Howard
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
36
|
Masyuk TV, Lee SO, Radtke BN, Stroope AJ, Huang B, Banales JM, Masyuk AI, Splinter PL, Gradilone SA, Gajdos GB, LaRusso NF. Centrosomal abnormalities characterize human and rodent cystic cholangiocytes and are associated with Cdc25A overexpression. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:110-21. [PMID: 24211536 DOI: 10.1016/j.ajpath.2013.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/31/2023]
Abstract
Hepatic cystogenesis in polycystic liver diseases is associated with abnormalities of cholangiocyte cilia. Given the crucial association between cilia and centrosomes, we tested the hypothesis that centrosomal defects occur in cystic cholangiocytes of rodents (Pkd2(WS25/-) mice and PCK rats) and of patients with polycystic liver diseases, contributing to disturbed ciliogenesis and cyst formation. We examined centrosomal cytoarchitecture in control and cystic cholangiocytes, the effects of centrosomal abnormalities on ciliogenesis, and the role of the cell-cycle regulator Cdc25A in centrosomal defects by depleting cholangiocytes of Cdc25A in vitro and in vivo and evaluating centrosome morphology, cell-cycle progression, proliferation, ciliogenesis, and cystogenesis. The cystic cholangiocytes had atypical centrosome positioning, supernumerary centrosomes, multipolar spindles, and extra cilia. Structurally aberrant cilia were present in cystic cholangiocytes during ciliogenesis. Depletion of Cdc25A resulted in i) a decreased number of centrosomes and multiciliated cholangiocytes, ii) an increased fraction of ciliated cholangiocytes with longer cilia, iii) a decreased proportion of cholangiocytes in G1/G0 and S phases of the cell cycle, iv) decreased cell proliferation, and v) reduced cyst growth in vitro and in vivo. Our data support the hypothesis that centrosomal abnormalities in cholangiocytes are associated with aberrant ciliogenesis and that accelerated cystogenesis is likely due to overexpression of Cdc25A, providing additional evidence that pharmacological targeting of Cdc25A has therapeutic potential in polycystic liver diseases.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Seung-Ok Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Brynn N Radtke
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Angela J Stroope
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Bing Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jesús M Banales
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital-CIBERehd (Spanish Carlos III Health Institute), IKERBASQUE (Basque Foundation for Science) and University of Basque Country (UPV), San Sebastián, Spain
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick L Splinter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sergio A Gradilone
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gabriella B Gajdos
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
37
|
Spirli C, Locatelli L, Morell CM, Fiorotto R, Morton SD, Cadamuro M, Fabris L, Strazzabosco M. Protein kinase A-dependent pSer(675) -β-catenin, a novel signaling defect in a mouse model of congenital hepatic fibrosis. Hepatology 2013; 58:1713-23. [PMID: 23744610 PMCID: PMC3800498 DOI: 10.1002/hep.26554] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/16/2013] [Accepted: 05/24/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED Genetically determined loss of fibrocystin function causes congenital hepatic fibrosis (CHF), Caroli disease (CD), and autosomal recessive polycystic kidney disease (ARPKD). Cystic dysplasia of the intrahepatic bile ducts and progressive portal fibrosis characterize liver pathology in CHF/CD. At a cellular level, several functional morphological and signaling changes have been reported including increased levels of 3'-5'-cyclic adenosine monophosphate (cAMP). In this study we addressed the relationships between increased cAMP and β-catenin. In cholangiocytes isolated and cultured from Pkhd1(del4/del4) mice, stimulation of cAMP/PKA signaling (forskolin 10 μM) stimulated Ser(675) -phosphorylation of β-catenin, its nuclear localization, and its transcriptional activity (western blot and TOP flash assay, respectively) along with a down-regulation of E-cadherin expression (immunocytochemistry and western blot); these changes were inhibited by the PKA blocker, PKI (1 μM). The Rho-GTPase, Rac-1, was also significantly activated by cAMP in Pkhd1(del4/del4) cholangiocytes. Rac-1 inhibition blocked cAMP-dependent nuclear translocation and transcriptional activity of pSer(675) -β-catenin. Cell migration (Boyden chambers) was significantly higher in cholangiocytes obtained from Pkhd1(del4/del4) and was inhibited by: (1) PKI, (2) silencing β-catenin (siRNA), and (3) the Rac-1 inhibitor NSC 23766. CONCLUSION These data show that in fibrocystin-defective cholangiocytes, cAMP/PKA signaling stimulates pSer(675) -phosphorylation of β-catenin and Rac-1 activity. In the presence of activated Rac-1, pSer(675) -β-catenin is translocated to the nucleus, becomes transcriptionally active, and is responsible for increased motility of Pkhd1(del4/del4) cholangiocytes. β-Catenin-dependent changes in cell motility may be central to the pathogenesis of the disease and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Carlo Spirli
- Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Luigi Locatelli
- Department of InterdisciplinaryMedicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Carola M. Morell
- Department of InterdisciplinaryMedicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Romina Fiorotto
- Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Stuart D. Morton
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Massimiliano Cadamuro
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
- Department of InterdisciplinaryMedicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Luca Fabris
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Mario Strazzabosco
- Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of InterdisciplinaryMedicine and Surgery, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
38
|
Xu R, Franchi F, Miller B, Crane JA, Peterson KM, Psaltis PJ, Harris PC, Lerman LO, Rodriguez-Porcel M. Polycystic kidneys have decreased vascular density: a micro-CT study. Microcirculation 2013; 20:183-9. [PMID: 23167921 DOI: 10.1111/micc.12022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/26/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Polycystic kidney disease (PKD) is a common cause of end-stage renal failure and many of these patients suffer vascular dysfunction and hypertension. It remains unclear whether PKD is associated with abnormal microvascular structure. Thus, this study examined the renovascular structure in PKD. METHODS PKD rats (PCK model) and controls were studied at 10 weeks of age, and mean arterial pressure (MAP), renal blood flow, and creatinine clearance were measured. Microvascular architecture and cyst number and volume were assessed using micro-computed tomography, and angiogenic pathways evaluated. RESULTS Compared with controls, PKD animals had an increase in MAP (126.4 ± 4.0 vs. 126.2 ± 2.7 mmHg) and decreased clearance of creatinine (0.39 ± 0.09 vs. 0.30 ± 0.05 mL/min), associated with a decrease in microvascular density, both in the cortex (256 ± 22 vs. 136 ± 20 vessels per cm2) and medullar (114 ± 14 vs. 50 ± 9 vessels/cm2) and an increase in the average diameter of glomeruli (104.14 ± 2.94 vs. 125.76 ± 9.06 mm). PKD animals had increased fibrosis (2.2 ± 0.2 fold vs. control) and a decrease in the cortical expression in hypoxia inducible factor 1-α and vascular endothelial growth factor. CONCLUSIONS PKD animals have impaired renal vascular architecture, which can have significant functional consequences. The PKD microvasculature could represent a therapeutic target to decrease the impact of this disease.
Collapse
Affiliation(s)
- Rende Xu
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Three-dimensional imaging of hepatic sinusoids in mice using synchrotron radiation micro-computed tomography. PLoS One 2013; 8:e68600. [PMID: 23861925 PMCID: PMC3702620 DOI: 10.1371/journal.pone.0068600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/31/2013] [Indexed: 12/20/2022] Open
Abstract
Hepatic sinusoid, the smallest vessel in the liver, plays important roles in hepatic microcirculation. Although the structure of the hepatic sinusoids affects diverse functions of the liver, little is known about morphological alterations in the sinusoids under pathological conditions. In this study, we show that the structure of hepatic sinusoids can be identified three-dimensionally in normal and carbon tetrachloride-injured mouse liver, using the absorption mode of synchrotron radiation micro-computed tomography. We observed that the hepatic sinusoidal structure on tomographic slice images was similar to that on histological images of normal and acutely injured mice. Moreover, centrilobular necrosis and structural alterations of the sinusoids in the necrotic region were detectable on tomographic slice and volume-rendered images of the acutely injured mice. Furthermore, quantitative analyses on 3D volume-rendered images of the injured sinusoid revealed decrease in the volume of the sinusoid and connectivity of the sinusoidal network. Our results suggest that the use of synchrotron radiation micro-computed tomography may improve our understanding of the pathogenesis of hepatic diseases by detecting the hepatic sinusoids and their alterations in three-dimensional structures of the damaged liver.
Collapse
|
40
|
Tietz Bogert PS, Huang BQ, Gradilone SA, Masyuk TV, Moulder GL, Ekker SC, Larusso NF. The zebrafish as a model to study polycystic liver disease. Zebrafish 2013; 10:211-7. [PMID: 23668934 DOI: 10.1089/zeb.2012.0825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the polycystic liver diseases (PLD), genetic defects initiate the formation of cysts in the liver and kidney. In rodent models of PLD (i.e., the PCK rat and Pkd2(WS25/-) mouse), we have studied hepatorenal cystic disease and therapeutic approaches. In this study, we employed zebrafish injected with morpholinos against genes involved in the PLD, including sec63, prkcsh, and pkd1a. We calculated the liver cystic area, and based on our rodent studies, we exposed the embryos to pasireotide [1 μM] or vitamin K3 [100 μM] and assessed the endoplasmic reticulum (ER) in cholangiocytes in embryos treated with 4-phenylbutyrate (4-PBA). Our results show that (a) morpholinos against sec63, prkcsh, and pkd1a eliminate expression of the respective proteins; (b) phenotypic body changes included curved tail and the formation of hepatic cysts in zebrafish larvae; (c) exposure of embryos to pasireotide inhibited hepatic cystogenesis in the zebrafish models; and (d) exposure of embryos to 4-PBA resulted in the ER in cholangiocytes resolving from a curved to a smooth appearance. Our results suggest that the zebrafish model of PLD may provide a means to screen drugs that could inhibit hepatic cystogenesis.
Collapse
Affiliation(s)
- Pamela S Tietz Bogert
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine , Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
McCooke JK, Appels R, Barrero RA, Ding A, Ozimek-Kulik JE, Bellgard MI, Morahan G, Phillips JK. A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8. BMC Genomics 2012; 13:393. [PMID: 22899815 PMCID: PMC3441220 DOI: 10.1186/1471-2164-13-393] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 08/06/2012] [Indexed: 01/03/2023] Open
Abstract
Background Nephronophthisis (NPHP) as a cause of cystic kidney disease is the most common genetic cause of progressive renal failure in children and young adults. NPHP is characterized by abnormal and/or loss of function of proteins associated with primary cilia. Previously, we characterized an autosomal recessive phenotype of cystic kidney disease in the Lewis Polycystic Kidney (LPK) rat. Results In this study, quantitative trait locus analysis was used to define a ~1.6Mbp region on rat chromosome 10q25 harbouring the lpk mutation. Targeted genome capture and next-generation sequencing of this region identified a non-synonymous mutation R650C in the NIMA (never in mitosis gene a)- related kinase 8 ( Nek8) gene. This is a novel Nek8 mutation that occurs within the regulator of chromosome condensation 1 (RCC1)-like region of the protein. Specifically, the R650C substitution is located within a G[QRC]LG repeat motif of the predicted seven bladed beta-propeller structure of the RCC1 domain. The rat Nek8 gene is located in a region syntenic to portions of human chromosome 17 and mouse 11. Scanning electron microscopy confirmed abnormally long cilia on LPK kidney epithelial cells, and fluorescence immunohistochemistry for Nek8 protein revealed altered cilia localisation. Conclusions When assessed relative to other Nek8 NPHP mutations, our results indicate the whole propeller structure of the RCC1 domain is important, as the different mutations cause comparable phenotypes. This study establishes the LPK rat as a novel model system for NPHP and further consolidates the link between cystic kidney disease and cilia proteins.
Collapse
Affiliation(s)
- John K McCooke
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Masyuk AI, Gradilone SA, Gajdos GB, Chandok N, Bakeberg JL, Ward CJ, Ritman EL, Kiyokawa H, LaRusso NF. Inhibition of Cdc25A suppresses hepato-renal cystogenesis in rodent models of polycystic kidney and liver disease. Gastroenterology 2012; 142:622-633.e4. [PMID: 22155366 PMCID: PMC3506023 DOI: 10.1053/j.gastro.2011.11.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS In polycystic kidney disease and polycystic liver disease (PLD), the normally nonproliferative hepato-renal epithelia acquire a proliferative, cystic phenotype that is linked to overexpression of cell division cycle 25 (Cdc25)A phosphatase and cell-cycle deregulation. We investigated the effects of Cdc25A inhibition in mice and rats via genetic and pharmacologic approaches. METHODS Cdc25A(+/-) mice (which have reduced levels of Cdc25A) were cross-bred with polycystic kidney and hepatic disease 1 (Pkhd1(del2/del2)) mice (which have increased levels of Cdc25A and develop hepatic cysts). Cdc25A expression was analyzed in livers of control and polycystic kidney (PCK) rats, control and polycystic kidney 2 (Pkd2(ws25/-)) mice, healthy individuals, and patients with PLD. We examined effects of pharmacologic inhibition of Cdc25A with vitamin K3 (VK3) on the cell cycle, proliferation, and cyst expansion in vitro; hepato-renal cystogenesis in PCK rats and Pkd2(ws25/-)mice; and expression of Cdc25A and the cell-cycle proteins regulated by Cdc25A. We also examined the effects of the Cdc25A inhibitor PM-20 on hepato-renal cystogenesis in Pkd2(ws25/-) mice. RESULTS Liver weights and hepatic and fibrotic areas were decreased by 32%-52% in Cdc25A(+/-):Pkhd1(del2/del2) mice, compared with Pkhd1(del2/del2) mice. VK3 altered the cell cycle and reduced proliferation of cultured cholangiocytes by 32%-83% and decreased growth of cultured cysts by 23%-67%. In PCK rats and Pkd2(ws25/-) mice, VK3 reduced liver and kidney weights and hepato-renal cystic and fibrotic areas by 18%-34%. PM-20 decreased hepato-renal cystogenesis in Pkd2(ws25/-) mice by 15%. CONCLUSIONS Cdc25A inhibitors block cell-cycle progression and proliferation, reduce liver and kidney weights and cyst growth in animal models of polycystic kidney disease and PLD, and might be developed as therapeutics for these diseases.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Brynn N Radtke
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Angela J Stroope
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Jesús M Banales
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
,Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and CIMA, Ciberehd, Pamplona, Spain
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Sergio A Gradilone
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | | | - Natasha Chandok
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Jason L Bakeberg
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN USA
| | | | - Erik L Ritman
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | - Hiroaki Kiyokawa
- Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, IL USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
43
|
Caroli's Disease: Current Knowledge of Its Biliary Pathogenesis Obtained from an Orthologous Rat Model. Int J Hepatol 2012; 2012:107945. [PMID: 22007315 PMCID: PMC3168917 DOI: 10.1155/2012/107945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/07/2011] [Indexed: 12/14/2022] Open
Abstract
Caroli's disease belongs to a group of hepatic fibropolycystic diseases and is a hepatic manifestation of autosomal recessive polycystic kidney disease (ARPKD). It is a congenital disorder characterized by segmental saccular dilatations of the large intrahepatic bile duct and is frequently associated with congenital hepatic fibrosis (CHF). The most viable theory explaining its pathogenesis suggests that it is related to ductal plate malformation. The development of the polycystic kidney (PCK) rat, an orthologous rodent model of Caroli's disease with CHF as well as ARPKD, has allowed the molecular pathogenesis of the disease and the therapeutic options for its treatment to be examined. The relevance of the findings of studies using PCK rats and/or the cholangiocyte cell line derived from them to the pathogenesis of human Caroli's disease is currently being analyzed. Fibrocystin/polyductin, the gene product responsible for ARPKD, is normally localized to primary cilia, and defects in the fibrocystin from primary cilia are observed in PCK cholangiocytes. Ciliopathies involving PCK cholangiocytes (cholangiociliopathies) appear to be associated with decreased intracellular calcium levels and increased cAMP concentrations, causing cholangiocyte hyperproliferation, abnormal cell matrix interactions, and altered fluid secretion, which ultimately result in bile duct dilatation. This article reviews the current knowledge about the pathogenesis of Caroli's disease with CHF, particularly focusing on studies of the mechanism responsible for the biliary dysgenesis observed in PCK rats.
Collapse
|
44
|
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a developmental disorder that mainly affects the kidneys and the biliary tract. Affected patients often have massively enlarged cystic kidneys as well as congenital hepatic fibrosis (CHF) characterized by dilated bile ducts and associated peribiliary fibrosis. This review will examine what is known about ARPKD-associated liver disease and will highlight areas of ongoing research into its pathogenesis and potential treatment.
Collapse
Affiliation(s)
- Jessica Wen
- Division of Gastroenterology, Hepatology & Nutrition, The Children's Hospital of Philadelphia, Pennsylvania, USA.
| |
Collapse
|
45
|
Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T, Malarkey DE, Kaufmann W, Küttler K, Deschl U, Nakae D, Gregson R, Vinlove MP, Brix AE, Singh B, Belpoggi F, Ward JM. Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol 2011; 38:5S-81S. [PMID: 21191096 DOI: 10.1177/0192623310386499] [Citation(s) in RCA: 405] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and differential diagnosis for classifying microscopic lesions observed in the hepatobiliary system of laboratory rats and mice, with color microphotographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available for society members electronically on the internet (http://goreni.org). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for lesions of the hepatobiliary system in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Bob Thoolen
- Global Pathology Support, The Hague, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee K, Battini L, Gusella GL. Cilium, centrosome and cell cycle regulation in polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1263-71. [PMID: 21376807 DOI: 10.1016/j.bbadis.2011.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/10/2011] [Accepted: 02/16/2011] [Indexed: 12/19/2022]
Abstract
Polycystic kidney disease is the defining condition of a group of common life-threatening genetic disorders characterized by the bilateral formation and progressive expansion of renal cysts that lead to end stage kidney disease. Although a large body of information has been acquired in the past years about the cellular functions that characterize the cystic cells, the mechanisms triggering the cystogenic conversion are just starting to emerge. Recent findings link defects in ciliary functions, planar cell polarity pathway, and centrosome integrity in early cystic development. Many of the signals dysregulated during cystogenesis may converge on the centrosome for its central function as a structural support for cilia formation and a coordinator of protein trafficking, polarity, and cell division. Here, we will discuss the contribution of proliferation, cilium and planar cell polarity to the cystic signal and will analyze in particular the possible role that the basal bodies/centrosome may play in the cystogenetic mechanisms. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
47
|
Yoshihara D, Kurahashi H, Morita M, Kugita M, Hiki Y, Aukema HM, Yamaguchi T, Calvet JP, Wallace DP, Nagao S. PPAR-gamma agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol 2010; 300:F465-74. [PMID: 21147840 DOI: 10.1152/ajprenal.00460.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In autosomal recessive polycystic kidney disease (ARPKD), progressive enlargement of fluid-filled cysts is due to aberrant proliferation of tubule epithelial cells and transepithelial fluid secretion leading to extensive nephron loss and interstitial fibrosis. Congenital hepatic fibrosis associated with biliary cysts/dilatations is the most common extrarenal manifestation in ARPKD and can lead to massive liver enlargement. Peroxisome proliferator-activated receptor γ (PPAR-γ), a member of the ligand-dependent nuclear receptor superfamily, is expressed in a variety of tissues, including the kidneys and liver, and plays important roles in cell proliferation, fibrosis, and inflammation. In the current study, we determined that pioglitazone (PIO), a PPAR-γ agonist, decreases polycystic kidney and liver disease progression in the polycystic kidney rat, an orthologous model of human ARPKD. Daily treatment with 10 mg/kg PIO for 16 wk decreased kidney weight (% of body weight), renal cystic area, serum urea nitrogen, and the number of Ki67-, pERK1/2-, and pS6-positive cells in the kidney. There was also a decrease in liver weight (% of body weight), liver cystic area, fibrotic index, and the number of Ki67-, pERK1/2-, pERK5-, and TGF-β-positive cells in the liver. Taken together, these data suggest that PIO inhibits the progression of polycystic kidney and liver disease in a model of human ARPKD by inhibiting cell proliferation and fibrosis. These findings suggest that PPAR-γ agonists may have therapeutic value in the treatment of the renal and hepatic manifestations of ARPKD.
Collapse
Affiliation(s)
- Daisuke Yoshihara
- Education and Research Center of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mason SB, Liang Y, Sinders RM, Miller CA, Eggleston-Gulyas T, Crisler-Roberts R, Harris PC, Gattone VH. Disease stage characterization of hepatorenal fibrocystic pathology in the PCK rat model of ARPKD. Anat Rec (Hoboken) 2010; 293:1279-88. [PMID: 20665806 DOI: 10.1002/ar.21166] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rat Pck gene is orthologous to the human PKHD1 gene responsible for autosomal recessive polycystic kidney disease (ARPKD). Both renal and hepatic fibrocystic pathology occur in ARPKD. Affected humans have a variable rate of progression, from morbidly affected infants to those surviving into adulthood. This study evaluated the PCK rat, a model of slowly progressive ARPKD. This model originated in Japan and was rederived to be offered commercially by Charles River Laboratories (Wilmington, MA). Previous studies have described the basic aspects of PCK pathology from privately held colonies. This study provides a comprehensive characterization of rats from those commercially available. Rats were bred, maintained on a 12:12 hr light/dark cycle, fed (7002 Teklad), and water provided ad libitum. Male and female rats were evaluated from 4 through 35 weeks of age with histology and serum chemistry. As the hepatorenal fibrocystic disease progressed beyond 18 weeks, the renal pathology (kidney weight, total cyst volume) and renal dysfunction (BUN and serum creatinine) tended to be more severe in males, whereas liver pathology (liver weight as % of body weight and hepatic fibrocystic volume) tended to be more severe in females. Hyperlipidemia was evident in both genders after 18 weeks. Bile secretion was increased in PCK rats compared with age-matched Sprague Dawley rats. The PCK is an increasingly used orthologous rodent model of human ARPKD. This characterization study of hepatorenal fibrocystic pathology in PCK rats should help researchers select stages of pathology to study and/or monitor disease progression during their longitudinal studies.
Collapse
Affiliation(s)
- Stephen B Mason
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV, Radtke B, Splinter PL, LaRusso NF. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 2010; 299:G990-9. [PMID: 20634433 PMCID: PMC2957333 DOI: 10.1152/ajpgi.00093.2010] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exosomes are small extracellular vesicles that are thought to participate in intercellular communication. Recent work from our laboratory suggests that, in normal and cystic liver, exosome-like vesicles accumulate in the lumen of intrahepatic bile ducts, presumably interacting with cholangiocyte cilia. However, direct evidence for exosome-ciliary interaction is limited and the physiological relevance of such interaction remains unknown. Thus, in this study, we tested the hypothesis that biliary exosomes are involved in intercellular communication by interacting with cholangiocyte cilia and inducing intracellular signaling and functional responses. Exosomes were isolated from rat bile by differential ultracentrifugation and characterized by scanning, transmission, and immunoelectron microscopy. The exosome-ciliary interaction and its effects on ERK1/2 signaling, expression of the microRNA, miR-15A, and cholangiocyte proliferation were studied on ciliated and deciliated cultured normal rat cholangiocytes. Our results show that bile contains vesicles identified as exosomes by their size, characteristic "saucer-shaped" morphology, and specific markers, CD63 and Tsg101. When NRCs were exposed to isolated biliary exosomes, the exosomes attached to cilia, inducing a decrease of the phosphorylated-to-total ERK1/2 ratio, an increase of miR-15A expression, and a decrease of cholangiocyte proliferation. All these effects of biliary exosomes were abolished by the pharmacological removal of cholangiocyte cilia. Our findings suggest that bile contains exosomes functioning as signaling nanovesicles and influencing intracellular regulatory mechanisms and cholangiocyte proliferation through interaction with primary cilia.
Collapse
Affiliation(s)
- Anatoliy I. Masyuk
- 1Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology and
| | - Bing Q. Huang
- 1Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology and
| | - Christopher J. Ward
- 2Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Sergio A. Gradilone
- 1Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology and
| | - Jesus M. Banales
- 1Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology and ,3Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, School of Medicine and Centro de Investigacion Medica Aplicada (CIMA) of the University of Navarra and CIBERehd, Pamplona, Spain
| | - Tatyana V. Masyuk
- 1Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology and
| | - Brynn Radtke
- 1Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology and
| | - Patrick L. Splinter
- 1Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology and
| | - Nicholas F. LaRusso
- 1Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology and
| |
Collapse
|
50
|
Renken C, Fischer DC, Kundt G, Gretz N, Haffner D. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant 2010; 26:92-100. [PMID: 20615907 DOI: 10.1093/ndt/gfq384] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Activation of the mTOR pathway has been implicated in the mediation of the progression of polycystic kidney disease (PKD). Whereas targeted inhibition of mTOR has been proven to be effective in various animal models of autosomal dominant PKD, its efficacy in autosomal recessive PKD (ARPKD) remains to be elucidated. We examined the effects of sirolimus in PCK rats, an orthologous animal model of human ARPKD. METHODS Weaned PCK rats (n = 85) and SD-control rats (n = 72) received drinking water without and with sirolimus (corresponding to a daily intake of 2 mg/kg body weight) for 4, 8 and 12 weeks, respectively. The renal and hepatic functions were monitored throughout the treatment periods. Kidneys and livers were harvested and investigated with respect to progression of fibrosis, and number and size of cysts using the QWin image analysis programme. Expression of Akt, mTOR and its downstream target pS6K were assessed by immunohistochemistry. RESULTS Five out of 43 sirolimus-treated PCK rats, but none of the controls, died during the study. Sirolimus treatment resulted in slightly reduced weight gain. In PCK rats, grossly enlarged kidney and livers as well as hepatic fibrosis together with enlarged bile ducts were readily detectable. Whereas activation of Akt/mTOR signalling was hardly detectable in the kidneys of SD rats, strong signals were seen in the kidneys of PCK rats. Despite a significantly reduced relative kidney weight after 12 weeks of treatment (P < 0.05), neither fibrosis and cyst area nor renal function improved during treatment. Sirolimus-treated PCK rats showed only a minor inhibition of renal mTOR-specific phosphorylation of S6K. Male PCK rats on sirolimus presented with increased concentrations of bile acids and bilirubin compared with controls (each P < 0.05 at 12 weeks). Similar, albeit non-significant, effects were noted in female PCK rats. CONCLUSIONS Sirolimus failed to attenuate progression of kidney and liver disease in PCK rats. The lack of a protective effect might be due to intrinsic or acquired rapamycin resistance in this animal model of ARPKD.
Collapse
Affiliation(s)
- Catharina Renken
- Department of Pediatrics, University Children’s Hospital, Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|