1
|
Lan Y, Zou S, Wang W, Chen Q, Zhu Y. Progress in cancer neuroscience. MedComm (Beijing) 2023; 4:e431. [PMID: 38020711 PMCID: PMC10665600 DOI: 10.1002/mco2.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer of the central nervous system (CNS) can crosstalk systemically and locally in the tumor microenvironment and has become a topic of attention for tumor initiation and advancement. Recently studied neuronal and cancer interaction fundamentally altered the knowledge about glioma and metastases, indicating how cancers invade complex neuronal networks. This review systematically discussed the interactions between neurons and cancers and elucidates new therapeutic avenues. We have overviewed the current understanding of direct or indirect communications of neuronal cells with cancer and the mechanisms associated with cancer invasion. Besides, tumor-associated neuronal dysfunction and the influence of cancer therapies on the CNS are highlighted. Furthermore, interactions between peripheral nervous system and various cancers have also been discussed separately. Intriguingly and importantly, it cannot be ignored that exosomes could mediate the "wireless communications" between nervous system and cancer. Finally, promising future strategies targeting neuronal-brain tumor interactions were reviewed. A great deal of work remains to be done to elucidate the neuroscience of cancer, and future more research should be directed toward clarifying the precise mechanisms of cancer neuroscience, which hold enormous promise to improve outcomes for a wide range of malignancies.
Collapse
Affiliation(s)
- Yu‐Long Lan
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Wen Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Yongjian Zhu
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
2
|
Medina Pizaño MY, Loera Arias MDJ, Montes de Oca Luna R, Saucedo Cárdenas O, Ventura Juárez J, Muñoz Ortega MH. Neuroimmunomodulation of adrenoblockers during liver cirrhosis: modulation of hepatic stellate cell activity. Ann Med 2023; 55:543-557. [PMID: 36826975 PMCID: PMC9970206 DOI: 10.1080/07853890.2022.2164047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The sympathetic nervous system and the immune system are responsible for producing neurotransmitters and cytokines that interact by binding to receptors; due to this, there is communication between these systems. Liver immune cells and nerve fibres are systematically distributed in the liver, and the partial overlap of both patterns may favour interactions between certain elements. Dendritic cells are attached to fibroblasts, and nerve fibres are connected via the dendritic cell-fibroblast complex. Receptors for most neuroactive substances, such as catecholamines, have been discovered on dendritic cells. The sympathetic nervous system regulates hepatic fibrosis through sympathetic fibres and adrenaline from the adrenal glands through the blood. When there is liver damage, the sympathetic nervous system is activated locally and systemically through proinflammatory cytokines that induce the production of epinephrine and norepinephrine. These neurotransmitters bind to cells through α-adrenergic receptors, triggering a cellular response that secretes inflammatory factors that stimulate and activate hepatic stellate cells. Hepatic stellate cells are key in the fibrotic process. They initiate the overproduction of extracellular matrix components in an active state that progresses from fibrosis to liver cirrhosis. It has also been shown that they can be directly activated by norepinephrine. Alpha and beta adrenoblockers, such as carvedilol, prazosin, and doxazosin, have recently been used to reverse CCl4-induced liver cirrhosis in rodent and murine models.KEY MESSAGESNeurotransmitters from the sympathetic nervous system activate and increase the proliferation of hepatic stellate cells.Hepatic fibrosis and cirrhosis treatment might depend on neurotransmitter and hepatic nervous system regulation.Strategies to reduce hepatic stellate cell activation and fibrosis are based on experimentation with α-adrenoblockers.
Collapse
Affiliation(s)
| | | | | | - Odila Saucedo Cárdenas
- Histology Department, Faculty of Medicine, Autonomous University of Nuevo León, Monterrey, México
| | - Javier Ventura Juárez
- Department of Morphology, Autonomous University of Aguascalientes, Aguascalientes, México
| | | |
Collapse
|
3
|
Pérez-Aguilar B, Marquardt JU, Muñoz-Delgado E, López-Durán RM, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Gómez-Olivares JL. Changes in the Acetylcholinesterase Enzymatic Activity in Tumor Development and Progression. Cancers (Basel) 2023; 15:4629. [PMID: 37760598 PMCID: PMC10526250 DOI: 10.3390/cancers15184629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Acetylcholinesterase is a well-known protein because of the relevance of its enzymatic activity in the hydrolysis of acetylcholine in nerve transmission. In addition to the catalytic action, it exerts non-catalytic functions; one is associated with apoptosis, in which acetylcholinesterase could significantly impact the survival and aggressiveness observed in cancer. The participation of AChE as part of the apoptosome could explain the role in tumors, since a lower AChE content would increase cell survival due to poor apoptosome assembly. Likewise, the high Ach content caused by the reduction in enzymatic activity could induce cell survival mediated by the overactivation of acetylcholine receptors (AChR) that activate anti-apoptotic pathways. On the other hand, in tumors in which high enzymatic activity has been observed, AChE could be playing a different role in the aggressiveness of cancer; in this review, we propose that AChE could have a pro-inflammatory role, since the high enzyme content would cause a decrease in ACh, which has also been shown to have anti-inflammatory properties, as discussed in this review. In this review, we analyze the changes that the enzyme could display in different tumors and consider the different levels of regulation that the acetylcholinesterase undergoes in the control of epigenetic changes in the mRNA expression and changes in the enzymatic activity and its molecular forms. We focused on explaining the relationship between acetylcholinesterase expression and its activity in the biology of various tumors. We present up-to-date knowledge regarding this fascinating enzyme that is positioned as a remarkable target for cancer treatment.
Collapse
Affiliation(s)
- Benjamín Pérez-Aguilar
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | - Jens U. Marquardt
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | | | - Rosa María López-Durán
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| | - María Concepción Gutiérrez-Ruiz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - Luis E. Gomez-Quiroz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| |
Collapse
|
4
|
Abstract
The nervous system regulates tissue stem and precursor populations throughout life. Parallel to roles in development, the nervous system is emerging as a critical regulator of cancer, from oncogenesis to malignant growth and metastatic spread. Various preclinical models in a range of malignancies have demonstrated that nervous system activity can control cancer initiation and powerfully influence cancer progression and metastasis. Just as the nervous system can regulate cancer progression, cancer also remodels and hijacks nervous system structure and function. Interactions between the nervous system and cancer occur both in the local tumour microenvironment and systemically. Neurons and glial cells communicate directly with malignant cells in the tumour microenvironment through paracrine factors and, in some cases, through neuron-to-cancer cell synapses. Additionally, indirect interactions occur at a distance through circulating signals and through influences on immune cell trafficking and function. Such cross-talk among the nervous system, immune system and cancer-both systemically and in the local tumour microenvironment-regulates pro-tumour inflammation and anti-cancer immunity. Elucidating the neuroscience of cancer, which calls for interdisciplinary collaboration among the fields of neuroscience, developmental biology, immunology and cancer biology, may advance effective therapies for many of the most difficult to treat malignancies.
Collapse
Affiliation(s)
- Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Huang Y, He Z, Manyande A, Feng M, Xiang H. Nerve regeneration in transplanted organs and tracer imaging studies: A review. Front Bioeng Biotechnol 2022; 10:966138. [PMID: 36051591 PMCID: PMC9424764 DOI: 10.3389/fbioe.2022.966138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The technique of organ transplantation is well established and after transplantation the patient might be faced with the problem of nerve regeneration of the transplanted organ. Transplanted organs are innervated by the sympathetic, parasympathetic, and visceral sensory plexuses, but there is a lack of clarity regarding the neural influences on the heart, liver and kidneys and the mechanisms of their innervation. Although there has been considerable recent work exploring the potential mechanisms of nerve regeneration in organ transplantation, there remains much that is unknown about the heterogeneity and individual variability in the reinnervation of organ transplantation. The widespread availability of radioactive nerve tracers has also made a significant contribution to organ transplantation and has helped to investigate nerve recovery after transplantation, as well as providing a direction for future organ transplantation research. In this review we focused on neural tracer imaging techniques in humans and provide some conceptual insights into theories that can effectively support our choice of radionuclide tracers. This also facilitates the development of nuclear medicine techniques and promotes the development of modern medical technologies and computer tools. We described the knowledge of neural regeneration after heart transplantation, liver transplantation and kidney transplantation and apply them to various imaging techniques to quantify the uptake of radionuclide tracers to assess the prognosis of organ transplantation. We noted that the aim of this review is both to provide clinicians and nuclear medicine researchers with theories and insights into nerve regeneration in organ transplantation and to advance imaging techniques and radiotracers as a major step forward in clinical research. Moreover, we aimed to further promote the clinical and research applications of imaging techniques and provide clinicians and research technology developers with the theory and knowledge of the nerve.
Collapse
Affiliation(s)
- Yan Huang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhigang He
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Maohui Feng, ; Hongbing Xiang,
| | - Hongbing Xiang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Maohui Feng, ; Hongbing Xiang,
| |
Collapse
|
6
|
Evaluation of Inhibitory Antibodies against the Muscarinic Acetylcholine Receptor Type 3 in Patients with Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. J Clin Med 2022; 11:jcm11030681. [PMID: 35160133 PMCID: PMC8836427 DOI: 10.3390/jcm11030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) constitute rare chronic inflammatory biliary diseases which likely comprise genetic, environmental and autoimmune factors. Specific inhibitory (auto-) antibodies against the muscarinic acetylcholine receptor type 3 (mAChR3 auto-ab) may contribute to the pathogenesis of chronic biliary inflammation by modulating mAChR3− mediated signaling. Aims: The aim of this study was to analyze the prevalence and relevance of inhibitory mAChR3 auto-ab (mAChR3inh+ auto-ab) in a large cohort of PBC patients from two independent tertiary centers in Berlin and Leipzig in comparison to a large PSC cohort. Baseline parameters and response rates to standard treatment with ursodeoxycholic acid (UDCA) were characterized with respect to the individual mAChR3 auto-ab status. Methods: In total, the study population comprised 437 PBC patients, 187 PSC patients and 80 healthy controls. Clinical and laboratory baseline characteristics were retrieved from medical records. The response to ursodeoxycholic acid (UDCA) therapy after 12 months of treatment was available in 176 PBC and 45 PSC patients. Results: The prevalence of mAChR3inh+ auto-ab was significantly higher among PBC patients (11.2%, 49/437; p = 0.008 vs. healthy controls) and PSC patients (33.6%, 63/187; p < 0.0001 vs. healthy controls) compared to healthy controls (2.5%, 2/80), respectively. PBC patients with mAChR3inh+ auto-ab exhibited significantly higher levels of alkaline phosphatase (ALP) and bilirubin, which constitute established parameters for PBC risk stratification. Moreover, mAChR3inh+ PBC patients tended to show decreased response rates to UDCA therapy compared to PBC patients without mAChR3inh+ auto-ab (mAChR3− PBC). In contrast, PSC patients with mAChR3inh+ auto-ab showed no significant differences in laboratory findings compared to mAChR3 auto-ab negative (mAChR3−) PSC patients. Conclusion: MAChR3inh+ auto-ab might be involved in the pathogenesis and treatment response of chronic biliary inflammation in patients with PBC but not in patients with PSC.
Collapse
|
7
|
Miller BM, Oderberg IM, Goessling W. Hepatic Nervous System in Development, Regeneration, and Disease. Hepatology 2021; 74:3513-3522. [PMID: 34256416 PMCID: PMC8639644 DOI: 10.1002/hep.32055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
The liver is innervated by autonomic and sensory fibers of the sympathetic and parasympathetic nervous systems that regulate liver function, regeneration, and disease. Although the importance of the hepatic nervous system in maintaining and restoring liver homeostasis is increasingly appreciated, much remains unknown about the specific mechanisms by which hepatic nerves both influence and are influenced by liver diseases. While recent work has begun to illuminate the developmental mechanisms underlying recruitment of nerves to the liver, evolutionary differences contributing to species-specific patterns of hepatic innervation remain elusive. In this review, we summarize current knowledge on the development of the hepatic nervous system and its role in liver regeneration and disease. We also highlight areas in which further investigation would greatly enhance our understanding of the evolution and function of liver innervation.
Collapse
Affiliation(s)
- Bess M. Miller
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA.,corresponding author: Contact Information: Wolfram Goessling, MD, PhD, Wang 539B, 55 Fruit Street, Boston, MA 02114,
| |
Collapse
|
8
|
Tolaymat M, Sundel MH, Alizadeh M, Xie G, Raufman JP. Potential Role for Combined Subtype-Selective Targeting of M 1 and M 3 Muscarinic Receptors in Gastrointestinal and Liver Diseases. Front Pharmacol 2021; 12:786105. [PMID: 34803723 PMCID: PMC8600121 DOI: 10.3389/fphar.2021.786105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023] Open
Abstract
Despite structural similarity, the five subtypes comprising the cholinergic muscarinic family of G protein-coupled receptors regulate remarkably diverse biological functions. This mini review focuses on the closely related and commonly co-expressed M1R and M3R muscarinic acetylcholine receptor subtypes encoded respectively by CHRM1 and CHRM3. Activated M1R and M3R signal via Gq and downstream initiate phospholipid turnover, changes in cell calcium levels, and activation of protein kinases that alter gene transcription and ultimately cell function. The unexpectedly divergent effects of M1R and M3R activation, despite similar receptor structure, distribution, and signaling, are puzzling. To explore this conundrum, we focus on the gastrointestinal (GI) tract and liver because abundant data identify opposing effects of M1R and M3R activation on the progression of gastric, pancreatic, and colon cancer, and liver injury and fibrosis. Whereas M3R activation promotes GI neoplasia, M1R activation appears protective. In contrast, in murine liver injury models, M3R activation promotes and M1R activation mitigates liver fibrosis. We analyze these findings critically, consider their therapeutic implications, and review the pharmacology and availability for research and therapeutics of M1R and M3R-selective agonists and antagonists. We conclude by considering gaps in knowledge and other factors that hinder the application of these drugs and the development of new agents to treat GI and liver diseases.
Collapse
Affiliation(s)
- Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Chachar S, Chen J, Qin Y, Wu X, Yu H, Zhou Q, Fan X, Wang C, Brownell I, Xiao Y. Reciprocal signals between nerve and epithelium: how do neurons talk with epithelial cells? AMERICAN JOURNAL OF STEM CELLS 2021; 10:56-67. [PMID: 34849302 PMCID: PMC8610808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Most epithelium tissues continuously undergo self-renewal through proliferation and differentiation of epithelial stem cells (known as homeostasis), within a specialized stem cell niche. In highly innervated epithelium, peripheral nerves compose perineural niche and support stem cell homeostasis by releasing a variety of neurotransmitters, hormones, and growth factors and supplying trophic factors to the stem cells. Emerging evidence has shown that both sensory and motor nerves can regulate the fate of epithelial stem cells, thus influencing epithelium homeostasis. Understanding the mechanism of crosstalk between epithelial stem cells and neurons will reveal the important role of the perineural niche in physiological and pathological conditions. Herein, we review recent discoveries of the perineural niche in epithelium mainly in tissue homeostasis, with a limited touch in wound repair and pathogenesis.
Collapse
Affiliation(s)
- Sadaruddin Chachar
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
- Department of Biotechnology, Faculty of Crop Production, Sindh Agriculture UniversityTandojam 70060, Pakistan
| | - Jing Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang UniversityHaining 314400, Zhejiang, China
| | - Yumei Qin
- School of Food Science and Bioengineering, Zhejiang Gongshang UniversityHangzhou 310018, Zhejiang, China
| | - Xia Wu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Haiyan Yu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Xiaojiao Fan
- School of Pharmacy, Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Chaochen Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang UniversityHaining 314400, Zhejiang, China
| | - Isaac Brownell
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda 20892, Maryland, USA
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| |
Collapse
|
10
|
Wu SC, Cheng HT, Wang YC, Tzeng CW, Hsu CH, Muo CH. Decreased risk of liver and intrahepatic cancer in non-H. pylori-infected perforated peptic ulcer patients with truncal vagotomy: a nationwide study. Sci Rep 2021; 11:15594. [PMID: 34341400 PMCID: PMC8329055 DOI: 10.1038/s41598-021-95142-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
The vagal nervous system is central to the physiological responses and systemic diseases of the liver. We evaluated the subsequent risk of liver and intrahepatic cancer (HCC/ICC) in non-H. pylori (HP)-infected perforated peptic ulcer (PPU) patients with and without vagotomy. Hospitalized PPU patients who underwent simple closure or truncal vagotomy/pyloroplasty (TVP) in the National Health Insurance Research Database from 2000 to 2008 were enrolled. The exclusion criteria included: (1) Multiple surgeries for PPU were received at the same admission; (2) Any cancer history; (3) Previous peptic ulcer-associated surgery; (4) HP infection history; (5) Viral hepatitis infection history; (6) Follow-up duration < 1 year; and (7) Age < 18 years. The risks of developing HCC/ICC in PPU patients with and without vagotomy were assessed at the end of 2013. To balance the baseline condition between groups, we used the propensity score matched method to select study subjects. Cox proportional hazard regression was used to estimate the hazard ratio and 95% confidence interval (CI) of HCC/ICC. Before propensity score matching, 675 simple suture patients and 54 TVP patients had HCC/ICC, which corresponded to incidences of 2.11 and 0.88 per 1000 person-years, respectively. After propensity score matching, 145 simple suture patients and 54 TVP patients experienced HCC/ICC, which corresponded to incidences of 1.45 and 0.88 per 1000 person-years, respectively. The TVP patients had a 0.71 (95% CI 0.54-0.95)- and 0.69 (95% CI 0.49-0.97)-fold risk of developing HCC/ICC compared to simple suture patients before and after propensity score matching. Our findings reported that, in the Asian population, TVP decreases the risk of HCC/ICC in non-HP-infected PPU patients compared to simple closure patients. However, further studies are warranted.
Collapse
Affiliation(s)
- Shih-Chi Wu
- School of Medicine, China Medical University, Taichung, Taiwan. .,Trauma and Emergency Center, China Medical University Hospital, No. 2 Yuh-Der Road, Taichung, 404, Taiwan.
| | - Han-Tsung Cheng
- Department of Trauma and Emergency Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chun Wang
- Department of Trauma and Emergency Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wei Tzeng
- Department of Trauma and Emergency Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hao Hsu
- Department of Trauma and Emergency Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Mizuno K, Haga H, Okumoto K, Hoshikawa K, Katsumi T, Nishina T, Saito T, Katagiri H, Ueno Y. Intrahepatic distribution of nerve fibers and alterations due to fibrosis in diseased liver. PLoS One 2021; 16:e0249556. [PMID: 33852613 PMCID: PMC8046205 DOI: 10.1371/journal.pone.0249556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/21/2021] [Indexed: 01/23/2023] Open
Abstract
Autonomic nerve fibers in the liver are distributed along the portal tract, being involved in the regulation of blood flow, bile secretion and hepatic metabolism, thus contributing to systemic homeostasis. The present study investigated changes in hepatic nerve fibers in liver biopsy specimens from patients with normal liver, viral hepatitis and non-alcoholic steatohepatitis, in relation to clinical background. The areal ratio of nerve fibers to the total portal area was automatically calculated for each sample. The nerve fiber areal ratios (NFAR) for total nerve fibers and sympathetic nerve fibers were significantly lower in liver affected by chronic hepatitis, particularly viral hepatitis, and this was also the case for advanced liver fibrosis. However, the degree of inflammatory activity did not affect NFAR for either whole nerves or sympathetic nerves. Comparison of samples obtained before and after antiviral treatment for HCV demonstrated recovery of NFAR along with improvement of liver fibrosis.
Collapse
Affiliation(s)
- Kei Mizuno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Kazuo Okumoto
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Taketo Nishina
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| |
Collapse
|
12
|
Mayer C, Preuss B, Grottenthaler J, Berg C, Klein R. Antibodies to the Muscarinic Acetylcholine Receptor M3 in Primary Biliary Cholangitis Inhibit Receptor Function on Cholangiocytes. Front Immunol 2020; 11:1151. [PMID: 32695096 PMCID: PMC7339122 DOI: 10.3389/fimmu.2020.01151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Background and Aims: In primary biliary cholangitis (PBC), antibodies to a peptide of the muscarinic acetylcholine receptor 3 (mAChR3) have been described. Since the mAChR3 is expressed on cholangiocytes and mAChR3-signaling is involved in the pathogenesis of chronic inflammatory biliary diseases, we wanted to investigate whether anti-mAChR3-antibodies influence the function of the receptor and the proliferative response of cholangiocytes. Methods: Immunoglobulins were isolated by ammonium sulfate precipitation using sera from patients with PBC (n = 63) and with other chronic liver disorders (n = 150). All immunoglobulins were analyzed by a luminometric assay using Chinese hamster ovary (CHO) cells overexpressing the mAChR3 and cholangiocytes (TFK-1-cells) expressing the receptor constitutively. Cell proliferation was measured by 3H-thymidine assay. PBC patients were also analyzed in the follow-up. Results: Antibodies inhibiting the mAChR3 were found in 49 and 79% of PBC patients using CHO-cells or TFK-1-cells, respectively, but only in up to 26% of controls (p < 0.01). Stimulatory antibodies were hardly detected. Antibody reactivity only marginally changed during the course of the disease, independently of the choice of treatment (ursodeoxycholic acid, immunosuppressive therapy, or no medication). There was no correlation with laboratory, clinical or histological parameters, but the antibodies were more frequently found in PBC patients with a benign course (96%) than in patients with active disease progressing to late stages within 10 years (57%; p < 0.01). Proliferation of cells was not influenced by immunoglobulins from PBC-patients. Conclusion: Sera from patients with PBC contain inhibitory antibodies to the mAChR3 on cholangiocytes (TFK-1 cells) without influencing TFK-1-cell proliferation. These antibodies were predominantly observed in patients with non-progressing PBC.
Collapse
Affiliation(s)
- Christian Mayer
- Department of Internal Medicine II, University of Tuebingen, Tübingen, Germany
| | - Beate Preuss
- Department of Internal Medicine II, University of Tuebingen, Tübingen, Germany
| | - Julia Grottenthaler
- Department of Internal Medicine I, University of Tuebingen, Tübingen, Germany
| | - Christoph Berg
- Department of Internal Medicine I, University of Tuebingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Internal Medicine II, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
13
|
Abstract
The nervous system is intimately involved in physiological processes from development and growth to tissue homeostasis and repair throughout the body. It logically follows that the nervous system has the potential to play analogous roles in the context of cancer. Progress toward understanding the crucial role of the nervous system in cancer has accelerated in recent years, but much remains to be learned. Here, we highlight rapidly evolving concepts in this burgeoning research space and consider next steps toward understanding and therapeutically targeting the neural regulation of cancer.
Collapse
Affiliation(s)
- Shawn Gillespie
- Cancer Biology Graduate Program, Stanford University, Stanford, California 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
14
|
Greverath LM, Leicht E, Wald de Chamorro N, Wilde ACB, Steinhagen LM, Lieb C, Schmelzle M, Chopra S, Shibolet O, Fischer J, Berg T, Tacke F, Müller T. Evaluation of muscarinic acetylcholine receptor type 3 gene polymorphisms in patients with primary biliary cholangitis and primary sclerosing cholangitis. Hepatol Res 2020; 50:321-329. [PMID: 31747477 DOI: 10.1111/hepr.13455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 01/25/2023]
Abstract
AIM Muscarinic acetylcholine receptor type 3-mediated signaling might be involved in the pathogenesis of chronic inflammatory biliary diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). The aim of the present study was to investigate the prevalence of five well-characterized specific single-nucleotide polymorphisms within the muscarinic acetylcholine receptor type 3 gene, CHRM3 (rs11578320, rs6690809, rs6429157, rs7548522, and rs4620530), in patients with PBC and PSC. Patients with chronic hepatitis C (CHC) and healthy individuals served as control cohorts. In the PBC cohort, baseline characteristics and response to ursodeoxycholic acid therapy applying established response criteria at 12 months after the initiation of treatment were evaluated according to the underlying CHRM3 genotype. METHODS CHRM3 genotyping was carried out in 306 PBC patients, 205 PSC patients, 208 CHC patients, and 240 healthy controls from two independent German tertiary care university centers in Berlin and Leipzig, Germany. RESULTS CHRM3 rs4620530 proportions in patients with PBC significantly differed from patients with PSC (P = 0.005), CHC (P = 0.009), and healthy controls (P = 0.008), primarily due to a substantial overrepresentation of the T allele in PBC (49.3% in PBC vs. 39.8% in PSC, 35.7% in CHC, and 40% in healthy controls), indicating a potential association of the rs4620530 T allele with PBC (OR 1.461, 95% CI 1.147-1.861, P = 0.002). Further analysis showed no association of CHRM3 single-nucleotide polymorphism rs4620530 with baseline characteristics and ursodeoxycholic acid treatment response in PBC. CONCLUSION CHRM3 single-nucleotide polymorphism rs4620530 might confer an increased genetic risk for the development of PBC.
Collapse
Affiliation(s)
- Lena Maria Greverath
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Elise Leicht
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Nina Wald de Chamorro
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Anne-Christin Beatrice Wilde
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Lara Marleen Steinhagen
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Charlotte Lieb
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Moritz Schmelzle
- Chirurgische Klinik, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Sascha Chopra
- Chirurgische Klinik, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Oren Shibolet
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology and Hepatology, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Janett Fischer
- Bereich Hepatologie, Klinik und Poliklinik für Gastroenterologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Thomas Berg
- Bereich Hepatologie, Klinik und Poliklinik für Gastroenterologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Frank Tacke
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Tobias Müller
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| |
Collapse
|
15
|
Zanchi A, Reidy J, Feldman HJ, Qualter J, Gouw AS, Osbeck J, Kofman A, Balabaud C, Bioulac-Sage P, Tiniakos DG, Theise ND. Innervation of the proximal human biliary tree. Virchows Arch 2020; 477:385-392. [DOI: 10.1007/s00428-020-02761-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 01/03/2023]
|
16
|
Wu SC, Chen WTL, Muo CH, Hsu CY. A comparative study of subsequent liver cirrhosis risk in non-Helicobacter pylori-infected peptic ulcer patients with and without vagotomy: An Asian population cohort study. J Gastroenterol Hepatol 2019; 34:376-382. [PMID: 30101458 DOI: 10.1111/jgh.14440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/01/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Hepatic parasympathetic nerves branch off the vagus nerve. The vagal and hepatic nervous systems are important in liver physiological processes and some diseases such as diabetes, obesity, and liver cirrhosis. We were interested in vagal nerve integrity and subsequent diseases in peptic ulcer patients. Herein, we used National Health Insurance database in Taiwan and retrospectively assessed the risk of developing liver cirrhosis in peptic ulcer patients with and without complications by surgical treatments. METHODS A cohort of 357 423 peptic ulcer patients without Helicobacter pylori, hepatitis B/C virus infection, and alcoholism from 2001 to 2008 was established. A randomly selected cohort of 357 423 people without peptic ulcer that matched by age, gender, comorbidities, and index year was used for comparison. The risks of developing liver cirrhosis were assessed both in cohorts and in peptic ulcer patients with and without vagotomy at the end of 2011. RESULTS Peptic ulcer patients were with higher incidence of liver cirrhosis than those without peptic ulcer (2.63 vs 0.96 per 1000 person-years) and with a 2.79-fold adjusted hazard ratio (HR) (95% confidence interval = 2.66-2.93) based on the multivariable Cox proportional hazards regression analysis. Comparing with different peptic ulcer management strategies, the HR value for subsequent liver cirrhosis risk was the lowest in vagotomy group (HR = 0.46, 95% confidence interval = 0.33-0.64). CONCLUSIONS Peptic ulcer patients have an increased risk of developing liver cirrhosis. Moreover, there were association of vagotomy and decreased risk of subsequent liver cirrhosis in complicated peptic ulcer patients. However, further studies are warranted.
Collapse
Affiliation(s)
- Shih-Chi Wu
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan.,Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan
| | | | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University and Hospital, Taichung, Taiwan
| | - Chung Y Hsu
- Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan
| |
Collapse
|
17
|
Cornide-Petronio ME, Bujaldon E, Mendes-Braz M, Avalos de León CG, Jiménez-Castro MB, Álvarez-Mercado AI, Gracia-Sancho J, Rodés J, Peralta C. The impact of cortisol in steatotic and non-steatotic liver surgery. J Cell Mol Med 2017; 21:2344-2358. [PMID: 28374452 PMCID: PMC5618669 DOI: 10.1111/jcmm.13156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/12/2017] [Indexed: 12/13/2022] Open
Abstract
The intent of this study was to examine the effects of regulating cortisol levels on damage and regeneration in livers with and without steatosis subjected to partial hepatectomy under ischaemia–reperfusion. Ultimately, we found that lean animals undergoing liver resection displayed no changes in cortisol, whereas cortisol levels in plasma, liver and adipose tissue were elevated in obese animals undergoing such surgery. Such elevations were attributed to enzymatic upregulation, ensuring cortisol production, and downregulation of enzymes controlling cortisol clearance. In the absence of steatosis, exogenous cortisol administration boosted circulating cortisol, while inducing clearance of hepatic cortisol, thus maintaining low cortisol levels and preventing related hepatocellular harm. In the presence of steatosis, cortisol administration was marked by a substantial rise in intrahepatic availability, thereby exacerbating tissue damage and regenerative failure. The injurious effects of cortisol were linked to high hepatic acethylcholine levels. Upon administering an α7 nicotinic acethylcholine receptor antagonist, no changes in terms of tissue damage or regenerative lapse were apparent in steatotic livers. However, exposure to an M3 muscarinic acetylcholine receptor antagonist protected livers against damage, enhancing parenchymal regeneration and survival rate. These outcomes for the first time provide new mechanistic insight into surgically altered steatotic livers, underscoring the compelling therapeutic potential of cortisol–acetylcholine–M3 muscarinic receptors.
Collapse
Affiliation(s)
| | - Esther Bujaldon
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mariana Mendes-Braz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Ana I Álvarez-Mercado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Juan Rodés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| |
Collapse
|
18
|
Venkatesh H, Monje M. Neuronal Activity in Ontogeny and Oncology. Trends Cancer 2017; 3:89-112. [PMID: 28718448 DOI: 10.1016/j.trecan.2016.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/06/2023]
Abstract
The nervous system plays a central role in regulating the stem cell niche in many organs, and thereby pivotally modulates development, homeostasis, and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas, and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. We review here what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues, and we discuss emerging principles of neural regulation of development and cancer.
Collapse
Affiliation(s)
- Humsa Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Mizuno K, Ueno Y. Autonomic Nervous System and the Liver. Hepatol Res 2017; 47:160-165. [PMID: 27272272 DOI: 10.1111/hepr.12760] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
The liver is innervated by both the sympathetic and the parasympathetic nerve systems. These nerves are derived from the splanchnic and vagal nerves that surround the portal vein, hepatic artery, and bile duct. The afferent fiber delivers information regarding osmolality, glucose level, and lipid level in the portal vein to the central nervous system (CNS). In contrast, the efferent fiber is crucial in the regulation of metabolism, blood flow, and bile secretion. Furthermore, liver innervation has been associated with hepatic fibrosis, regeneration, and circadian rhythm. Knowledge of these mechanisms can be applied for potential liver disease treatment.
Collapse
Affiliation(s)
- Kei Mizuno
- Department of Gastroenterology, Yamagata University Faculty of Medicine.,CREST, Yamagata, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine.,CREST, Yamagata, Japan
| |
Collapse
|
20
|
Hiramoto T, Yoshihara K, Asano Y, Sudo N. Protective Role of the Hepatic Vagus Nerve against Liver Metastasis in Mice. Neuroimmunomodulation 2017; 24:341-347. [PMID: 29621768 DOI: 10.1159/000487483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE(S) Although accumulating evidence has shown that the autonomic nervous system is involved in liver pathology, its role in regulating cancer development remains unclear. The purpose of this study was to elucidate its detailed mechanisms. METHODS A mouse model of liver metastasis of colorectal cancer was used. To elucidate the potential mechanisms involved, we examined the effect of selective hepatic vagotomy on the survival rate and liver-to-body weight. We further evaluated the possible involvement of the hepatic sympathetic nerve fibers in this model. RESULTS The mortality rate and the liver-to-body weight ratio after cancer inoculation were significantly higher in the vagotomized mice than in the sham-operated mice. The vagotomized mice exhibited a transient decrease in hepatic norepinephrine levels following cancer inoculation. Interestingly, the vagotomy-induced exacerbation of liver metastasis was attenuated by supplementary norepinephrine or phenylephrine, a selective α1-adrenoceptor agonist, but not by clonidine, a selective α2-adrenoceptor agonist. CONCLUSION Collectively, these results suggest that the hepatic vagus nerve may play a protective role against liver metastasis. Hepatic sympathetic nerves may also be involved as a protective efferent loop, possibly acting through the α1-adrenoceptor.
Collapse
|
21
|
Montenegro MF, Cabezas-Herrera J, Campoy FJ, Muñoz-Delgado E, Vidal CJ. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors. FASEB J 2016; 31:544-555. [PMID: 28148778 DOI: 10.1096/fj.201600609r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022]
Abstract
The observation of acetylcholinesterase (AChE) type H (AChEH), which is the predominant AChE variant in visceral organs and immune cells, in lipid rafts of muscle supports functional reasons for the raft targeting of glypiated AChEH The search for these reasons revealed that liver AChE activity is mostly confined to rafts and that the liver is able to make N-extended AChE variants and target them to rafts. These results prompted us to test whether AChE and muscarinic receptors existed in the same raft. Isolation of flotillin-2-rich raft fractions by their buoyancy in sucrose gradients, followed by immunoadsorption and matrix-assisted laser desorption ionization-time of flight-mass spectrometry application, gave the following results: 1) most hepatic AChE activity emanates from AChE-H mRNA, and its product, glypiated AChEH, accumulates in rafts; 2) N-extended N-AChE readthrough variant, nonglypiated N-AChEH, and N-AChE tailed variant were all identified in liver rafts; and 3) M3 AChRs were observed in rafts, and coprecipitation of raft-confined N-AChE and M3 receptors by using anti-M3 antibodies showed that enzyme and receptor reside in the same raft unit. A raft domain that harbors tightly packed muscarinic receptor and AChE may represent a molecular device that, by means of which, the intensity and duration of cholinergic inputs are regulated.-Montenegro, M. F., Cabezas-Herrera, J., Campoy, F. J., Muñoz-Delgado, E., Vidal, C. J. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors.
Collapse
Affiliation(s)
- María Fernanda Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - F Javier Campoy
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Encarnación Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| |
Collapse
|
22
|
Glišić S, Cavanaugh DP, Chittur KK, Sencanski M, Perovic V, Bojić T. Common molecular mechanism of the hepatic lesion and the cardiac parasympathetic regulation in chronic hepatitis C infection: a critical role for the muscarinic receptor type 3. BMC Bioinformatics 2016; 17:139. [PMID: 27000565 PMCID: PMC4802633 DOI: 10.1186/s12859-016-0988-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The pathophysiological overlapping between Sjorgen's Syndrome (SS) and HCV, presence of anti- muscarinic receptor type 3 (M3R) antibodies in SS, the role that M3R plays in the regulation of the heart rate, has led to the assumption that cardiovagal dysfunction in HCV patients is caused by anti-M3R antibodies elicited by HCV proteins or by their direct interaction with M3R. RESULTS To identify HCV protein which possibly is crossreactive with M3R or which binds to this receptor, we performed the Informational Spectrum Method (ISM) analysis of the HCV proteome. This analysis revealed that NS5A protein represents the most probable interactor of M3R or that this viral protein could elicit antibodies which modulate function of this receptor. Further detailed structure/function analysis of NS5A and M3R performed by the ISM method extended with other Digital Signal processing (DSP) approaches revealed domains of these proteins which participate in their crossreactivity or in their direct interaction, representing promising diagnostic and therapeutic targets. CONCLUSIONS Application of the ISM with other compatible bioinformatics methods offers new perspectives for identifying diagnostic and therapeutic targets for complicated forms of HCV and other viral infections. We show how the electron-ion interaction potential (EIIP) amino-acid scale used in the ISM combined with a robust, high performance hydrophobicity scale can provide new insights for understanding protein structure/function and protein-protein interactions.
Collapse
Affiliation(s)
- Sanja Glišić
- Institute of Nuclear Sciences Vinča, University of Belgrade, Center for Multidisciplinary Research, PO Box 522, Belgrade, Serbia
| | | | - Krishnan K Chittur
- Chemical and Materials Engineering, University of Alabama Huntsville, Huntsville, AL, 35899, USA
| | - Milan Sencanski
- Institute of Nuclear Sciences Vinča, University of Belgrade, Center for Multidisciplinary Research, PO Box 522, Belgrade, Serbia
| | - Vladimir Perovic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Center for Multidisciplinary Research, PO Box 522, Belgrade, Serbia
| | - Tijana Bojić
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, PO Box 522, 11000, Belgrade, Serbia.
| |
Collapse
|
23
|
Morgan ML, Sigala B, Soeda J, Cordero P, Nguyen V, McKee C, Mouraliderane A, Vinciguerra M, Oben JA. Acetylcholine induces fibrogenic effects via M2/M3 acetylcholine receptors in non-alcoholic steatohepatitis and in primary human hepatic stellate cells. J Gastroenterol Hepatol 2016; 31:475-83. [PMID: 26270240 DOI: 10.1111/jgh.13085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND The parasympathetic nervous system (PNS), via neurotransmitter acetylcholine (ACh), modulates fibrogenesis in animal models. However, the role of ACh in human hepatic fibrogenesis is unclear. AIMS We aimed to determine the fibrogenic responses of human hepatic stellate cells (hHSC) to ACh and the relevance of the PNS in hepatic fibrosis in patients with non-alcoholic steatohepatitis (NASH). METHODS Primary hHSC were analyzed for synthesis of endogenous ACh and acetylcholinesterase and gene expression of choline acetyltransferase and muscarinic ACh receptors (mAChR). Cell proliferation and fibrogenic markers were analyzed in hHSC exposed to ACh, atropine, mecamylamine, methoctramine, and 4-diphenylacetoxy-N-methylpiperidine methiodide. mAChR expression was analyzed in human NASH scored for fibrosis. RESULTS We observed that hHSC synthesize ACh and acetylcholinesterase and express choline acetyltransferase and M1-M5 mAChR. We also show that M2 was increased during NASH progression, while both M2 and M3 were found upregulated in activated hHSC. Furthermore, endogenous ACh is required for hHSC basal growth. Exogenous ACh resulted in hHSC hyperproliferation via mAChR and phosphoinositide 3-kinase and Mitogen-activated protein kinase kinase (MEK) signaling pathways, as well as increased fibrogenic markers. CONCLUSION We show that ACh regulates hHSC activation via M2 and M3 mAChR involving the phosphoinositide 3-kinase and MEK pathways in vitro. Finally, we provide evidence that the PNS may be involved in human NASH fibrosis.
Collapse
Affiliation(s)
- Maelle L Morgan
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Barbara Sigala
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Junpei Soeda
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Paul Cordero
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Vi Nguyen
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Chad McKee
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Angelina Mouraliderane
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Manlio Vinciguerra
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Gastroenterology Unit, Department of Medical Sciences, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy.,Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Jude A Oben
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| |
Collapse
|
24
|
Rachakonda V, Jadeja RN, Urrunaga NH, Shah N, Ahmad D, Cheng K, Twaddell WS, Raufman JP, Khurana S. M1 Muscarinic Receptor Deficiency Attenuates Azoxymethane-Induced Chronic Liver Injury in Mice. Sci Rep 2015; 5:14110. [PMID: 26374068 PMCID: PMC4571652 DOI: 10.1038/srep14110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Cholinergic nervous system regulates liver injury. However, the role of M1 muscarinic receptors (M1R) in modulating chronic liver injury is uncertain. To address this gap in knowledge we treated M1R-deficient and WT mice with azoxymethane (AOM) for six weeks and assessed liver injury responses 14 weeks after the last dose of AOM. Compared to AOM-treated WT mice, M1R-deficient mice had attenuated liver nodularity, fibrosis and ductular proliferation, α-SMA staining, and expression of α1 collagen, Tgfβ-R, Pdgf-R, Mmp-2, Timp-1 and Timp-2. In hepatocytes, these findings were associated with reductions of cleaved caspase-3 staining and Tnf-α expression. In response to AOM treatment, M1R-deficient mice mounted a vigorous anti-oxidant response by upregulating Gclc and Nqo1 expression, and attenuating peroxynitrite generation. M1R-deficient mouse livers had increased expression of Trail-R2, a promotor of stellate cell apoptosis; dual staining for TUNNEL and α-SMA revealed increased stellate cells apoptosis in livers from M1R-deficient mice compared to those from WT. Finally, pharmacological inhibition of M1R reduced H2O2-induced hepatocyte apoptosis in vitro. These results indicate that following liver injury, anti-oxidant response in M1R-deficient mice attenuates hepatocyte apoptosis and reduces stellate cell activation, thereby diminishing fibrosis. Therefore, targeting M1R expression and activation in chronic liver injury may provide therapeutic benefit.
Collapse
Affiliation(s)
- Vikrant Rachakonda
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Ravirajsinh N Jadeja
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| | - Nathalie H Urrunaga
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Nirish Shah
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Daniel Ahmad
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - William S Twaddell
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandeep Khurana
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| |
Collapse
|
25
|
Weng HL, Cai X, Yuan X, Liebe R, Dooley S, Li H, Wang TL. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure. Front Physiol 2015; 6:178. [PMID: 26136687 PMCID: PMC4468385 DOI: 10.3389/fphys.2015.00178] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.
Collapse
Affiliation(s)
- Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Xiaobo Cai
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Xiaodong Yuan
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Roman Liebe
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
- Department of Medicine II, Saarland University HospitalHomburg, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Hai Li
- Department of Gastroenterology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Tai-Ling Wang
- Department of Pathology, Beijing China-Japan Friendship HospitalBeijing, China
| |
Collapse
|
26
|
Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, Sandvik AK, Beisvag V, Tomita H, Hara A, Quante M, Li Z, Gershon MD, Kaneko K, Fox JG, Wang TC, Chen D. Denervation suppresses gastric tumorigenesis. Sci Transl Med 2015; 6:250ra115. [PMID: 25143365 DOI: 10.1126/scitranslmed.3009569] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nervous system plays an important role in the regulation of epithelial homeostasis and has also been postulated to play a role in tumorigenesis. We provide evidence that proper innervation is critical at all stages of gastric tumorigenesis. In three separate mouse models of gastric cancer, surgical or pharmacological denervation of the stomach (bilateral or unilateral truncal vagotomy, or local injection of botulinum toxin type A) markedly reduced tumor incidence and progression, but only in the denervated portion of the stomach. Vagotomy or botulinum toxin type A treatment also enhanced the therapeutic effects of systemic chemotherapy and prolonged survival. Denervation-induced suppression of tumorigenesis was associated with inhibition of Wnt signaling and suppression of stem cell expansion. In gastric organoid cultures, neurons stimulated growth in a Wnt-mediated fashion through cholinergic signaling. Furthermore, pharmacological inhibition or genetic knockout of the muscarinic acetylcholine M3 receptor suppressed gastric tumorigenesis. In gastric cancer patients, tumor stage correlated with neural density and activated Wnt signaling, whereas vagotomy reduced the risk of gastric cancer. Together, our findings suggest that vagal innervation contributes to gastric tumorigenesis via M3 receptor-mediated Wnt signaling in the stem cells, and that denervation might represent a feasible strategy for the control of gastric cancer.
Collapse
Affiliation(s)
- Chun-Mei Zhao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Yoku Hayakawa
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Yosuke Kodama
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Christoph B Westphalen
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA.,Medizinische Klinik III, Klinikum der Universität München, Campus Grobhadern, 81377 München, Germany
| | - Gøran T Andersen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Surgery, St. Olavs University Hospital, Trondheim 7006, Norway
| | - Arnar Flatberg
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Helene Johannessen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Arne K Sandvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Gastrointestinal and Liver Diseases, St. Olavs University Hospital, Trondheim 7006, Norway
| | - Vidar Beisvag
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1112, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1112, Japan
| | - Michael Quante
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, München 81675, Germany
| | - Zhishan Li
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kazuhiro Kaneko
- Department of Gastroenterology and Endoscopy Division, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Duan Chen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
27
|
Kandilis AN, Papadopoulou IP, Koskinas J, Sotiropoulos G, Tiniakos DG. Liver innervation and hepatic function: new insights. J Surg Res 2015; 194:511-519. [DOI: 10.1016/j.jss.2014.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022]
|
28
|
Urrunaga NH, Jadeja RN, Rachakonda V, Ahmad D, McLean LP, Cheng K, Shah V, Twaddell WS, Raufman JP, Khurana S. M1 muscarinic receptors modify oxidative stress response to acetaminophen-induced acute liver injury. Free Radic Biol Med 2015; 78:66-81. [PMID: 25452146 PMCID: PMC4392405 DOI: 10.1016/j.freeradbiomed.2014.09.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 09/27/2014] [Indexed: 02/06/2023]
Abstract
The role of muscarinic receptor subtypes in modulating acute liver injury is unknown. We detected M1 muscarinic receptor (M1R) expression in human and murine hepatocytes, and investigated the consequences of M1R deficiency on acute liver injury in vivo and inhibiting M1R activation on hepatocyte injury in vitro. Age-matched wild-type (WT) and M1R-deficient (Chrm1(-/-)) male mice were injected intraperitoneally with 200mg/kg acetaminophen (APAP) and euthanized 0, 2, 4, 16, 24, and 36h later. Biochemical and histological parameters indicated that liver injury peaked within 16h after APAP treatment and resolved by 24h. Compared to WT, M1R-deficient mice had reduced intrahepatic hemorrhage and hepatocyte necrosis, reflected by an attenuated rise in serum alanine aminotransferase levels. Livers of M1R-deficient mice showed reduced hepatocyte DNA fragmentation and attenuated expression of injury cytokines (Il-1α, Il-1β, Il-6, and Fasl). In all mice hepatic glutathione levels decreased after APAP injection, but they recovered more quickly in M1R-deficient mice. During the course of APAP-induced liver injury in M1R-deficient compared to WT mice, hepatic Nrf-2, Gclc, and Nqo1 expressions increased and nitrotyrosine generation decreased. APAP metabolic pathways were not altered by M1R deficiency; expression of hepatic Cyp2e1, Cyp1a2, Cyp3a11, Cyp3a13, Car, and Pxr was similar in Chrm1(-/-) and WT mice. Finally, treatment of murine AML12 hepatocytes with a novel M1R antagonist, VU0255035, attenuated H2O2-induced oxidative stress, prevented GSH depletion, and enhanced viability. We conclude that M1R modify hepatocyte responses to oxidative stress and that targeting M1R has therapeutic potential for toxic liver injury.
Collapse
Affiliation(s)
- Nathalie H Urrunaga
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ravirajsinh N Jadeja
- Division of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912, USA
| | - Vikrant Rachakonda
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daniel Ahmad
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Leon P McLean
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - William S Twaddell
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sandeep Khurana
- Division of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
29
|
Tsuboi H, Ohira H, Asashima H, Tsuzuki S, Iizuka M, Matsuo N, Kondo Y, Matsumoto I, Sumida T. Anti-M3 muscarinic acetylcholine receptor antibodies in patients with primary biliary cirrhosis. Hepatol Res 2014; 44:E471-9. [PMID: 24750585 DOI: 10.1111/hepr.12346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/13/2014] [Accepted: 04/16/2014] [Indexed: 02/07/2023]
Abstract
AIM M3 muscarinic acetylcholine receptor (M3R) is expressed in biliary tracts as well as in exocrine glands. It is reported that some patients with primary biliary cirrhosis (PBC) carry autoantibodies against M3R. The aim of this study is to clarify the presence, potential use as diagnostic marker and clinical roles of anti-M3R antibodies in PBC. METHODS We synthesized peptides encoding the extracellular domains of human-M3R, including the N-terminal region, the first, second and third extracellular loops. Antibodies against these regions were examined by peptide-based enzyme-linked immunoassay in sera of 90 patients with PBC and 40 with chronic hepatitis C (CHC), 21 with non-alcoholic steatohepatitis (NASH), 10 with primary sclerosing cholangitis (PSC), 14 with obstructive jaundice, 10 with drug-induced liver injury and 42 healthy controls. RESULTS Antibodies to the N-terminal, first, second and third loop were detected in 90.0% (81/90), 73.3% (66/90), 76.7% (69/90) and 66.7% (60/90) of PBC, in 67.5% (27/40), 10.0% (4/40), 67.5% (27/40) and 27.5% (11/40) of CHC, in 85.7% (18/21), 9.5% (2/21), 4.8% (1/21) and 57.1% (12/21) of NASH, in 60.0% (6/10), 20.0% (2/10), 60.0% (6/10) and 60.0% (6/10) of PSC, in 100.0% (14/14), 0% (0/14), 64.3% (9/14) and 78.6% (11/14) of obstructive jaundice, in 100.0% (10/10), 0% (0/10), 30.0% (3/10) and 10.0% (1/10) of drug-induced liver injury, and in 4.8% (2/42), 7.1% (3/42), 2.4% (1/42) and 2.4% (1/42) of the controls, respectively. CONCLUSION A high frequency of PBC carried anti-M3R antibodies. Anti-M3R antibodies against the first loop of M3R are a potentially useful diagnostic marker for PBC.
Collapse
Affiliation(s)
- Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ontogenic development of nerve fibers in human fetal livers: an immunohistochemical study using neural cell adhesion molecule (NCAM) and neuron-specific enolase (NSE). Histochem Cell Biol 2014; 143:421-9. [PMID: 25326085 DOI: 10.1007/s00418-014-1286-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 01/03/2023]
Abstract
The aim of the study was to investigate nerve fibers (NF) in human fetal livers. An immunohistochemical study was performed. NF were classified into portal tract innervation (PoI) and parenchymal innervation (PaI). The hilum area showed many Pol NF at 7 GW, and NF increased with gestational week (GW). Direct innervations to biliary epithelium were recognized. In large portal tracts, a few NCAM-positive mesenchymal cells were seen at 8 GW and many mesenchymal cells were noted around 12 GW. Apparent NF emerged around 15 GW, and NF increased with GW. Many NF plexuses were seen in 30-40 GW. In small portal tracts, no NF were seen in 7-10 GW. A few NCAM-positive mesenchymal cells emerged in 11 GW, and they increased thereafter. Apparent NF were seen around 20 GW and NF increased with GW. At term (40 GW), PoI NF were still immature. Ductal plate (DP) was positive for NCAM, NSE, chromogranin and synaptophysin, and direct innervations to DP were seen. The direct innervations to developing bile ducts and peribiliary glands were also seen. PaI NF were first seen at 21 GW and was consistent until 40 GW in which a few NF were seen in PaI. These observations suggest that PoI NF arise from committed portal mesenchyme. PaI NF are very immature at 40 GW. There are direct innervations to bile ducts, peribiliary glands, portal veins, hepatic arteries, and DP.
Collapse
|
31
|
Terada T. Stem cells in the development and differentiation of the human adrenal glands. Microsc Res Tech 2014; 78:59-64. [DOI: 10.1002/jemt.22445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/28/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Tadashi Terada
- Department of Pathology; Shizuoka City Shimizu Hospital; Shimizu-Ku Shizuoka 424-8636 Japan
| |
Collapse
|
32
|
Terada T. Huge clusters of embryonic stem cells in human embryos: a morphologic study. Microsc Res Tech 2014; 77:825-31. [PMID: 25091607 DOI: 10.1002/jemt.22405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/22/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nothing is known about huge clusters (HC) of embryonic stem cells (ESC) in human fetal organs (HFO). AIM To know the status of HC-ESC in HFO. METHODS Morphology and immunohistochemistry (IHC) in 32 HFO of 7-40 gestational weeks (GW). RESULTS HC-ESC were seen in many HFO including central nervous system, spinal cords, spine, soft tissue, bone, skin, thyroid, lung, liver, pancreas, gall bladder, extrahepatic bile duct, adrenal, kidney, bladder, foregut, midgut, hindgut, female and male genital organs, and neurons. HC-ESC's were composed of two populations depending on constituting cells. One were large cells with ample acidophilic cytoplasms with vesicular nuclei and nucleoli. The other were small cells with scant cytoplasm with hyperchromatic nuclei without nucleoli, resembling lymphocytes. The HC-ESC were frequently showed neuronal differentiation. HC-ESC were positive for NCAM, synaptophysin, NSE, chromogranin, PDGFRA, AFP, ErbB2, bcl-2, KIT, MET. They were negative for CD45, CD3, CD20, EMA, CEA, CA19-9, cytokeratin (CK) 7, CK8, CK18, CK19, MUC1, MUC2, MUC5AC, and MUC6. The mean Ki-67 labeling index (LI) was 13% ± 7%. HC-ESC showed a little glycogen but lacked mucins. These HC-ESC were seen in 7-25 GW, and they were rarely seen in 26-40 GW. CONCLUSIONS The morphology, IHC, and ontogeny of HC-ESC were described.
Collapse
Affiliation(s)
- Tadashi Terada
- Department of Pathology, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| |
Collapse
|
33
|
Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, Combettes L, Weber A, Corlu A, Dubart-Kupperschmitt A. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 2014; 60:700-14. [PMID: 24715669 PMCID: PMC4315871 DOI: 10.1002/hep.27165] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cholangiocytes are biliary epithelial cells, which, like hepatocytes, originate from hepatoblasts during embryonic development. In this study we investigated the potential of human embryonic stem cells (hESCs) to differentiate into cholangiocytes and we report a new approach, which drives differentiation of hESCs toward the cholangiocytic lineage using feeder-free and defined culture conditions. After differentiation into hepatic progenitors, hESCs were differentiated further into cholangiocytes using growth hormone, epidermal growth factor, interleukin-6, and then sodium taurocholate. These conditions also allowed us to generate cholangiocytes from HepaRG-derived hepatoblasts. hESC- and HepaRG-derived cholangiocyte-like cells expressed markers of cholangiocytes including cytokeratin 7 and osteopontin, and the transcription factors SOX9 and hepatocyte nuclear factor 6. The cells also displayed specific proteins important for cholangiocyte functions including cystic fibrosis transmembrane conductance regulator, secretin receptor, and nuclear receptors. They formed primary cilia and also responded to hormonal stimulation by increase of intracellular Ca(2+) . We demonstrated by integrative genomics that the expression of genes, which signed hESC- or HepaRG-cholangiocytes, separates hepatocytic lineage from cholangiocyte lineage. When grown in a 3D matrix, cholangiocytes developed epithelial/apicobasal polarity and formed functional cysts and biliary ducts. In addition, we showed that cholangiocyte-like cells could also be generated from human induced pluripotent stem cells, demonstrating the efficacy of our approach with stem/progenitor cells of diverse origins. CONCLUSION We have developed a robust and efficient method for differentiating pluripotent stem cells into cholangiocyte-like cells, which display structural and functional similarities to bile duct cells in normal liver. These cells will be useful for the in vitro study of the molecular mechanisms of bile duct development and have important potential for therapeutic strategies, including bioengineered liver approaches.
Collapse
Affiliation(s)
- Noushin Dianat
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| | | | - Clara Steichen
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| | - Christophe Desterke
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| | | | - Aurélien Raveux
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France
| | - Laurent Combettes
- DHU Hepatinov, Paul Brousse HospitalVillejuif, France,INSERM UMR-S 757UPS-Orsay, Orsay, France
| | - Anne Weber
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| | - Anne Corlu
- INSERM, UMR-S 991, Pontchaillou HospitalRennes, France,University of Rennes 1Rennes, France,
Address reprint requests to: Anne Corlu, Ph.D., INSERM, UMR-S 991, Pontchaillou Hospital, Rennes F-35033, France. E-mail: ; or Anne Dubart-Kupperschmitt, M.D., INSERM, U972, Paul Brousse Hospital, Villejuif, F-94807, France. ; fax: +33 (0)1 47 26 03 19, +33 (0)2 99 54 01 37
| | - Anne Dubart-Kupperschmitt
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| |
Collapse
|
34
|
Khurana S, Jadeja R, Twaddell W, Cheng K, Rachakonda V, Saxena N, Raufman JP. Effects of modulating M3 muscarinic receptor activity on azoxymethane-induced liver injury in mice. Biochem Pharmacol 2013; 86:329-38. [PMID: 23707755 DOI: 10.1016/j.bcp.2013.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/25/2022]
Abstract
Previously, we reported that azoxymethane (AOM)-induced liver injury is robustly exacerbated in M3 muscarinic receptor (M3R)-deficient mice. We used the same mouse model to test the hypothesis that selective pharmacological modulation of M3R activity regulates the liver injury response. Initial experiments confirmed that giving a selective M3R antagonist, darifenacin, to AOM-treated mice mimicked M3R gene ablation. Compared to vehicle controls, mice treated with the M3R antagonist had reduced survival and increased liver nodularity and fibrosis. We next assessed AOM-induced liver injury in mice treated with a selective M3R agonist, pilocarpine. After pilocarpine treatment, stimulation of post-M3R signaling in the liver was evidenced by ERK and AKT activation. In contrast to the damaging effects of the M3R antagonist, administering pilocarpine to AOM-treated mice significantly attenuated hepatic stellate cell activation, collagen deposition, bile ductule proliferation, and liver fibrosis and nodularity. As anticipated from these findings, livers from pilocarpine-treated mice exhibited reduced expression of key players in fibrosis (α1 collagen, α-smooth muscle actin, TGF-β1, PGDF, TGF-β1R, PGDFR) and decreased mRNA levels for molecules that regulate extracellular matrix formation (TIMP-1, TIMP-2, MMP-2, MMP-13). Cleaved caspase-3, nitrotyrosine and BrdU immunostaining provided evidence that pilocarpine treatment reduced hepatocyte apoptosis and oxidative stress, while increasing hepatocyte proliferation. Collectively, these findings identify several downstream mechanisms whereby M3R activation ameliorates toxic liver injury. These novel observations provide a proof-of-principle that selectively stimulating M3R activation to prevent or diminish liver injury is a therapeutic strategy worthy of further investigation.
Collapse
Affiliation(s)
- Sandeep Khurana
- Division of Gastroenterology & Hepatology, VA Maryland Health Care System and University of Maryland School of Medicine, Baltimore, MD, United States.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Stem cell niches are special microenvironments that maintain stem cells and control their behavior to ensure tissue homeostasis and regeneration throughout life. The liver has a high regenerative capacity that involves stem/progenitor cells when the proliferation of hepatocytes is impaired. In recent years progress has been made in the identification of potential hepatic stem cell niches. There is evidence that hepatic progenitor cells can originate from niches in the canals of Hering; in addition, the space of Disse may also serve as a stem cell niche during fetal hematopoiesis and constitute a niche for stellate cells in adults.
Collapse
Affiliation(s)
- Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
36
|
Berg PA. The role of the innate immune recognition system in the pathogenesis of primary biliary cirrhosis: a conceptual view. Liver Int 2011; 31:920-31. [PMID: 21733082 DOI: 10.1111/j.1478-3231.2011.02457.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aetiology of primary biliary cirrhosis (PBC) remains unknown. Infectious and non-infectious noxious insults in combination with tissue-specific factors may precipitate PBC. Activation of innate immune response because of impending danger signals seems to be a key event in early PBC, as evidenced by granuloma formation, eosinophilic reaction and IgM elevation. Aberrant mitophagy in 'stressed' biliary epithelia cells may initiate the immune response against mitochondrial antigens. Antimitochondrial autoantibodies recognize evolutionarily conserved molecules. The question arises, whether they are pathogenic or rather an expression of beneficial autoimmunity. The generally stable course of PBC suggests that stimulatory and inhibitory autoimmune reactions govern the inflammatory biliary process. Tissue repair and defense are the heart of innate immunity. But continuous exposure of exogenous stimuli may precipitate functional antireceptor autoantibodies that are no more protective but rather harmful. Mitophagy, apoptosis and bile duct proliferation define the inflammatory response within bile ducts. Autoantigens may be clustered in different blebs on the surface of apoptotic cells targeting a variety of membrane and non-membrane-associated antigens. Thus, the autoantibody response in PBC may target, for instance, the pro- and anti-apoptotic proteins of the Bcl-2 family or receptors of the adrenergic or cholinergic system, hereby interfering with the programme of apoptosis and the proliferation of biliary epithelial cells. Consideration of there being functional autoantibodies into the pathogenesis of PBC may help to improve our understanding of the aetiopathogenesis of PBC.
Collapse
Affiliation(s)
- Peter A Berg
- Department of Internal Medicine, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
37
|
Turner R, Lozoya O, Wang Y, Cardinale V, Gaudio E, Alpini G, Mendel G, Wauthier E, Barbier C, Alvaro D, Reid LM. Human hepatic stem cell and maturational liver lineage biology. Hepatology 2011; 53:1035-45. [PMID: 21374667 PMCID: PMC3066046 DOI: 10.1002/hep.24157] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Livers are comprised of maturational lineages of cells beginning extrahepatically in the hepato-pancreatic common duct near the duodenum and intrahepatically in zone 1 by the portal triads. The extrahepatic stem cell niches are the peribiliary glands deep within the walls of the bile ducts; those intrahepatically are the canals of Hering in postnatal livers and that derive from ductal plates in fetal livers. Intrahepatically, there are at least eight maturational lineage stages from the stem cells in zone 1 (periportal), through the midacinar region (zone 2), to the most mature cells and apoptotic cells found pericentrally in zone 3. Those found in the biliary tree are still being defined. Parenchymal cells are closely associated with lineages of mesenchymal cells, and their maturation is coordinated. Each lineage stage consists of parenchymal and mesenchymal cell partners distinguishable by their morphology, ploidy, antigens, biochemical traits, gene expression, and ability to divide. They are governed by changes in chromatin (e.g., methylation), gradients of paracrine signals (soluble factors and insoluble extracellular matrix components), mechanical forces, and feedback loop signals derived from late lineage cells. Feedback loop signals, secreted by late lineage stage cells into bile, flow back to the periportal area and regulate the stem cells and other early lineage stage cells in mechanisms dictating the size of the liver mass. Recognition of maturational lineage biology and its regulation by these multiple mechanisms offers new understandings of liver biology, pathologies, and strategies for regenerative medicine and treatment of liver cancers.
Collapse
Affiliation(s)
- Rachael Turner
- University of North Carolina School of Medicine, Department of Cell and Molecular Physiology, Chapel Hill, North Carolina 27599
- University of North Carolina School of Medicine, Department of Biomedical Engineering, Chapel Hill, North Carolina 27599
| | - Oswaldo Lozoya
- University of North Carolina School of Medicine, Department of Biomedical Engineering, Chapel Hill, North Carolina 27599
| | - Yunfang Wang
- University of North Carolina School of Medicine, Department of Cell and Molecular Physiology, Chapel Hill, North Carolina 27599
| | - Vincenzo Cardinale
- Division of Gastroenterology, Department of Clinical Medicine, University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Human Anatomy, University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Division of Research, Central Texas Veterans Health Care System, Department of Medicine, Scott & White Digestive Disease Research Center, Division of Research and Education, Scott & White and Texas A&M Health Science Center College of Medicine, Temple, TX, 76504
| | - Gemma Mendel
- University of North Carolina School of Medicine, Department of Biomedical Engineering, Chapel Hill, North Carolina 27599
| | - Eliane Wauthier
- University of North Carolina School of Medicine, Department of Cell and Molecular Physiology, Chapel Hill, North Carolina 27599
| | - Claire Barbier
- University of North Carolina School of Medicine, Department of Cell and Molecular Physiology, Chapel Hill, North Carolina 27599
| | - Domenico Alvaro
- Division of Gastroenterology, Department of Clinical Medicine, University of Rome, Rome, Italy
| | - Lola M. Reid
- University of North Carolina School of Medicine, Department of Cell and Molecular Physiology, Chapel Hill, North Carolina 27599
- University of North Carolina School of Medicine, Department of Biomedical Engineering, Chapel Hill, North Carolina 27599
- University of North Carolina School of Medicine, Program in Molecular Biology and Biotechnology, Chapel Hill, North Carolina 27599
| |
Collapse
|
38
|
Bellizzi AM, LeGallo RD, Boyd JC, Iezzoni JC. Hepatocyte cytokeratin 7 expression in chronic allograft rejection. Am J Clin Pathol 2011; 135:238-44. [PMID: 21228364 DOI: 10.1309/ajcpnrxcap92knoj] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We examined hepatocyte cytokeratin 7 (CK7) expression in chronic allograft rejection (CR), a ductopenic condition in which this has not been systematically evaluated, in 20 patients with the clinicopathologic diagnosis of CR and age-, sex-, and native-disease-matched control subjects. We also studied baseline biopsy specimens from both groups. Three pathologists independently reviewed H&E- and CK7-stained sections, counting interlobular bile ducts (BDs) and portal tracts (PTs), noting the morphologic pattern of injury and scoring hepatocyte CK7 expression (0, none; 1+, rare; 2+, multifocal, predominantly periportal; 3+, extension into the lobule; 4+, diffuse). Mean BD/PT ratios and CK7 scores were calculated. The mean BD/PT ratio (0.58) and CK7 score (1.01) for the "CR, diagnostic" group were significantly different from all other group means (P < .05); no other comparisons were significant (P > .05). A CK7 score of 1 or more was observed in 9 (56%) of 16 CR specimens and in 3 (7%) of 41 remaining specimens. Hepatocyte CK7 expression is frequently noted in CR, and it would appear to reflect ductopenia. CK7 staining may be a useful diagnostic adjunct in evaluation of transplant liver biopsy specimens.
Collapse
Affiliation(s)
- Andrew M. Bellizzi
- Departments of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | - James C. Boyd
- University of Virginia Health System, Charlottesville
| | | |
Collapse
|
39
|
Berg CP, Blume K, Lauber K, Gregor M, Berg PA, Wesselborg S, Stein GM. Autoantibodies to muscarinic acetylcholine receptors found in patients with primary biliary cirrhosis. BMC Gastroenterol 2010; 10:120. [PMID: 20950485 PMCID: PMC2972237 DOI: 10.1186/1471-230x-10-120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 10/16/2010] [Indexed: 12/16/2022] Open
Abstract
Background Autoantibodies to the human muscarinic acetylcholine receptor of the M3 type (hmAchR M3) have been suggested to play an etiopathogenic role in Sjögren's syndrome. Primary biliary cirrhosis (PBC) often is associated with this syndrome. Therefore, we studied the co-presence of hmAchR M3 autoantibodies in patients with PBC. Methods Frequency of hmAchR M3 autoantibodies was assessed by Western blotting analysis as well as by an ELISA using a 25-mer peptide of the 2nd extracellular loop of hmAchR M3. Co-localization of hmAchR M3/PBC-specific autoantibodies was studied by confocal laser scanning microscopy. Finally, sera from patients with PBC as well as from healthy controls were tested. Results Western blotting analysis as well as results from ELISA testing revealed a significantly enhanced IgG reactivity in PBC patients in contrast to healthy controls. Co-localization of autoantibodies with the hmAchR M3 receptor-specific autoantibodies was observed in 10 out of 12 PBC-patients but none of the 5 healthy controls. Antibodies of the IgM type were not found to be affected. Conclusions For the first time, our data demonstrate the presence of autoantibodies to the hmAchR M3 in PBC patients. These findings might contribute to the understanding of the pathogenesis of this disease. Further studies have to focus on the functionality of hmAchR M3 autoantibodies in PBC patients.
Collapse
Affiliation(s)
- Christoph P Berg
- Department of Internal Medicine I, Medical Clinic, University of Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Onori P, Gaudio E, Franchitto A, Alpini G, Francis H. Histamine regulation of hyperplastic and neoplastic cell growth in cholangiocytes. World J Gastrointest Pathophysiol 2010; 1:38-49. [PMID: 21607141 PMCID: PMC3097946 DOI: 10.4291/wjgp.v1.i2.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/03/2010] [Accepted: 04/10/2010] [Indexed: 02/06/2023] Open
Abstract
Histamine has long been known to be involved in inflammatory events. The discovery of antihistamines dates back to the first half of the 20th century when a Swiss-Italian pharmacologist, Daniel Bovet began his work. In 1957 he was awarded a Nobel Prize for his production of antihistamines for allergy relief. Since that time, histamine has been found to play a role in other events besides allergic reaction. Possibly unbelievable to Bovet and his peers, histamine has now been marked as playing a role in liver pathologies including hepatobiliary diseases.
Collapse
|
41
|
Khurana S, Shah N, Cheng K, Shiu B, Samimi R, Belo A, Shant J, Drachenberg C, Wess J, Raufman JP. Scopolamine treatment and muscarinic receptor subtype-3 gene ablation augment azoxymethane-induced murine liver injury. J Pharmacol Exp Ther 2010; 333:639-49. [PMID: 20197374 DOI: 10.1124/jpet.109.165118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous work suggests that vagus nerve disruption reduces hepatocyte and oval cell expansion after liver injury. The role of postneuronal receptor activation in response to liver injury has not been ascertained. We investigated the actions of scopolamine, a nonselective muscarinic receptor antagonist, and specific genetic ablation of a key cholinergic receptor, muscarinic subtype-3 (Chrm3), on azoxymethane (AOM)-induced liver injury in mice. Animal weights and survival were measured as was liver injury using both gross and microscopic examination. To assess hepatocyte proliferation and apoptosis, ductular hyperplasia, and oval cell expansion, we used morphometric analysis of 5-bromo-2'-deoxyuridine-, activated caspase-3-, hematoxylin and eosin-, cytokeratin-19-, and epithelial cell adhesion molecule-stained liver sections. Sirius red staining was used as a measure of collagen deposition and its association with oval cell reaction. In AOM-treated mice, both muscarinic receptor blockade with scopolamine and Chrm3 ablation attenuated hepatocyte proliferation and augmented gross liver nodularity, apoptosis, and fibrosis. Compared with control, scopolamine-treated and Chrm3(-/-) AOM-treated mice had augmented oval cell reaction with increased ductular hyperplasia and oval cell expansion. Oval cell reaction correlated robustly with liver fibrosis. No liver injury was observed in scopolamine-treated and Chrm3(-/-) mice that were not treated with AOM. Only AOM-treated Chrm3(-/-) mice developed ascites and had reduced survival compared with AOM-treated wild-type controls. In AOM-induced liver injury, inhibiting postneuronal cholinergic muscarinic receptor activation with either scopolamine treatment or Chrm3 gene ablation results in prominent oval cell reaction. We conclude that Chrm3 plays a critical role in the liver injury response by modulating hepatocyte proliferation and apoptosis.
Collapse
Affiliation(s)
- Sandeep Khurana
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Gaudio E, Carpino G, Cardinale V, Franchitto A, Onori P, Alvaro D. New insights into liver stem cells. Dig Liver Dis 2009; 41:455-62. [PMID: 19403350 DOI: 10.1016/j.dld.2009.03.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/22/2009] [Indexed: 12/11/2022]
Abstract
Hepatic progenitor cells are bi-potential stem cells residing in human and animal livers that are able to differentiate towards the hepatocytic and the cholangiocytic lineages. In adult livers, hepatic progenitor cells are quiescent stem cells with a low proliferating rate, representing a reserve compartment that is activated only when the mature epithelial cells of the liver are continuously damaged or inhibited in their replication, or in cases of severe cell loss. Hepatic progenitor cell activation has been described in various acute and chronic liver diseases. Their niche is composed by numerous cells such as Hepatic Stellate Cells, endothelial cells, hepatocytes, cholangiocytes, Kupffer cells, pit cells and inflammatory cells. All these cells, numerous hormones and growth factors could interact and cross-talk with progenitor cells influencing their proliferative and differentiative processes. Hepatic progenitor cells and their niche could represent, in the near future, a target for therapeutic approaches to liver disease based on cell-specific drug delivery systems. Isolation and transplantation of hepatic progenitor cells could represent a new approach for therapy of end-stage chronic liver diseases, as they offer many advantages to transplantation of mature hepatocytes. The possibility of applying stem cell therapy to liver diseases will represent a major goal in this field.
Collapse
Affiliation(s)
- E Gaudio
- Department of Human Anatomy, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Ontogeny of human intrahepatic innervation. Virchows Arch 2008; 452:435-42. [PMID: 18196269 DOI: 10.1007/s00428-007-0569-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 01/03/2023]
Abstract
Intrahepatic nerves serve important metabolic, sensory and motor functions. Their ontogeny in human liver has not been elucidated. We aimed to characterise the ontogeny of human intrahepatic innervation, to assess its relationship with biliary structures and to examine the distribution and nature of peptidergic nerves during development. We used immunohistochemistry on archival normal human liver tissue from 63 fetuses [8-40 gestational weeks (gw)] and 10 adults with antibodies to pan-neural markers and neuropeptides. Few nerve fibers appeared in portal tracts at 8 gw. Their density increased gradually from 12 gw and reached adult levels at 32-33 gw. Rare intra-acinar nerves, restricted to periportal areas, appeared at 40 gw. Galanin-, somatostatin- and calcitonin-gene-related peptide-positive nerve fibers were noted only in portal tracts from 22, 26 and 32 gw, respectively. In human adult liver, dense portal and intra-acinar neural supply was observed. Human fetal liver contains a neural network distributed mainly in portal tracts with a density that increases progressively towards term. Intra-acinar innervation appears at term, suggesting that is not required for normal liver function during development, while peptidergic nerves are important for intrauterine liver functions. Developmentally regulated expression of galanin and somatostatin may play a role in liver morphogenesis.
Collapse
|
45
|
Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res 2008; 331:283-300. [PMID: 18046579 PMCID: PMC3034134 DOI: 10.1007/s00441-007-0542-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/23/2007] [Indexed: 02/06/2023]
Abstract
The liver has enormous regenerative capacity. Following acute liver injury, hepatocyte division regenerates the parenchyma but, if this capacity is overwhelmed during massive or chronic liver injury, the intrinsic hepatic progenitor cells (HPCs) termed oval cells are activated. These HPCs are bipotential and can regenerate both biliary epithelia and hepatocytes. Multiple signalling pathways contribute to the complex mechanism controlling the behaviour of the HPCs. These signals are delivered primarily by the surrounding microenvironment. During liver disease, stem cells extrinsic to the liver are activated and bone-marrow-derived cells play a role in the generation of fibrosis during liver injury and its resolution. Here, we review our current understanding of the role of stem cells during liver disease and their mechanisms of activation.
Collapse
Affiliation(s)
- T G Bird
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | | | | |
Collapse
|
46
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
47
|
Fabris L, Cadamuro M, Guido M, Spirli C, Fiorotto R, Colledan M, Torre G, Alberti D, Sonzogni A, Okolicsanyi L, Strazzabosco M. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:641-53. [PMID: 17600123 PMCID: PMC1934520 DOI: 10.2353/ajpath.2007.070073] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with Alagille syndrome (AGS), a genetic disorder of Notch signaling, suffer from severe ductopenia and cholestasis, but progression to biliary cirrhosis is rare. Instead, in biliary atresia (BA) severe cholestasis is associated with a pronounced "ductular reaction" and rapid progression to biliary cirrhosis. Given the role of Notch in biliary development, we hypothesized that defective Notch signaling would influence the reparative mechanisms in cholestatic cholangiopathies. Thus we compared phenotype and relative abundance of the epithelial components of the hepatic reparative complex in AGS (n = 10) and BA (n = 30) using immunohistochemistry and computer-assisted morphometry. BA was characterized by an increase in reactive ductular and hepatic progenitor cells, whereas in AGS, a striking increase in intermediate hepatobiliary cells contrasted with the near absence of reactive ductular cells and hepatic progenitor cells. Hepatocellular mitoinhibition index (p21(waf1)/Ki67) was similar in AGS and BA. Fibrosis was more severe in BA, where portal septa thickness positively correlated with reactive ductular cells and hepatic progenitor cells. AGS hepatobiliary cells failed to express hepatic nuclear factor (HNF) 1beta, a biliary-specific transcription factor. These data indicate that Notch signaling plays a role in liver repair mechanisms in postnatal life: its defect results in absent reactive ductular cells and accumulation of hepatobiliary cells lacking HNF1beta, thus being unable to switch to a biliary phenotype.
Collapse
Affiliation(s)
- Luca Fabris
- CeLiveR, Gastroenterology and Liver Transplant Unit, Ospedali Riuniti di Bergamo, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zen Y, Fujii T, Yoshikawa S, Takamura H, Tani T, Ohta T, Nakanuma Y. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1750-62. [PMID: 17456779 PMCID: PMC1854968 DOI: 10.2353/ajpath.2007.060798] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we examined the possible involvement of progenitor cells in the carcinogenesis of human hepatocellular carcinoma (HCC) using tissue specimens and cell lines. We used ATP-binding cassette transporter ABCG2 as a progenitor cell marker. Immunohistochemically, ABCG2(+) hepatocytes were observed in the periportal areas of the dysplastic nodule, and ABCG2(+) cancer cells were also scattered or focally clustered in HCC. We sorted the cultured HCC cells (HuH7 and PLC5) into ABCG2(+) and ABCG2(-) subpopulations and then subcultured them for 4 weeks. ABCG2(+) cells could generate ABCG2(+) and ABCG2(-) progenies during subculture, whereas ABCG2(-) cells bore only ABCG2(-) cells, suggesting that a cancer cell hierarchy with reference to ABCG2 exists in HCC cells and that ABCG2(+) cells reside at the higher rank in that hierarchy. Interestingly, other progenitor cell markers including cytokeratin 19 and alpha-fetoprotein were mainly expressed in ABCG2(+) subpopulations. Conversely, albumin expression was more intense in ABCG2(-) cells. In addition, the expression patterns of transcription factors (GATA6, CCAAT/enhancer-binding protein alpha, and CCAAT/enhancer-binding protein beta) in ABCG2(+) and ABCG2(-) cells resembled those during normal liver development. In conclusion, this study suggests that cancer cells with ABCG2 expression might play a central role in hepatocarcinogenesis and the maintenance of the cancer cell hierarchy of human HCC.
Collapse
Affiliation(s)
- Yoh Zen
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Yoshimura R, Somekawa S, Omori H, Endo Y. Carbachol induces hepatocyte proliferation, but only in the presence of hepatic nonparenchymal cells. J Physiol Sci 2007; 57:139-45. [PMID: 17442131 DOI: 10.2170/physiolsci.rp003707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/17/2007] [Indexed: 11/05/2022]
Abstract
Vagal hyperactivity correlates with enhanced DNA synthesis and cell proliferation in the peripheral tissues of ventromedial hypothalamic (VMH)-lesioned rats. The infusion of an ACh receptor agonist, carbachol (Cch), induces rat duodenal and pancreatic cell proliferation to a degree comparable to the VMH lesions. Whereas the VMH lesions also induce the proliferation of hepatic cells, it is unclear whether Cch can also do this. Here we attempted to clarify the mechanism of hepatic cell proliferation induction by cholinergic stimulation. First, hepatic cell proliferation was examined in rats previously vagotomized and intraperitoneally administered with Cch via an osmotic minipump. Second, the sera from the Cch-infused rats were examined for a proliferative effect on isolated hepatic cells. And last, the effect of the presence of hepatic nonparenchymal cells (NPCs) on the proliferation of the cultured hepatocytes treated with Cch was investigated. Immunohistochemistry for proliferating cell nuclear antigen (PCNA) showed that the 3-day Cch infusion significantly increased the number of PCNA-immunoreactive cells in the liver. Moreover, the sera from the Cch-infused rats increased the number of PCNA-immunoreactive hepatocytes in culture. However, Cch alone did not induce proliferation in monocultured hepatocytes. When compared with the monoculture of hepatocytes, the coculture of those with hepatic NPCs resulted in enhanced PCNA immunoreactivity after a 4-day treatment with 3 mM Cch. These findings suggest that ACh induces hepatocyte proliferation, which is mediated by unidentified humoral factor(s) possibly secreted from hepatic NPCs, and that it also participates in liver hypertrophy in the VMH-lesioned animals.
Collapse
Affiliation(s)
- Ryoichi Yoshimura
- Division of Applied Biology, Kyoto Institute of Technology Graduate School of Science and Technology, Matsugasaki, Kyoto, Japan.
| | | | | | | |
Collapse
|
50
|
Cassiman D, Sinelli N, Bockx I, Vander Borght S, Petersen B, De Vos R, van Pelt J, Nevens F, Libbrecht L, Roskams T. Human hepatic progenitor cells express vasoactive intestinal peptide receptor type 2 and receive nerve endings. Liver Int 2007; 27:323-8. [PMID: 17355452 DOI: 10.1111/j.1478-3231.2006.01427.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND We recently showed that human hepatic progenitor cells (HPCs) express muscarinic acetylcholine (Ach) receptor subtype 3 and that--following liver transplantation--HPC numbers are significantly reduced. To further elaborate on this, we examined whether HPC also express receptors for vasoactive intestinal peptide (VIP), which, besides Ach, also is an important parasympathetic neurotransmitter. VIP expressing nerves are known to be present in the liver. METHODS We performed immunohistochemistry for VIP receptor subtypes 1 and 2 (VIPR1 and 2), on sections of normal and diseased human liver (n=17), and double staining for VIPR2 and known HPC markers. We performed RT-PCR for VIPR1 and 2 on total RNA from purified rat HPC. To document the probability of direct interaction, we also performed double immunostaining for nerve markers and HPC markers on human liver sections. RESULTS VIPR2 immunostaining was clearly positive in HPC and reactive bile ductules on paraffin-embedded and frozen tissue sections. We could not demonstrate VIPR1 protein expression in the liver, with either of two VIPR1 antibodies tested. The presence of VIPR2 mRNA in HPC was confirmed by RT-PCR. Nerve endings were shown to abut on reactive bile ductules. CONCLUSION We show here for the first time that HPC express VIPR2 and receive nerve endings. These features, and the fact that HPC numbers are influenced by the presence or absence of the autonomic innervation of the liver, suggest a direct interaction.
Collapse
Affiliation(s)
- David Cassiman
- Department of Hepatology, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|