1
|
Sornapudi TR, Yuan L, Braunger JM, Uhler C, Shivashankar G. Remodeling of cytoskeleton, chromatin, and gene expression during mechanical rejuvenation of aged human dermal fibroblasts. Mol Biol Cell 2025; 36:ar6. [PMID: 39630645 PMCID: PMC11742107 DOI: 10.1091/mbc.e24-09-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Aging is associated with a progressive decline in cellular function. To reset the aged cellular phenotype, various reprogramming approaches, including mechanical routes, have been explored. However, the epigenetic mechanisms underlying cellular rejuvenation are poorly understood. Here, we studied the cytoskeletal, genome-wide chromatin and transcriptional changes in young, aged, and mechanically rejuvenated fibroblasts using immunofluorescence, RNA sequencing, and Hi-C experiments. The mechanically rejuvenated aged fibroblasts, that had partially reset their transcription to a younger cell state, showed a local reorganization of the interchromosomal contacts and lamina-associated domains. Interestingly, the observed chromatin reorganization correlated with the transcriptional changes. Immunofluorescence experiments in the rejuvenated state confirmed increased actomyosin contractility like younger fibroblasts. In addition, the rejuvenated contractile properties were maintained over multiple cell passages. Overall, our results give an overview of how changes in the cytoskeleton, chromatin, and gene activity are connected to aging and rejuvenation.
Collapse
Affiliation(s)
| | - Luezhen Yuan
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | | | - Caroline Uhler
- Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT & Harvard, Cambridge, MA 02142
| | - G.V. Shivashankar
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
2
|
Poskus MD, McDonald J, Laird M, Li R, Norcoss K, Zervantonakis IK. Rational Design of HER2-Targeted Combination Therapies to Reverse Drug Resistance in Fibroblast-Protected HER2+ Breast Cancer Cells. Cell Mol Bioeng 2024; 17:491-506. [PMID: 39513002 PMCID: PMC11538110 DOI: 10.1007/s12195-024-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells. Methods Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts. Results Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity. Conclusions Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00823-0.
Collapse
Affiliation(s)
- Matthew D. Poskus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Jacob McDonald
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Matthew Laird
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ruxuan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Kyle Norcoss
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
3
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Hahn JM, Combs KA, Powell HM, Supp DM. A role for vitamin D and the vitamin D receptor in keloid disorder. Wound Repair Regen 2023; 31:563-575. [PMID: 37458255 DOI: 10.1111/wrr.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Keloids are disfiguring fibroproliferative lesions that can occur in susceptible individuals following any skin injury. They are extremely challenging to treat, with relatively low response rates to current therapies and high rates of recurrence after treatment. Although several distinct genetic loci have been associated with keloid formation in different populations, there has been no single causative gene yet identified and the molecular mechanisms guiding keloid development are incompletely understood. Further, although it is well known that keloids are more commonly observed in populations with dark skin pigmentation, the basis for increased keloid risk in skin of colour is not yet known. Because individuals with dark skin pigmentation are at higher risk for vitamin D deficiency, the role of vitamin D in keloid pathology has gained interest in the keloid research community. A limited number of studies have found lower serum vitamin D levels in patients with keloids, and reduced expression of the vitamin D receptor (VDR) in keloid lesions compared with uninjured skin. Vitamin D has documented anti-inflammatory, anti-proliferative and pro-differentiation activities, suggesting it may have a therapeutic role in suppression of keloid fibrosis. Here we review the evidence supporting a role for vitamin D and VDR in keloid pathology.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly A Combs
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Heather M Powell
- Departments of Materials Science and Engineering and Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Yang Y, Wang Q, Li G, Guo W, Yang Z, Liu H, Deng X. Cysteine-Derived Chiral Carbon Quantum Dots: A Fibrinolytic Activity Regulator for Plasmin to Target the Human Islet Amyloid Polypeptide for Type 2 Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2617-2629. [PMID: 36596222 DOI: 10.1021/acsami.2c17975] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fibrillization and deposition of the human islet amyloid polypeptide (hIAPP) are the pathological hallmark of type 2 diabetes mellitus (T2DM), and these insoluble fibrotic depositions of hIAPP are considered to strongly affect insulin secretion by inducing toxicity toward pancreatic islet β-cells. The current strategy of preventing amyloid aggregation by nanoparticle-assisted inhibitors can only disassemble fibrotic amyloids into more toxic oligomers and/or protofibrils. Herein, for the first time, we propose a type of cysteine-derived chiral carbon quantum dot (CQD) that targets plasmin, a core natural fibrinolytic protease in humans. These CQDs can serve as fibrinolytic activity regulators for plasmin to cleave hIAPP into nontoxic polypeptides or into even smaller amino acid fragments, thus alleviating hIAPP's fibrotic amyloid-induced cytotoxicity. Our experiments indicate that chiral CQDs have opposing effects on plasmin activity. The l-CQDs promote the cleavage of hIAPP by enhancing plasmin activity at a promotion ratio of 23.2%, thus protecting β-cells from amyloid-induced toxicity. In contrast, the resultant d-CQDs significantly inhibit proteolysis, decreasing plasmin activity by 31.5% under the same reaction conditions. Second harmonic generation (SHG) microscopic imaging is initially used to dynamically characterize hIAPP before and after proteolysis. The l-CQD promotion of plasmin activity thus provides a promising avenue for the hIAPP-targeted treatment of T2DM to treat low fibrinolytic activity, while the d-CQDs, as inhibitors of plasmin activity, may improve patient survival for hyperfibrinolytic conditions, such as those existing during surgeries and traumas.
Collapse
Affiliation(s)
- Yongzhen Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Qin Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Gongjian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Wenjing Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| |
Collapse
|
6
|
Katoh K. Effects of Electrical Stimulation of the Cell: Wound Healing, Cell Proliferation, Apoptosis, and Signal Transduction. Med Sci (Basel) 2023; 11:medsci11010011. [PMID: 36810478 PMCID: PMC9944882 DOI: 10.3390/medsci11010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Electrical stimulation of the cell can have a number of different effects depending on the type of cell being stimulated. In general, electrical stimulation can cause the cell to become more active, increase its metabolism, and change its gene expression. For example, if the electrical stimulation is of low intensity and short duration, it may simply cause the cell to depolarize. However, if the electrical stimulation is of high intensity or long duration, it may cause the cell to become hyperpolarized. The electrical stimulation of cells is a process by which an electrical current is applied to cells in order to change their function or behavior. This process can be used to treat various medical conditions and has been shown to be effective in a number of studies. In this perspective, the effects of electrical stimulation on the cell are summarized.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
7
|
Hamel KM, Liimatta KQ, Belgodere JA, Bunnell BA, Gimble JM, Martin EC. Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells Dev 2022; 31:579-592. [PMID: 35262397 PMCID: PMC9836707 DOI: 10.1089/scd.2021.0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumors were characterized as nonhealing wounds by Virchow in 1858 and Dvorak in 1986. Since then, researchers have analyzed tumors from a new perspective. The parallels between tumorigenesis and physiological wound healing can provide a new framework for developing antitumor therapeutics. One commonality between tumors and wounds is the involvement of the stromal environment, particularly adipose stromal/stem cells (ASCs). ASCs exhibit dual functions, in which they stimulate tumor progression and assist in tissue repair and regeneration. Numerous studies have focused on the role of ASCs in cancer and wound healing, but none to date has linked age, cancer, and wound healing. Furthermore, very few studies have focused on the role of donor-specific characteristics of ASCs, such as age and their role in facilitating ASC behavior in cancer and wound healing. This review article is designed to provide important insights into the impact of donor age on ASC tumor and wound response and their role in facilitating ASC behavior in cancer and wound healing.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
8
|
Wang K, Cheng L, He B. Therapeutic effects of asperosaponin VI in rabbit tendon disease. Regen Ther 2022; 20:1-8. [PMID: 35310016 PMCID: PMC8898761 DOI: 10.1016/j.reth.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
|
9
|
Vanderstichele S, Vranckx JJ. Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars. World J Stem Cells 2022; 14:200-213. [PMID: 35432731 PMCID: PMC8963379 DOI: 10.4252/wjsc.v14.i2.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sustained injury, through radiotherapy, burns or surgical trauma, can result in fibrosis, displaying an excessive deposition of extracellular matrix (ECM), persisting inflammatory reaction, and reduced vascularization. The increasing recognition of fibrosis as a cause for disease and mortality, and increasing use of radiotherapy causing fibrosis, stresses the importance of a decent anti-fibrotic treatment.
AIM To obtain an in-depth understanding of the complex mechanisms underlying fibrosis, and more specifically, the potential mechanisms-of-action of adipose-derived stomal cells (ADSCs) in realizing their anti-fibrotic effect.
METHODS A systematic review of the literature using PubMed, Embase and Web of Science was performed by two independent reviewers.
RESULTS The injection of fat grafts into fibrotic tissue, releases ADSC into the environment. ADSCs’ capacity to directly differentiate into key cell types (e.g., ECs, fibroblasts), as well as to secrete multiple paracrine factors (e.g., hepatocyte growth factor, basis fibroblast growth factor, IL-10), allows them to alter different mechanisms underlying fibrosis in a combined approach. ADSCs favor ECM degradation by impacting the fibroblast-to-myofibroblast differentiation, favoring matrix metalloproteinases over tissue inhibitors of metalloproteinases, positively influencing collagen organization, and inhibiting the pro-fibrotic effects of transforming growth factor-β1. Furthermore, they impact elements of both the innate and adaptive immune response system, and stimulate angiogenesis on the site of injury (through secretion of pro-angiogenic cytokines like stromal cell-derived factor-1 and vascular endothelial growth factor).
CONCLUSION This review shows that understanding the complex interactions of ECM accumulation, immune response and vascularization, is vital to fibrosis treatments’ effectiveness like fat grafting. It details how ADSCs intelligently steer this complex system in an anti-fibrotic or pro-angiogenic direction, without falling into extreme dilation or stimulation of a single aspect. Detailing this combined approach, has brought fat grafting one step closer to unlocking its full potential as a non-anecdotal treatment for fibrosis.
Collapse
Affiliation(s)
| | - Jan Jeroen Vranckx
- Department of Plastic, Reconstructive Surgery, KU-Leuven University Hospitals, Leuven 3000, Belgium
| |
Collapse
|
10
|
Robinson S, Parigoris E, Chang J, Hecker L, Takayama S. Contracting scars from fibrin drops. Integr Biol (Camb) 2022; 14:1-12. [PMID: 35184163 PMCID: PMC8934703 DOI: 10.1093/intbio/zyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/13/2022]
Abstract
This paper describes a microscale fibroplasia and contraction model that is based on fibrin-embedded lung fibroblasts and provides a convenient visual readout of fibrosis. Cell-laden fibrin microgel drops are formed by aqueous two-phase microprinting. The cells deposit extracellular matrix (ECM) molecules such as collagen while fibrin is gradually degraded. Ultimately, the cells contract the collagen-rich matrix to form a compact cell-ECM spheroid. The size of the spheroid provides the visual readout of the extent of fibroplasia. Stimulation of this wound-healing model with the profibrotic cytokine TGF-β1 leads to an excessive scar formation response that manifests as increased collagen production and larger cell-ECM spheroids. Addition of drugs also shifted the scarring profile: the FDA-approved fibrosis drugs (nintedanib and pirfenidone) and a PAI-1 inhibitor (TM5275) significantly reduced cell-ECM spheroid size. Not only is the assay useful for evaluation of antifibrotic drug effects, it is relatively sensitive; one of the few in vitro fibroplasia assays that can detect pirfenidone effects at submillimolar concentrations. Although this paper focuses on lung fibrosis, the approach opens opportunities for studying a broad range of fibrotic diseases and for evaluating antifibrotic therapeutics.
Collapse
Affiliation(s)
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Chang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Louise Hecker
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
11
|
Macarak EJ, Wermuth PJ, Rosenbloom J, Uitto J. Keloid disorder: Fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp Dermatol 2020; 30:132-145. [PMID: 33211348 DOI: 10.1111/exd.14243] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Keloid disorder, a group of fibroproliferative skin diseases, is characterized by unremitting accumulation of the extracellular matrix (ECM) of connective tissue, primarily collagen, to develop cutaneous tumors on the predilection sites of skin. There is a strong genetic predisposition for keloid formation, and individuals of African and Asian ancestry are particularly prone. The principal cell type responsible for ECM accumulation is the myofibroblast derived from quiescent resident skin fibroblasts either through trans-differentiation or from keloid progenitor stem cells with capacity for multi-lineage differentiation and self-renewal. The biosynthetic pathways leading to ECM accumulation are activated by several cytokines, but particularly by TGF-β signalling. The mechanical properties of the cellular microenvironment also play a critical role in the cell's response to TGF-β, as demonstrated by culturing of fibroblasts derived from keloids and control skin on substrata with different degrees of stiffness. These studies also demonstrated that culturing of fibroblasts on tissue culture plastic in vitro does not reflect their biosynthetic capacity in vivo. Collectively, our current understanding of the pathogenesis of keloids suggests a complex network of interacting cellular, molecular and mechanical factors, with distinct pathways leading to myofibroblast differentiation and activation. Keloids can serve as a model system of fibrotic diseases, a group of currently intractable disorders, and deciphering of the critical pathogenetic steps leading to ECM accumulation is expected to identify targets for pharmacologic intervention, not only for keloids but also for a number of other, both genetic and acquired, fibrotic diseases.
Collapse
Affiliation(s)
- Edward J Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter J Wermuth
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jouni Uitto
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Shadrin VS, Kozhin PM, Shoshina OO, Luzgina NG, Rusanov AL. Telomerized fibroblasts as a candidate 3d in vitro model of pathological hypertrophic scars. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The search for the optimal cell model for studying the pathogenesis of pathological scars is a pressing challenge. This study aimed at evaluating the feasibility of using telomerized fibroblasts for the in vitro 3D modeling of pathological hypertrophic scars. NF and Fb-hTERT cells were cultured as monolayers and spheroids in the absence and in the presence of TGFβ1. The metabolic activity of the cultured cells was assessed using the MTT assay. Cell migration was estimated using the scratch assay. The expression of genes associated with fibrous scar tissue growth was measured by qRT-PCR. Fb-hTERT cells were more metabolically active than NF cells in the presence of TGFβ1 (for 1 ng/ml: 179 ± 12% vs. 135 ± 13% respectively; p < 0,05). Spheroids grown from Fb-hTERT cells were significantly larger than those derived from NF cells. In the presence of TGFβ1, the expression of proteins associated with extracellular matrix production (COL1A1, COL3A1, FN1) was lower in Fb-hTERT cells than in NF cells (more than 25, 20 and 2-fold, respectively; p < 0.05). Intact NF cells were more active in closing the scratch than Fb-hTERT cells: on day 2, the gap closure rate was 2.28 times higher in NF cells (p < 0.05). Exposure to TGFβ1 stimulated Fb-hTERT, unlike NF cells, to close the gap 2 times faster on day 2 (p < 0.05). Thus, telomerized fibroblasts have a few phenotypic traits observed in keloid fibroblasts; still there are some limitations that should be accounted for when using Fb-hTERT cells for the modeling of pathological hypertrophic scars.
Collapse
Affiliation(s)
- VS Shadrin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - PM Kozhin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - OO Shoshina
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - NG Luzgina
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - AL Rusanov
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Li XY, Weng XJ, Li XJ, Tian XY. TSG-6 Inhibits the Growth of Keloid Fibroblasts Via Mediating the TGF-β1/Smad Signaling Pathway. J INVEST SURG 2020; 34:947-956. [PMID: 31986937 DOI: 10.1080/08941939.2020.1716894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xin-Yi Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Juan Weng
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Jing Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Yu Tian
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|
14
|
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, which can lead to organ dysfunction, morbidity, and death. The disease burden caused by fibrosis is substantial, and there are currently no therapies that can prevent or reverse fibrosis. Metabolic alterations are increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types. As a result, metabolically targeted therapies could become important strategies for fibrosis reduction. Indeed, some of the pathways targeted by antifibrotic drugs in development - such as the activation of transforming growth factor-β and the deposition of extracellular matrix - have metabolic implications. This Review summarizes the evidence to date and describes novel opportunities for the discovery and development of drugs for metabolic reprogramming, their associated challenges, and their utility in reducing fibrosis. Fibrotic therapies are potentially relevant to numerous common diseases such as cirrhosis, non-alcoholic steatohepatitis, chronic renal disease, heart failure, diabetes, idiopathic pulmonary fibrosis, and scleroderma.
Collapse
|
15
|
Suh A, Pham A, Cress MJ, Pincelli T, TerKonda SP, Bruce AJ, Zubair AC, Wolfram J, Shapiro SA. Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation. Ageing Res Rev 2019; 54:100933. [PMID: 31247326 DOI: 10.1016/j.arr.2019.100933] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
Cellular and cell-derived components of adipose-derived tissue for the purposes of dermatologic and aesthetic rejuvenation applications have become increasingly studied and integrated into clinical practice. These components include micro-fragmented fat (nanofat), the stromal vascular fraction (SVF), adipose-derived mesenchymal stem cells (ASC), and extracellular vesicles (EVs), which have all shown capability to repair, regenerate, and rejuvenate surrounding tissue. Various aesthetic applications including hair growth, scar reduction, skin ischemia-reperfusion recovery, and facial rejuvenation are reviewed. In particular, results from preclinical and clinical studies are discussed, with a focus on clarification of nomenclature.
Collapse
|
16
|
Pincha N, Hajam EY, Badarinath K, Batta SPR, Masudi T, Dey R, Andreasen P, Kawakami T, Samuel R, George R, Danda D, Jacob PM, Jamora C. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis. J Clin Invest 2018; 128:1807-1819. [PMID: 29584619 DOI: 10.1172/jci99088] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.
Collapse
Affiliation(s)
- Neha Pincha
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Edries Yousaf Hajam
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India.,Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Krithika Badarinath
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India.,National Centre for Biological Sciences (NCBS), GKVK post, Bangalore, Karnataka, India
| | - Surya Prakash Rao Batta
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Tafheem Masudi
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Rakesh Dey
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Peter Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences, Research Center for Allergy and Immunology (IMS-RCAI), Yokohama, Japan
| | - Rekha Samuel
- Department of Pathology, Center for Stem Cell Research
| | - Renu George
- Department of Dermatology, Venereology and Leprosy
| | | | | | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Sonoki A, Okano Y, Yoshitake Y. Dermal fibroblasts can activate matrix metalloproteinase-1 independent of keratinocytes via plasmin in a 3D collagen model. Exp Dermatol 2018; 27:520-525. [PMID: 29498767 DOI: 10.1111/exd.13522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 11/30/2022]
Abstract
Photoaging of the skin is marked by obvious wrinkles and mainly depends on degradation of the extracellular matrix (ECM) in the dermis. Matrix metalloproteinase (MMP)-1 is one of the most important factors involved in degradation of the ECM; however, its mechanism of activation is not fully understood. It has been thought that MMP-1 is expressed by dermal fibroblasts as an inactive precursor protein that is activated by proteinases produced by keratinocytes in the epidermis. In this study, we constructed a 3D model of the dermis using collagen-embedded fibroblasts with or without ultraviolet (UV)-A exposure to mimic photoaging in the dermis. Collagen lattices embedded with UV-A-irradiated fibroblasts miniaturized and collagen was degraded to a greater extent than collagen lattices embedded with non-irradiated fibroblasts. The results demonstrate that fibroblasts in this 3D model express activated MMP-1 in the absence of keratinocytes. Moreover, the results confirm that activation of MMP-1 depends on increased plasmin activity in this model and lattice miniaturization was inhibited by the plasmin inhibitor tranexamic acid. Our results suggest that plasmin acts as an activator of MMP-1 and the inhibition of plasmin prevents collagen degradation.
Collapse
Affiliation(s)
- Aska Sonoki
- OPPEN COSMETICS CO., LTD., Kusatsu-shi, Shiga, Japan
| | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Tokyo, Japan
| | | |
Collapse
|
18
|
Wang X, Ma Y, Gao Z, Yang J. Human adipose-derived stem cells inhibit bioactivity of keloid fibroblasts. Stem Cell Res Ther 2018; 9:40. [PMID: 29467010 PMCID: PMC5822616 DOI: 10.1186/s13287-018-0786-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background A keloid is a fibroproliferative disorder occurring in wounds characterized by an exaggerated response to injury. To date, no effective cure has been identified. As multipotent stem cells, human adipose-derived stem cells (ADSCs) may show the possibility for curing diseases such as fibrosis. This study sought to explore the potential role of human ADSCs in curing keloids. Methods After culture in conditioned medium, gene and protein expression of keloid fibroblasts was examined using real-time polymerase chain reaction (RT-PCR) and Western blotting, while analysis of the cell cycle was used to measure the proliferative properties of the cells. Furthermore, ex vivo explant cultures were used to test the effects of ADSC-conditioned medium (ADSC-CM) on CD31+ and CD34+ expression in keloid tissue. Results Our experimental results show that ADSC-CM was able to attenuate extracellular matrix-related gene expression as well as decrease protein expression. Cell proliferation was significantly suppressed in our study. CD31+ and CD34+ vessels in ex vivo explants were reduced by 55% and 57% in treatment groups compared with control groups. Conclusions Human ADSC-CM significantly inhibited keloid fibroblast-related bioactivities.
Collapse
Affiliation(s)
- Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yan Ma
- Division of Plastic Surgery, Xinjiang Korla Bazhou People's Hospital, Xinjiang, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
19
|
Tang M, Bian W, Cheng L, Zhang L, Jin R, Wang W, Zhang Y. Ginsenoside Rg3 inhibits keloid fibroblast proliferation, angiogenesis and collagen synthesis in vitro via the TGF‑β/Smad and ERK signaling pathways. Int J Mol Med 2018; 41:1487-1499. [PMID: 29328420 PMCID: PMC5819908 DOI: 10.3892/ijmm.2018.3362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
A wide range of therapeutic options exists for the treatment of keloids, all of which have their own strengths; however, a high risk of side-effects and frequent recurrence remains. Therefore, the present study aimed to identify improved therapeutic approaches or drugs for the treatment of keloids. Ginsenoside Rg3 (Rg3) has been reported to exert numerous antitumor effects, thus indicating that Rg3 may be a potential therapeutic agent that targets keloids. The present study determined the effects of Rg3 on human keloid fibroblasts (KFs) in vitro, and further explored the associated molecular and cellular mechanisms. Keloid scar specimens were obtained from patients, aged between 22 and 35 years, without systemic diseases and primary cells were isolated from keloid tissues. In each assay, KFs were divided into three groups and were cultured in medium with or without various concentrations of Rg3 (50 or 100 μg/ml). Cell viability assay, flow cytometry, quantitative polymerase chain reaction, cell migration assay, immunofluorescence staining, western blot analysis, Transwell cell invasion assay and immunohistochemical analysis were used to analyze the KFs and keloid explant cultures. The results of the present study demonstrated that Rg3 was able to exert an inhibitory effect on the transforming growth factor-β/Smad and extracellular signal-regulated kinase signaling pathways in KFs. The proliferation, migration, invasion, angiogenesis and collagen synthesis of KFs were markedly suppressed following treatment with Rg3. Furthermore, the results of an ex vivo assay indicated that Rg3 inhibited angiogenesis and reduced collagen accumulation in keloids. Significant statistical differences existed between the control and Rg3-treated groups (P<0.05). All of these experimental results suggested that Rg3 may serve as a reliable drug for the treatment of patients with keloids.
Collapse
Affiliation(s)
- Mengyao Tang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Weiwei Bian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Liying Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Lu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Rong Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
20
|
Huang C, Liu L, You Z, Zhao Y, Dong J, Du Y, Ogawa R. Endothelial dysfunction and mechanobiology in pathological cutaneous scarring: lessons learned from soft tissue fibrosis. Br J Dermatol 2017; 177:1248-1255. [PMID: 28403507 DOI: 10.1111/bjd.15576] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- C. Huang
- Department of Dermatology Beijing Tsinghua Changgung Hospital Tsinghua University Beijing 102218 China
- Department of Plastic Surgery Meitan General Hospital Beijing 100028 China
| | - L. Liu
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 China
| | - Z. You
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 China
| | - Y. Zhao
- Department of Dermatology Beijing Tsinghua Changgung Hospital Tsinghua University Beijing 102218 China
| | - J. Dong
- Department of Hepatobiliary Surgery Beijing Tsinghua Changgung Hospital Tsinghua University Beijing 102218 China
| | - Y. Du
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 China
| | - R. Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery Nippon Medical School Tokyo 113‐8603 Japan
| |
Collapse
|
21
|
Gong ZH, Ji JF, Yang J, Xiang T, Zhou CK, Pan XL, Yao J. Association of plasminogen activator inhibitor-1 and vitamin D receptor expression with the risk of keloid disease in a Chinese population. Kaohsiung J Med Sci 2016; 33:24-29. [PMID: 28088270 DOI: 10.1016/j.kjms.2016.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/27/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Abstract
Keloid disease (KD) is a benign fibroproliferative scarring condition of unknown etiopathogenesis. Plasminogen activator inhibitor-1 (PAI-1) and vitamin D receptor (VDR) have been shown to play important roles in the progression of tissue fibrosis; therefore, both these genes are potential susceptibility genes for KD. We aimed to determine whether the gene expression levels of PAI-1 and VDR are altered in Chinese KD patients. We measured the expression of PAI and VDR in human peripheral blood lymphocytes in 236 patients with keloid and 219 age- and sex-matched healthy controls by quantitative real-time polymerase chain reaction. We found that PAI-1 expression in peripheral blood lymphocytes was significantly higher in patients with KD than in control individuals (p < 0.0001), while VDR expression was significantly lower in KD patients than in control individuals (p < 0.0001). High levels of PAI-1 and low levels of VDR expression were significantly associated with an increased risk for KD. PAI-1 and VDR might play important roles in keloid development. Gene expression levels of PAI-1 and VDR may, therefore, be used as potential markers for the prediction of keloid development after scarring.
Collapse
Affiliation(s)
- Zhen-Hua Gong
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, Jiangsu Province, China
| | - Jian-Feng Ji
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, Jiangsu Province, China
| | - Jun Yang
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, Jiangsu Province, China
| | - Tie Xiang
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, Jiangsu Province, China
| | - Chang-Kai Zhou
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, Jiangsu Province, China
| | - Xuan-Liang Pan
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, Jiangsu Province, China
| | - Jian Yao
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, Jiangsu Province, China.
| |
Collapse
|
22
|
Trace AP, Enos CW, Mantel A, Harvey VM. Keloids and Hypertrophic Scars: A Spectrum of Clinical Challenges. Am J Clin Dermatol 2016; 17:201-23. [PMID: 26894654 DOI: 10.1007/s40257-016-0175-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Since their earliest description, keloids and hypertrophic scars have beleaguered patients and clinicians alike. These scars can be aesthetically disfiguring, functionally debilitating, emotionally distressing, and psychologically damaging, culminating in a significant burden for patients. Our current understanding of keloid pathophysiology has grown and continues to advance while molecular biology, genetics, and technology provide ever-deepening insight into the nature of wound healing and the pathologic perturbations thereof. Greater understanding will lead to the development and application of refined therapeutic modalities. This article provides an overview of our current understanding of keloids, highlighting clinical characteristics and diagnostic criteria while providing a comprehensive summary of the many therapeutic modalities available. The proposed mechanism, application, adverse events, and reported efficacy of each modality is evaluated, and current recommendations are summarized.
Collapse
Affiliation(s)
- Anthony P Trace
- Department of Radiology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Clinton W Enos
- The School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Alon Mantel
- Hampton University Skin of Color Research Institute, Hampton University, Hampton, VA, USA
| | - Valerie M Harvey
- Hampton University Skin of Color Research Institute, Hampton University, Hampton, VA, USA.
- Department of Dermatology, Eastern Virginia Medical School, 721 Fairfax Ave., Norfolk, VA, 23507, USA.
| |
Collapse
|
23
|
Lee YS, Hsu T, Chiu WC, Sarkozy H, Kulber DA, Choi A, Kim EW, Benya PD, Tuan TL. Keloid-derived, plasma/fibrin-based skin equivalents generate de novo dermal and epidermal pathology of keloid fibrosis in a mouse model. Wound Repair Regen 2016; 24:302-16. [DOI: 10.1111/wrr.12397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/01/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Yun-Shain Lee
- The Saban Research Institute of Children's Hospital Los Angeles; Los Angeles California
| | - Tim Hsu
- The Saban Research Institute of Children's Hospital Los Angeles; Los Angeles California
| | - Wei-Chih Chiu
- The Saban Research Institute of Children's Hospital Los Angeles; Los Angeles California
| | - Heidi Sarkozy
- Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California; Los Angeles California
| | - David A. Kulber
- Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California; Los Angeles California
| | - Aaron Choi
- UCLA-Orthopedic Hospital Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, University of California; Los Angeles California
| | - Elliot W. Kim
- UCLA-Orthopedic Hospital Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, University of California; Los Angeles California
| | - Paul D. Benya
- UCLA-Orthopedic Hospital Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, University of California; Los Angeles California
| | - Tai-Lan Tuan
- The Saban Research Institute of Children's Hospital Los Angeles; Los Angeles California
- Department of Surgery; Keck School of Medicine, University of Southern California; Los Angeles California
| |
Collapse
|
24
|
Chung EJ, McKay-Corkum G, Chung S, White A, Scroggins BT, Mitchell JB, Mulligan-Kehoe MJ, Citrin D. Truncated Plasminogen Activator Inhibitor-1 Protein Protects From Pulmonary Fibrosis Mediated by Irradiation in a Murine Model. Int J Radiat Oncol Biol Phys 2015; 94:1163-72. [PMID: 26883561 DOI: 10.1016/j.ijrobp.2015.11.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine whether the delivery of recombinant truncated plasminogen activator inhibitor-1 (PAI-1) protein (rPAI-1(23)) would protect from the development of radiation-induced lung injury. METHODS AND MATERIALS C57Bl/6 mice received intraperitoneal injections of rPAI-1(23) (5.4 μg/kg/d) or vehicle for 18 weeks, beginning 2 days before irradiation (IR) (5 daily fractions of 6 Gy). Cohorts of mice were followed for survival (n=8 per treatment) and tissue collection (n=3 per treatment and time point). Fibrosis in lung was assessed with Masson-Trichrome staining and measurement of hydroxyproline content. Senescence was assessed with staining for β-galactosidase activity in lung and primary pneumocytes. RESULTS Hydroxyproline content in irradiated lung was significantly reduced in mice that received rPAI-1(23) compared with mice that received vehicle (IR+vehicle: 84.97 μg/lung; IR+rPAI-1(23): 56.2 μg/lung, P=.001). C57Bl/6 mice exposed to IR+vehicle had dense foci of subpleural fibrosis at 19 weeks, whereas the lungs of mice exposed to IR+rPAI-1(23) were largely devoid of fibrotic foci. Cellular senescence was significantly decreased by rPAI-1(23) treatment in primary pneumocyte cultures and in lung at multiple time points after IR. CONCLUSIONS These studies identify that rPAI-1(23) is capable of preventing radiation-induced fibrosis in murine lungs. These antifibrotic effects are associated with increased fibrin metabolism, enhanced matrix metalloproteinase-3 expression, and reduced senescence in type 2 pneumocytes. Thus, rPAI-1(23) is a novel therapeutic option for radiation-induced fibrosis.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Grace McKay-Corkum
- Radiation Oncology, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Su Chung
- Radiation Oncology, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Ayla White
- Radiation Oncology, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Bradley T Scroggins
- Radiation Oncology, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branches, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | | | - Deborah Citrin
- Radiation Oncology, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
25
|
Farberov S, Meidan R. Thrombospondin-1 Affects Bovine Luteal Function via Transforming Growth Factor-Beta1-Dependent and Independent Actions. Biol Reprod 2015; 94:25. [PMID: 26658711 DOI: 10.1095/biolreprod.115.135822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023] Open
Abstract
Thrombospondin-1 (THBS1) and transforming growth factor-beta1 (TGFB1) are specifically up-regulated by prostaglandin F2alpha in mature corpus luteum (CL). This study examined the relationship between the expression of THBS1 and TGFB1 and the underlying mechanisms of their actions in luteal endothelial cells (ECs). TGFB1 stimulated SMAD2 phosphorylation and SERPINE1 levels in dose- and time-dependent manners in luteal EC. THBS1 also elevated SERPINE1; this effect was abolished by TGFB1 receptor-1 kinase inhibitor (SB431542). The findings here further imply that THBS1 activates TGFB1 in luteal ECs: THBS1 increased the effects of latent TGFB1 on phosphorylated SMAD (phospho-SMAD) 2 and SERPINE1. THBS1 silencing significantly decreased SERPINE1 and levels of phospho-SMAD2. Lastly, THBS1 actions on SERPINE1 were inhibited by LSKL peptide (TGFB1 activation inhibitor); LSKL also counteracted latent TGFB1-induced phospho-SMAD2. We found that TGFB1 up-regulated its own mRNA levels and those of THBS1. Both compounds generated apoptosis, but THBS1 was significantly more effective (2.5-fold). Notably, this effect of THBS1 was not mediated by TGFB1. THBS1 and TGFB1 also differed in their activation of p38 mitogen-activated protein kinase. Whereas TGFB1 rapidly induced phospho-p38, THBS1 had a delayed effect. Inhibition of p38 pathway by SB203580 did not modulate TGFB1 effect on cell viability, but it amplified THBS1 actions. THBS1-stimulated caspase-3 activation coincided with p38 phosphorylation, suggesting that caspase-induced DNA damage initiated p38 phosphorylation. The in vitro data suggest that a feed-forward loop exists between THBS1, TGFB1, and SERPINE1. Indeed all these three genes were similarly induced in the regressing CL. Their gene products can promote vascular instability, apoptosis, and matrix remodeling during luteolysis.
Collapse
Affiliation(s)
- Svetlana Farberov
- Department of Animal Sciences, the Robert H. Smith Faculty of Agriculture, Food, and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, the Robert H. Smith Faculty of Agriculture, Food, and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
26
|
Kim SW, Kim KJ, Rhie JW, Ahn ST. Effects of adipose-derived stem cells on keloid fibroblasts based on paracrine function. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-9109-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Simone TM, Longmate WM, Law BK, Higgins PJ. Targeted Inhibition of PAI-1 Activity Impairs Epithelial Migration and Wound Closure Following Cutaneous Injury. Adv Wound Care (New Rochelle) 2015; 4:321-328. [PMID: 26029482 DOI: 10.1089/wound.2014.0611] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022] Open
Abstract
Objective: Aberrant plasminogen activator inhibitor-1 (PAI-1) expression and activity have been implicated in bleeding disorders, multiorgan fibrosis, and wound healing anomalies. This study details the physiological consequences of targeted PAI-1 functional inhibition on cutaneous injury repair. Approach: Dorsal skin wounds from FVB/NJ mice, created with a 4 mm biopsy punch, were treated topically with the small-molecule PAI-1 antagonist tiplaxtinin (or vehicle control) for 5 days and then analyzed for markers of wound repair. Results: Compared to controls, tiplaxtinin-treated wounds displayed dramatic decreases in wound closure and re-epithelialization. PAI-1 immunoreactivity was evident at the migratory front in all injury sites indicating these effects were due to PAI-1 functional blockade and not PAI-1 expression changes. Stimulated HaCaT keratinocyte migration in response to recombinant PAI-1 in vitro was similarly attenuated by tiplaxtinin. While tiplaxtinin had no effect on keratinocyte proliferation, cell cycle progression, or apoptosis, it effectively reduced collagen deposition, the number of Ki-67+ fibroblasts, and incidence of differentiated myofibroblasts (i.e., smooth muscle α-actin immunoreactive cells), but not fibroblast apoptosis. Innovation: The role for PAI-1 in hemostasis and fibrinolysis is established; involvement of PAI-1 in cutaneous wound healing, however, remains unclear. This study tests the effect of a small-molecule PAI-1 inhibitor in a murine model of skin wound repair. Conclusion: Loss of PAI-1 activity significantly impaired wound closure. Re-epithelialization and fibroblast recruitment/differentiation were both reduced in tiplaxtinin-treated mice. Therapies directed at manipulation of PAI-1 expression and/or activity may have applicability as a treatment option for chronic wounds and scarring disorders.
Collapse
Affiliation(s)
- Tessa M. Simone
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Whitney M. Longmate
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| |
Collapse
|
28
|
Kameyama H, Udagawa O, Hoshi T, Toukairin Y, Arai T, Nogami M. The mRNA expressions and immunohistochemistry of factors involved in angiogenesis and lymphangiogenesis in the early stage of rat skin incision wounds. Leg Med (Tokyo) 2015; 17:255-60. [PMID: 25794881 DOI: 10.1016/j.legalmed.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Abstract
Wound healing evaluation is important in forensic pathology, in which angiogenesis plays an important role. We have already shown that vascular endothelial growth factor A (VEGF) is produced in the rat skin incision wounds by neutrophils, endothelial cells, and fibroblasts. In this study, we assessed the changes in the mRNA expressions of various factors possibly involved in angiogenesis including angiopoietin (ANGPT) 1 and 2, cadherin 5 (CDH5), granulocyte-macrophage colony stimulating factor (CSF2/GM-CSF), granulocyte colony stimulating factor (CSF3/G-CSF), chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand12 (CXCL12/SDF1), endothelin 1 (ET1), fibroblast growth factor 1 (FGF 1), hepatocyte growth factor (HGF), hypoxia inducible factor 1 alpha (HIF1a), leptin, matrix metallopepitidase 9 (MMP9), serpine/plasminogen activator inhibitor1 (PAI1), platelet-derived growth factor-A (PDGF-A), transforming growth factor alpha and beta 1 (TGFa and b1), tenomodulin (TNMD), and troponin I type 2 (TNNI2) in the early stage of the rat skin incision wounds by real time RT-PCR. Factors reported to be involved in lymphangiogenesis such as fibroblast growth factor 2 (FGF 2), c-fos induced growth factor (FIGF/VEGF-D), forkhead box C2 (FOXC2), and prospero homeobox 1 (PROX1) were also studied. One and 3 days after the dorsal skin incisions, wounds on male Sprague-Dawley rats showed the statistically significant increases in the mRNA expressions for CXCL2, CSF3, MMP9, PAI1, and CSF2, whereas TGFa, TNNI2, FGF1, TNMD, leptin, and CXCL12 showed the statistically significant decreases. Interestingly, lymphgangiogenic factors FOXC2, PROX1, and FGF2 also showed the statistically significant decreases. In situ hybridization and immunohistochemistry showed the mRNA and protein positivity in endothelial cells, fibroblasts, and some leukocytes at the bottom of the wound tissue for PAI1, CSF3, and MMP9, 1 day after the skin incisions. Our novel findings show the possible involvement of several factors involved in angiogenesis and lymphangiogenesis in the early stage of wound healing process, which may be useful for forensic wound evaluations.
Collapse
Affiliation(s)
- Hiroshi Kameyama
- Criminal Investigation Laboratory, Saitama Prefectural Police Headquarters, 3-15-1, Takasago, Urawa-ku, Saitama City, Saitama 330-8533, Japan; Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Orie Udagawa
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomoaki Hoshi
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoko Toukairin
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomomi Arai
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Makoto Nogami
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
29
|
Inhibition of SERPINE1 Function Attenuates Wound Closure in Response to Tissue Injury: A Role for PAI-1 in Re-Epithelialization and Granulation Tissue Formation. J Dev Biol 2015. [DOI: 10.3390/jdb3010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
30
|
Simone TM, Higgins CE, Czekay RP, Law BK, Higgins SP, Archambeault J, Kutz SM, Higgins PJ. SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-"Activated" Keratinocytes. Adv Wound Care (New Rochelle) 2014; 3:281-290. [PMID: 24669362 DOI: 10.1089/wound.2013.0512] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/13/2014] [Indexed: 11/13/2022] Open
Abstract
Significance: A highly interactive serine protease/plasmin/matrix metalloproteinase axis regulates stromal remodeling in the wound microenvironment. Current findings highlight the importance of stringent controls on protease expression and their topographic activities in cell proliferation, migration, and tissue homeostasis. Targeting elements in this cascading network may lead to novel therapeutic approaches for fibrotic diseases and chronic wounds. Recent Advances: Matrix-active proteases and their inhibitors orchestrate wound site tissue remodeling, cell migration, and proliferation. Indeed, the serine proteases urokinase plasminogen activator and tissue-type plasminogen activator (uPA/tPA) and their major phsyiological inhibitor, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor clade E member 1 [SERPINE1]), are upregulated in several cell types during injury repair. Coordinate expression of proteolytic enzymes and their inhibitors in the wound bed provides a mechanism for fine control of focal proteolysis to facilitate matrix restructuring and cell motility in complex environments. Critical Issues: Cosmetic and tissue functional consequences of wound repair anomalies affect the quality of life of millions of patients in the United States alone. The development of novel therapeutics to manage individuals most affected by healing anomalies will likely derive from the identification of critical, translationally accessible, control elements in the wound site microenvironment. Future Directions: Activation of the PAI-1 gene early after wounding, its prominence in the repair transcriptome and varied functions suggest a key role in the global cutaneous injury response program. Targeting PAI-1 gene expression and/or PAI-1 function with molecular genetic constructs, neutralizing antibodies or small molecule inhibitors may provide a novel, therapeutically relevant approach, to manage the pathophysiology of wound healing disorders associated with deficient or excessive PAI-1 levels.
Collapse
Affiliation(s)
- Tessa M. Simone
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Craig E. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Ralf-Peter Czekay
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Jaclyn Archambeault
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Stacie M. Kutz
- Department of Biology, Sage College of Albany, Albany, New York
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| |
Collapse
|
31
|
Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Jeschke MG. Effect of human Wharton's jelly mesenchymal stem cell paracrine signaling on keloid fibroblasts. Stem Cells Transl Med 2014; 3:299-307. [PMID: 24436441 DOI: 10.5966/sctm.2013-0120] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Keloid scars are abnormal benign fibroproliferative tumors with high recurrence rates and no current efficacious treatment. Accumulating evidence suggests that human umbilical cord Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have antifibrotic properties. Paracrine signaling is considered one of the main underlying mechanisms behind the therapeutic effects of mesenchymal stem cells. However, the paracrine signaling effects of WJ-MSCs on keloids have not yet been reported. The aim of this study is to investigate paracrine signaling effects of human WJ-MSCs on keloid fibroblasts in vitro. Human umbilical cords and keloid skin samples were obtained, and WJ-MSCs and keloid fibroblasts were isolated and cultured. One-way and two-way paracrine culture systems between both cell types were investigated. Plasminogen activator inhibitor-I and transforming growth factor-β2 (TGF-β2) transcripts were upregulated in keloid fibroblasts cultured with WJ-MSC-conditioned medium (WJ-MSC-CM) and cocultured with inserts, while showing lower TGF-β3 gene expression. Interleukin (IL)-6, IL-8, TGF-β1, and TGF-β2 protein expression was also enhanced. The WJ-MSC-CM-treated keloid fibroblasts showed higher proliferation rates than their control keloid fibroblasts with no significant change in apoptosis rate or migration ability. In our culture conditions, the indirect application of WJ-MSCs on keloid fibroblasts may enhance their profibrotic phenotype.
Collapse
Affiliation(s)
- Anna I Arno
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Ross Tilley Burn Centre and Sunnybrook Research Institute and Gynecology and Obstetrics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
He S, Yang Y, Liu X, Huang W, Zhang X, Yang S, Zhang X. Compound Astragalus and Salvia miltiorrhiza extract inhibits cell proliferation, invasion and collagen synthesis in keloid fibroblasts by mediating transforming growth factor-β / Smad pathway. Br J Dermatol 2011; 166:564-74. [DOI: 10.1111/j.1365-2133.2011.10674.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Cellular viability, collagen deposition, and transforming growth factor β1 production among ultraviolet B-irradiated keloid fibroblasts. Aesthetic Plast Surg 2011; 35:1050-5. [PMID: 21573719 DOI: 10.1007/s00266-011-9732-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND A keloid is a fibrous tumor produced by fibroblast hyperproliferation and excessive collagen accumulation due to overproduction of transforming growth factor β1 (TGF-β1). High keloid incidence is found among individuals with unexposed skin, especially in Negroid and Mongoloid people with high melanin contents in their skin. Because melanin serves as an ultraviolet B (UVB) light absorber, it is assumed that lack of UVB light penetration may play a role in the keloid pathomechanism. This study aimed to evaluate the effect that UVB irradiation to monolayer keloid fibroblasts has on cell proliferation, collagen deposition, and TGF-β1 production. METHODS Keloid fibroblasts were isolated from five patients who underwent surgical treatment. Monolayer cultures of more than three passages of keloid fibroblast were exposed to various dosages of UVB irradiation. Cellular viabilities were measured by MTT assay. Collagen depositions were measured by Sirius Red assay for nonsoluble collagen, and TGF-β1 production was measured by enzyme-linked immunoassay (ELISA). Data were analyzed by one-way analysis of variance (ANOVA). RESULTS Ultraviolet B 100 and 150 mJ/cm(2) were able to suppress keloid fibroblast viabilities and collagen accumulation significantly (P < 0.01). Significant suppression of TGF-β1 production required UVB irradiation of 150 mJ/cm(2) (P < 0.01). CONCLUSIONS Lack of UVB skin penetration influences the keloid pathomechanism. Ultraviolet B irradiation with a minimal dosage of 150 mJ/cm(2) is a promising method of keloid prevention and treatment.
Collapse
|
34
|
Culture medium and cell density impact gene expression in normal skin and abnormal scar-derived fibroblasts. J Burn Care Res 2011; 32:498-508. [PMID: 21747336 DOI: 10.1097/bcr.0b013e3182223cb1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblasts, the main cell type of the dermis, are responsible for production and remodeling of extracellular matrix during wound healing. Disruption of either production or degradation of extracellular matrix can lead to abnormal scarring, resulting in hypertrophic scar or keloid scar. Aberrations in proliferation and gene expression have been observed in fibroblasts isolated from abnormal scars, but differences observed may be related to biologic responses to growth conditions and media formulations. This study examined gene expression in primary human fibroblasts from normal skin or abnormal scar in two culture media formulations and three relative cell densities. In general, higher expression of collagen type 1 alpha-1 (COL1A1) and alpha-2 (COL1A2) and matrix metalloproteinase 3 (MMP3) and lower levels of MMP1 were observed in all cell strains cultured in standard medium containing 10% fetal bovine serum compared with cells cultured in medium optimized for proliferation. Normal and scar-derived fibroblasts exhibited differences in gene expression in specific response to media formulations and cell density. COL1A1 and COL1A2 were increased, and MMP1 and MMP3 were decreased, in keloid cells compared with normal fibroblasts under most conditions analyzed. However, expression of plasminogen activator inhibitor 1 in keloid fibroblasts, which was significantly different than in normal fibroblasts, was either increased or decreased in response to the medium formulation and relative cell density. A related gene, plasminogen activator inhibitor 2, was shown for the first time to be significantly increased in keloid fibroblasts compared with normal fibroblasts, in both media formulations and at all three cell densities. The results emphasize the critical role of culture conditions in interpretation of cell behavior and expression data and for comparison of cells representing normal and fibrotic phenotypes.
Collapse
|
35
|
Matsui T, Ito C, Oda M, Itoigawa M, Yokoo K, Okada T, Furukawa H. Lapachol suppresses cell proliferation and secretion of interleukin-6 and plasminogen activator inhibitor-1 of fibroblasts derived from hypertrophic scars. J Pharm Pharmacol 2011; 63:960-6. [DOI: 10.1111/j.2042-7158.2011.01292.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
The pathogenesis and therapy of hypertrophic scar have not yet been established. Our aim was to investigate the antiproliferative and antisecretory effects of lapachol, isolated from the stem bark of Avicennia rumphiana Hall. f., on hypertrophic scar fibroblasts.
Methods
The effects of lapachol on hypertrophic scar fibroblast proliferation were measured using the MTT assay, cell-cycle analyses and lactate dehydrogenase assays. The type I collagen α-chain (COL1A1), interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) mRNA and/or protein levels of hypertrophic scar-fibroblasts were quantitated by real-time PCR and ELISA.
Key findings
Lapachol at 25 and 50 µm significantly inhibited the in vitro proliferation of hypertrophic scar fibroblasts, but not fibroblasts from non-lesional skin sites. In addition, lapachol had no apparent effect on cell cycle and lactate dehydrogenase activity in conditioned medium from lapachol-treated hypertrophic scar fibroblasts was nearly equal to that in medium from vehicle-treated cells. Lapachol treatment also inhibited COL1A1 and PAI-1 mRNA levels in hypertrophic scar fibroblasts, but did not affect IL-6 mRNA levels. The protein levels of IL-6 and PAI-1 in conditioned medium from hypertrophic scar fibroblasts treated with 50 µm lapachol were lower than those from vehicle-treated hypertrophic scar fibroblasts.
Conclusions
Lapachol decreased the proliferation rate of hypertrophic scar fibroblasts. As IL-6 and PAI-1 secretion was also lowered in lapachol-treated hypertrophic scar fibroblasts, our findings suggested that lapachol may have suppressed extracellular matrix hyperplasia in wound healing and possibly alleviated the formation of hypertrophic scar.
Collapse
Affiliation(s)
- Takuya Matsui
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
- Department of Physiology, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Chihiro Ito
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
| | - Makiko Oda
- Department of Plastic Surgery, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Masataka Itoigawa
- Faculty of Human Wellness, Tokai Gakuen University, Tempaku, Nagoya, Aichi, Japan
| | - Kazuhisa Yokoo
- Department of Plastic Surgery, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Tadashi Okada
- Department of Physiology, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Hiroshi Furukawa
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
| |
Collapse
|
36
|
Avallone G, Bonaldi M, Caniatti M, Lombardo R. Hypertrophic scar in a dog: histological and clinical features. Vet Dermatol 2011; 22:367-72. [PMID: 21392138 DOI: 10.1111/j.1365-3164.2011.00960.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An adult male bullmastiff dog was treated for paraparesis and ataxia due to discospondylitis and disc herniation. At this time, the dog had a nonhealing ulcer between the pads of the left hindfoot. At re-evaluation, the dog had developed a large exophitic mass in the previously ulcerated area. Cytological examination revealed occasional spindle cells with mild atypia, and a soft tissue tumour was suspected. The mass was excised and submitted for histology. The lesion was characterized by superficial ulceration, an intermediate layer of granulation tissue and a deep portion containing vertically orientated capillaries and perpendicularly arranged fibroblasts and collagen. The histological features led to a diagnosis of hypertrophic scar. Eight weeks after surgery, the lesion recurred and was treated with an intralesional injection of methylprednisolone acetate. The lesion regressed in 10 days, but recurred after 3 months following severe self-trauma. Hypertrophic scars and keloids are two types of exuberant scarring reported in human beings, the pathogenesis of which is still unclear but seems to involve several cytokines, growth factors and inflammatory cells. The histological features identified in this case paralleled those reported in hypertrophic scars in humans. In this case, intralesional corticosteroid therapy was useful in the management of the lesion, but the severe self-trauma could have influenced the recurrence. Even if uncommon, hypertrophic scar should be included among the differential diagnoses of spindle cell tumours in dogs.
Collapse
Affiliation(s)
- Giancarlo Avallone
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Facoltà di Medicina Veterinaria, Università degli Studi di Milano, Italy.
| | | | | | | |
Collapse
|
37
|
Sebastian A, Syed F, McGrouther DA, Colthurst J, Paus R, Bayat A. A novel in vitro assay for electrophysiological research on human skin fibroblasts: degenerate electrical waves downregulate collagen I expression in keloid fibroblasts. Exp Dermatol 2010; 20:64-8. [PMID: 20707813 DOI: 10.1111/j.1600-0625.2010.01150.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrical stimulation (ES) has been used for the treatment of wounds and has been shown to alter gene expression and protein synthesis in skin fibroblasts in vitro. Here, we have developed a new in vitro model system for testing the effects of precisely defined, different types of ES on the collagen expression of normal and keloid human skin fibroblasts. Keloid fibroblasts were studied because they show excessive collagen production. Both types of fibroblasts were electrically stimulated with alternating current (AC), direct current (DC) or degenerate waves (DW). Cells were subjected to 20, 75 and 150mV/mm electric field strengths at 10 and 60Hz frequencies. At lower electric fields, all types of ES upregulated collagen I in both cell types compared to controls. However, at higher electric field strength (150mV/mm) and frequency (60Hz), DW maximally downregulated collagen I in keloid fibroblasts, yet had significantly lower cytotoxic effects on normal fibroblasts than AC and DC. Compared to unstimulated cells, both normal skin and keloid fibroblasts showed a significant decrease in collagen I expression after 12h of DW and AC stimulation. In contrast, increasing amplitude of DC upregulated collagen I and PAI-1 gene transcription in normal and keloid fibroblasts, along with increased cytotoxicity effects. Thus, our new preclinical assay system shows highly differential effects of specific types of ES on human fibroblast collagen expression and cytotoxicity and identifies DW of electrical current (DW) as a promising, novel therapeutic strategy for suppressing excessive collagen I formation in keloid disease.
Collapse
Affiliation(s)
- Anil Sebastian
- Plastic & Reconstructive Surgery Research, Epithelial Sciences, School of Translational Medicine, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
38
|
Postiglione L, Montuori N, Riccio A, Di Spigna G, Salzano S, Rossi G, Ragno P. The Plasminogen Activator System in Fibroblasts from Systemic Sclerosis. Int J Immunopathol Pharmacol 2010; 23:891-900. [DOI: 10.1177/039463201002300325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Systemic sclerosis (SSc) is characterized by excessive fibrosis throughout the body. There are two major subsets of SSc, diffuse cutaneous Systemic sclerosis (dSSc) and limited cutaneous Systemic sclerosis (ISSc). Fibroblasts play a key role in SSc. The expression and function of the urokinase (uPA)-mediated plasminogen activation (PA) system, a well-characterized system of serine-proteases involved in several pathological processes, has been investigated in SSc fibroblasts. The expression of the components of the PA system, including uPA, its type-1 and type-2 inhibitors (PAI-1 and PAI-2) and its receptor (uPAR), was examined by Western blot in fibroblasts from patients affected by limited and diffuse forms of SSc. uPA and PAI-1 secretion increased only in fibroblasts from ISSc lesions compared to normal fibroblasts. PAI-2 levels were decreased in fibroblasts from both SSc forms. Interestingly, fibroblasts from areas not adjacent to the lesions (not-affected) of the diffuse form showed reduced levels of PAI-1 and increased uPAR expression. Adhesion experiments showed reduced adherence to VN of fibroblasts from ISSc lesions and from non-affected areas of the diffuse form, as compared to normal controls. These results suggest a role for uPA and PAI-1 in the ISSc form, likely related to the activation of latent forms of cytokines and to the accumulation of ECM components, whereas a role for uPAR can be hypothesized in the evolvement of the diffuse form, based on its up-regulation in the non-affected areas.
Collapse
Affiliation(s)
| | | | - A. Riccio
- Department of Clinical and Experimental Medicine, Federico II University Medical School of Naples
| | | | - S. Salzano
- IEOS Institute of Experimental Endocrinology and Oncology (CNR), Federico II University Medical School of Naples
| | | | - P. Ragno
- Department of Chemistry, University of Salerno, Italy
| |
Collapse
|
39
|
Genetics of keloid scarring. Arch Dermatol Res 2010; 302:319-39. [PMID: 20130896 DOI: 10.1007/s00403-009-1014-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 12/15/2022]
Abstract
Keloid scarring, also known as keloid disease (KD), is a common, abnormally raised fibroproliferative cutaneous lesion that can occur following even minor skin trauma. The aetiopathogenesis of KD has remained an enigma todate compounded by an ill-defined clinical management. There is strong evidence suggesting a genetic susceptibility in individuals affected by KD, including familial heritability, common occurrence in twins and high prevalence in certain ethnic populations. This review aims to address the genetic aspects of KD that have been described in present literature that include inheritance patterns, linkage studies, case-control association studies, whole genome gene expression microarray studies and gene pathways that were significant in KD. In addition to our clinical and scientific background in KD, we used search engines, Scopus, Scirus and PubMed, which searched for key terms covering various genetic aspects of KD. Additionally, genes reported in seven whole genome gene expression microarray studies were separately compared in detail. Our findings indicate a varied inheritance pattern in KD (predominantly autosomal dominant), linkage loci (chromosomes 2q23 and 7p11), several human leukocyte antigen (HLA) alleles (HLA-DRB1*15, HLA-DQA1*0104, DQ-B1*0501 and DQB1*0503), negative candidate gene case-control association studies and at least 25 dysregulated genes reported in multiple microarray studies. The major pathways reportedly proposed to be involved in KD include apoptosis, mitogen-activated protein kinase, transforming growth factor-beta, interleukin-6 and plasminogen activator inhibitor-1. In summary, involvement of more than one gene is likely to be responsible for susceptibility to KD. A better understanding of the genes involved in KD may potentially lead to the development of more effective diagnostic, therapeutic and prognostic measures.
Collapse
|
40
|
Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen 2009; 18:139-53. [PMID: 20002895 DOI: 10.1111/j.1524-475x.2009.00553.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Keloids are locally aggressive scars that typically invade into healthy surrounding skin and cause both physical and psychosocial distress to the patient. These pathological scars occur following minimal skin trauma after a variety of causes including burns and trauma. Although the pathogenesis of keloid disease is not well understood, it is considered to be the end product of an abnormal healing process. The aim of this review was to investigate the molecular and cellular pathobiology of keloid disease in relation to the normal wound healing process. The molecular aberrances in keloids that correlate with the molecular mechanisms in normal wound healing can be categorized into three groups: (1) extracellular matrix proteins and their degradation, (2) cytokines and growth factors, and (3) apoptotic pathways. With respect to cellular involvements, fibroblasts are the most well-studied cell population. However, it is unclear whether the fibroblast is the causative cell; they are modulated by other cell populations in wound repair, such as keratinocytes and macrophages. This review presents a detailed account of individual phases of the healing process and how they may potentially be implicated in aberrant raised scar formation, which may help in clarifying the mechanisms involved in keloid disease pathogenesis.
Collapse
Affiliation(s)
- Barbara Shih
- Plastic and Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | | | | | | |
Collapse
|
41
|
He S, Liu X, Yang Y, Huang W, Xu S, Yang S, Zhang X, Roberts M. Mechanisms of transforming growth factor β1
/Smad signalling mediated by mitogen-activated protein kinase pathways in keloid fibroblasts. Br J Dermatol 2009; 162:538-46. [DOI: 10.1111/j.1365-2133.2009.09511.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Seifert O, Mrowietz U. Keloid scarring: bench and bedside. Arch Dermatol Res 2009; 301:259-72. [PMID: 19360429 DOI: 10.1007/s00403-009-0952-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 12/22/2022]
Abstract
Wound healing is a fundamental complex-tissue reaction leading to skin reconstitution and thereby ensuring survival. While, fetal wounds heal without scarring, a normal "fine line" scar is the clinical outcome of an undisturbed wound healing in adults. Alterations in the orchestrated wound healing process result in hypertrophic or keloid scarring. Research in the past decades attempted to identify genetic, cellular, and molecular factors responsible for these alterations. These attempts lead to several new developments in treatments for keloids, such as, imiquimod, inhibition of transforming growth factor beta, and recombinant interleukin-10. The urgent need for better therapeutics is underlined by recent data substantiating an impaired quality of life in keloid and hypertrophic scar patients. Despite the increasing knowledge about the molecular regulation of scar formation no unifying theory explaining keloid development has been put forward until today. This review aims to give an overview about the genetic and molecular background of keloids and focus of the current research on keloid scarring with special emphasis on new forthcoming treatments. Clinical aspects and the spectrum of scarring are summarized.
Collapse
Affiliation(s)
- Oliver Seifert
- Department of Dermatology, County Hospital Ryhov, Jonkoping 55185, Sweden.
| | | |
Collapse
|
43
|
Akino K, Akita S, Yakabe A, Mineda T, Hayashi T, Hirano A. Human mesenchymal stem cells may be involved in keloid pathogenesis. Int J Dermatol 2008; 47:1112-7. [DOI: 10.1111/j.1365-4632.2008.03380.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
van der Veer WM, Bloemen MCT, Ulrich MMW, Molema G, van Zuijlen PP, Middelkoop E, Niessen FB. Potential cellular and molecular causes of hypertrophic scar formation. Burns 2008; 35:15-29. [PMID: 18952381 DOI: 10.1016/j.burns.2008.06.020] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 06/30/2008] [Indexed: 02/06/2023]
Abstract
A scar is an expected result of wound healing. However, in some individuals, and particularly in burn victims, the wound healing processes may lead to a fibrotic hypertrophic scar, which is raised, red, inflexible and responsible for serious functional and cosmetic problems. It seems that a wide array of subsequent processes are involved in hypertrophic scar formation, like an affected haemostasis, exaggerated inflammation, prolonged reepithelialization, overabundant extracellular matrix production, augmented neovascularization, atypical extracellular matrix remodeling and reduced apoptosis. Platelets, macrophages, T-lymphocytes, mast cells, Langerhans cells and keratinocytes are directly and indirectly involved in the activation of fibroblasts, which in turn produce excess extracellular matrix. Following the chronology of normal wound healing, we unravel, clarify and reorganize the complex molecular and cellular key processes that may be responsible for hypertrophic scars. It remains unclear whether these processes are a cause or a consequence of unusual scar tissue formation, but raising evidence exists that immunological responses early following wounding play an important role. Therefore, when developing preventive treatment modalities, one should aim to put the early affected wound healing processes back on track as quickly as possible.
Collapse
Affiliation(s)
- Willem M van der Veer
- Department of Plastic and Reconstructive Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Tuan TL, Hwu P, Ho W, Yiu P, Chang R, Wysocki A, Benya PD. Adenoviral overexpression and small interfering RNA suppression demonstrate that plasminogen activator inhibitor-1 produces elevated collagen accumulation in normal and keloid fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1311-25. [PMID: 18832570 DOI: 10.2353/ajpath.2008.080272] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Keloids are tumor-like skin scars that grow as a result of the aberrant healing of skin injuries, with no effective treatment. We provide new evidence that both overexpression of plasminogen activator inhibitor-1 (PAI-1) and elevated collagen accumulation are intrinsic features of keloid fibroblasts and that these characteristics are causally linked. Using seven strains each of early passage normal and keloid fibroblasts, the keloid strains exhibited inherently elevated collagen accumulation and PAI-1 expression in serum-free, 0.1% ITS+ culture; larger increases in these parameters occurred when cells were cultured in 3% serum. To demonstrate a causal relationship between PAI-1 overexpression and collagen accumulation, normal fibroblasts were infected with PAI-1-expressing adenovirus. Such cells exhibited a two- to fourfold increase in the accumulation of newly synthesized collagen in a viral dose-dependent fashion in both monolayers and fibrin gel, provisional matrix-like cultures. Three different PAI-1-targeted small interfering RNAs, alone or in combination, produced greater than an 80% PAI-1 knockdown and reduced collagen accumulation in PAI-1-overexpressing normal or keloid fibroblasts. A vitronectin-binding mutant of PAI-1 was equipotent with wild-type PAI-1 in inducing collagen accumulation, whereas a complete protease inhibitor mutant retained approximately 50% activity. Thus, PAI-1 may use more than its protease inhibitory activity to control keloid collagen accumulation. PAI-1-targeted interventions, such as small interfering RNA and lentiviral short hairpin RNA-containing microRNA sequence suppression reported here, may have therapeutic utility in the prevention of keloid scarring.
Collapse
Affiliation(s)
- Tai-Lan Tuan
- Saban Research Institute of Childrens Hospital, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Seifert O, Bayat A, Geffers R, Dienus K, Buer J, Löfgren S, Matussek A. Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen 2008; 16:254-65. [PMID: 18282266 DOI: 10.1111/j.1524-475x.2007.00343.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Keloid disease is a significant clinical problem, especially in black populations, with an estimated incidence of 4-16%. Keloids are fibroproliferative dermal tumors developing as a result of deregulated wound healing. The dynamic nature of keloids is illustrated by clinical regression in the center, while the margin remains active growing into the surrounding healthy skin. Therefore, the gene expression profiles of fibroblasts from different sites of the keloids were characterized using Affymetrix microarrays covering the whole human genome. This study revealed 105 genes that were differentially regulated (79 genes were up-regulated and 26 down-regulated) in a unique gene expression profile in different sites of keloids where progression or regression of the process was in progress. The apoptosis inhibitor AVEN was found to be up-regulated at the active margin of keloids, while apoptosis-inducing genes such as ADAM12 and genes inducing extracellular matrix (ECM) degradation such as matrix metalloproteinase-19 were up-regulated in the regressing keloid center. We identified genes previously not described in the development of keloids. Activating proapoptotic genes or inhibiting ECM-inducing genes as INHBA or monocyte chemoattractant protein-1 might be possible target genes for new treatment strategies for keloid disease.
Collapse
Affiliation(s)
- Oliver Seifert
- Department of Clinical and Experimental Medicine, Linköpings University, Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang GY, Yi CG, Li X, Zheng Y, Niu ZG, Xia W, Meng Z, Meng CY, Guo SZ. Inhibition of vascular endothelial growth factor expression in keloid fibroblasts by vector-mediated vascular endothelial growth factor shRNA: a therapeutic potential strategy for keloid. Arch Dermatol Res 2008; 300:177-84. [DOI: 10.1007/s00403-007-0825-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/22/2007] [Accepted: 12/18/2007] [Indexed: 01/08/2023]
|
48
|
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) in basement membranes and interstitial tissues, resulting from increased synthesis or decreased degradation of ECM or both. The plasminogen activator/plasmin system plays an important role in ECM degradation, whereas the plasminogen activator inhibitor 1 (PAI-1) is a physiologic inhibitor of plasminogen activators. PAI-1 expression is increased in the lung fibrotic diseases and in experimental fibrosis models. The deletion of the PAI-1 gene reduces, whereas the overexpression of PAI-1 enhances, the susceptibility of animals to lung fibrosis induced by different stimuli, indicating an important role of PAI-1 in the development of lung fibrosis. Many growth factors, including transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha), as well as other chemicals/agents, induce PAI-1 expression in cultured cells and in vivo. Reactive oxygen and nitrogen species (ROS/RNS) have been shown to mediate the induction of PAI-1 by many of these stimuli. This review summarizes some recent findings that help us to understand the role of PAI-1 in the development of lung fibrosis and ROS/RNS in the regulation of PAI-1 expression during fibrogenesis.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|
49
|
Li WY, Huang EY, Dudas M, Kaartinen V, Warburton D, Tuan TL. Transforming growth factor-beta3 affects plasminogen activator inhibitor-1 expression in fetal mice and modulates fibroblast-mediated collagen gel contraction. Wound Repair Regen 2007; 14:516-25. [PMID: 17014662 DOI: 10.1111/j.1743-6109.2006.00158.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For over two decades, the precise role of transforming growth factor-beta (TGF-beta) isoforms in scarless healing of mammalian fetal skin wounds has generated much interest. Although their exact role remains to be established, it has been suggested that high TGF-beta3 activity may correlate with a scarless phenotype. Previously, we showed that plasminogen activator inhibitor-1 (PAI-1), a known TGF-beta downstream molecule and marker of fibrosis, is also developmentally regulated during fetal skin development. In this study, the relationship between TGF-beta3 and PAI-1 was investigated using embryonic day 14.5 TGF-beta3 knockout (ko) mice. The results showed increased PAI-1 expression in the epidermis and dermis of ko mice, using an ex vivo limb-wounding study. Furthermore, increased PAI-1 expression and activity was seen in embryo extracts and conditioned media of ko dermal fibroblasts. When TGF-beta3 knockout fibroblasts were placed into three-dimensional collagen matrices, they were found to have decreased collagen gel contraction, suggesting altered cell-matrix interaction. These findings provide a further avenue for the interactive role of TGF-beta3 and PAI-1 during fetal scarless repair.
Collapse
Affiliation(s)
- Wai-Yee Li
- Department of Surgery, The Saban Research Institute of Childrens Hospital, Los Angeles, California 90027, USA
| | | | | | | | | | | |
Collapse
|
50
|
Qi L, Allen RR, Lu Q, Higgins CE, Garone R, Staiano-Coico L, Higgins PJ. PAI-1 transcriptional regulation during the G0 --> G1 transition in human epidermal keratinocytes. J Cell Biochem 2006; 99:495-507. [PMID: 16622840 DOI: 10.1002/jcb.20885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is the major negative regulator of the plasmin-dependent pericellular proteolytic cascade. PAI-1 gene expression is normally growth state regulated but frequently elevated in chronic fibroproliferative and neoplastic diseases affecting both stromal restructuring and cellular migratory activities. Kinetic modeling of cell cycle transit in synchronized human keratinocytes (HaCaT cells) indicated that PAI-1 transcription occurred early after serum stimulation of quiescent (G0) cells and prior to entry into a cycling G1 condition. PAI-1 repression (in G0) was associated with upstream stimulatory factor-1 (USF-1) occupancy of two consensus E box motifs (5'-CACGTG-3') at the PE1 and PE2 domains in the PF1 region (nucleotides -794 to -532) of the PAI-1 promoter. Chromatin immunoprecipitation (ChIP) analysis established that the PE1 and PE2 site E boxes were occupied by USF-1 in quiescent cells and by USF-2 in serum-activated, PAI-1-expressing keratinocytes. This reciprocal and growth state-dependent residence of USF family members (USF-1 vs. USF-2) at PE1/PE2 region chromatin characterized the G0 --> G1 transition period and the transcriptional status of the PAI-1 gene. A consensus E box motif was required for USF/E box interactions, as a CG --> AT substitution at the two central nucleotides inhibited formation of USF/probe complexes. The 5' flanking sites (AAT or AGAC) in the PE2 segment were not necessary for USF binding. USF recognition of the PE1/PE2 region E box sites required phosphorylation with several potential involved residues, including T153, maping to the USF-specific region (USR). A T153A substitution in USF-1 did not repress serum-induced PAI-1 expression whereas the T153D mutant was an effective suppressor. As anticipated from the ChIP results, transfection of wild-type USF-2 failed to inhibit PAI-1 induction. Collectively, these data suggest that USF family members are important regulators of PAI-1 gene control during serum-stimulated recruitment of quiescent human epithelial cells into the growth cycle.
Collapse
Affiliation(s)
- Li Qi
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | |
Collapse
|