1
|
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Front Mol Neurosci 2022; 15:894298. [PMID: 35694441 PMCID: PMC9175009 DOI: 10.3389/fnmol.2022.894298] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is initiated with an aberrant innate immune response in the central nervous system (CNS) and is involved in many neurological diseases. Inflammasomes are intracellular multiprotein complexes that can be used as platforms to induce the maturation and secretion of proinflammatory cytokines and pyroptosis, thus playing a pivotal role in neuroinflammation. Among the inflammasomes, the nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome is well-characterized and contributes to many neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and ischemic stroke. MS is a chronic autoimmune disease of the CNS, and its hallmarks include chronic inflammation, demyelination, and neurodegeneration. Studies have demonstrated a relationship between MS and the NLRP3 inflammasome. To date, the pathogenesis of MS is not fully understood, and clinical studies on novel therapies are still underway. Here, we review the activation mechanism of the NLRP3 inflammasome, its role in MS, and therapies targeting related molecules, which may be beneficial in MS.
Collapse
|
2
|
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Does physical exercise improve or deteriorate treatment of multiple sclerosis with mitoxantrone? Experimental autoimmune encephalomyelitis study in rats. BMC Neurosci 2022; 23:11. [PMID: 35247984 PMCID: PMC8897955 DOI: 10.1186/s12868-022-00692-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Background Mitoxantrone has proved efficacy in treatment of multiple sclerosis (MS). The fact that physical exercise could slow down the progression of disease and improve performance is still a debatable issue, hence; we aimed at studying whether combining mitoxantrone with exercise is of value in the management of MS. Methods Thirty-six male rats were divided into sedentary and exercised groups. During a 14-day habituation period rats were subjected to exercise training on a rotarod (30 min/day) before Experimental Autoimmune Encephalomyelitis (EAE) induction and thereafter for 17 consecutive days. On day 13 after induction, EAE groups (exercised &sedentary) were divided into untreated and mitoxantrone treated ones. Disease development was evaluated by motor performance and EAE score. Cerebrospinal fluid (CSF) was used for biochemical analysis. Brain stem and cerebellum were examined histopathological and immunohistochemically. Results Exercise training alone did not add a significant value to the studied parameters, except for reducing Foxp3 immunoreactivity in EAE group and caspase-3 in the mitoxantrone treated group. Unexpectedly, exercise worsened the mitoxantrone effect on EAE score, Bcl2 and Bax. Mitoxantrone alone decreased EAE/demyelination/inflammation scores, Foxp3 immunoreactivity, and interleukin-6, while increased the re-myelination marker BDNF without any change in tumor necrosis factor-α. It clearly interrupted the apoptotic pathway in brain stem, but worsened EAE mediated changes of the anti-apoptotic Bcl2 and pro-apoptotic marker Bax in the CSF. Conclusions The neuroprotective effect of mitoxantrone was related with remyelination, immunosuppressive and anti-inflammatory potentials. Exercise training did not show added value to mitoxantrone, in contrast, it disrupts the apoptotic pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00692-1.
Collapse
|
3
|
Nasrnezhad R, Halalkhor S, Sadeghi F, Pourabdolhossein F. Piperine Improves Experimental Autoimmune Encephalomyelitis (EAE) in Lewis Rats Through its Neuroprotective, Anti-inflammatory, and Antioxidant Effects. Mol Neurobiol 2021; 58:5473-5493. [PMID: 34338970 DOI: 10.1007/s12035-021-02497-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, demyelination, glial activation, and oxidative damage are the most pathological hallmarks of multiple sclerosis (MS). Piperine, a main bioactive alkaloid of black pepper, possesses antioxidant, anti-inflammatory, and neuroprotective properties whose therapeutic potential has been less studied in the experimental autoimmune encephalomyelitis (EAE) models. In this study, the efficiency of piperine on progression of EAE model and myelin repair mechanisms was investigated. EAE was induced in female Lewis rats and piperine and its vehicle were daily administrated intraperitoneally from day 8 to 29 post immunization. We found that piperine alleviated neurological deficits and EAE disease progression. Luxol fast blue and H&E staining and immunostaining of lumbar spinal cord cross sections confirmed that piperine significantly reduced the extent of demyelination, inflammation, immune cell infiltration, microglia, and astrocyte activation. Gene expression analysis in lumbar spinal cord showed that piperine treatment decreased the level of pro-inflammatory cytokines (TNF-α, IL-1β) and iNOS and enhanced IL-10, Nrf2, HO-1, and MBP expressions. Piperine supplementation also enhanced the total antioxidant capacity (FRAP) and reduced the level of oxidative stress marker (MDA) in the CNS of EAE rats. Finally, we found that piperine has anti-apoptotic and neuroprotective effect in EAE through reducing caspase-3 (apoptosis marker) and enhancing BDNF and NeuN expressing cells. This study strongly indicates that piperine has a beneficial effect on the EAE progression and could be considered as a potential therapeutic target for MS treatment. Upcoming clinical trials will provide a deeper understanding of piperine's role for the treatment of the MS.
Collapse
Affiliation(s)
- Reza Nasrnezhad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Halalkhor
- Department of Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran. .,Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Neuroprotective role of galantamine with/without physical exercise in experimental autoimmune encephalomyelitis in rats. Life Sci 2021; 277:119459. [PMID: 33836162 DOI: 10.1016/j.lfs.2021.119459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
AIMS The fact that physical activity besides central cholinergic enhancement contributes in improving neuronal function and spastic plasticity, recommends the use of the anticholinesterase and cholinergic drug galantamine with/without exercise in the management of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). MATERIALS AND METHODS Sedentary and 14 days exercised male Sprague Dawley rats were subjected to EAE. Hereafter, exercised rats continued on rotarod for 30 min for 17 consecutive days. At the onset of symptoms (day 13), EAE sedentary/exercised groups were subdivided into untreated and post-treated with galantamine. The disease progression was assessed by EAE score, motor performance, and biochemically using cerebrospinal fluid (CSF). Cerebellum and brain stem samples were used for histopathology and immunohistochemistry analysis. KEY FINDINGS Galantamine decreased EAE score of sedentary/exercised rats and enhanced their motor performance. Galantamine with/without exercise inhibited CSF levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6), and Bcl-2-associated X protein (Bax), besides caspase-3 and forkhead box P3 (Foxp3) expression in the brain stem. Contrariwise, it has elevated CSF levels of brain derived neurotrophic factor (BDNF) and B-cell lymphoma (Bcl-2) and enhanced remyelination of cerebral neurons. Noteworthy, exercise boosted the drug effect on Bcl-2 and Bax. SIGNIFICANCE The neuroprotective effect of galantamine against EAE was associated with anti-inflammatory and anti-apoptotic potentials, along with increasing BDNF and remyelination. It also normalized regulatory T-cells levels in the brain stem. The impact of the add-on of exercise was markedly manifested in reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
Dang C, Han B, Li Q, Han R, Hao J. Up-regulation of PGC-1α in neurons protects against experimental autoimmune encephalomyelitis. FASEB J 2019; 33:14811-14824. [PMID: 31718280 DOI: 10.1096/fj.201901149rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) generation and mitochondrial dysfunction are related to neuron loss in multiple sclerosis (MS). Although peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) appears to play a key role in modulating levels of mitochondrial ROS, antioxidants, and uncoupling proteins (UCPs), and PGC-1α expression is reduced in the neocortex of patients with MS, it is unclear what its role is in neurons and in the manifestation of clinical symptoms of MS. Here, we show in wild-type (WT) experimental autoimmune encephalomyelitis (EAE) mice that PGC-1α is decreased 13 d after EAE induction followed by a steady decline up to 20 d. These changes were accompanied by parallel alterations in levels of superoxide dismutase 2, peroxiredoxin 3, thioredoxin 2, UCP4, and UCP5. In transgenic (TG) mice with neuron-specific overexpression of PGC-1α (PGC-1αf/fEno2-Cre), clinical symptoms after EAE induction were delayed and less severe than in WT mice. The degrees of apoptotic neuron loss and demyelination were also less severe in PGC-1α-TG mice. Overexpression of PGC-1α in neuronal neuroblastoma spinal cord 34 cells subjected to EAE inflammatory conditions showed similar results to those obtained in vivo. RNA sequencing analysis showed that apoptotic processes were significantly enriched in the top 10 significant gene ontology (GO) terms of differentially expressed genes, and the apoptotic pathway was significantly enriched in Kyoto Encyclopedia of Genes and Genomes pathway analysis. Our findings indicate that up-regulation of neuronal PGC-1α protected neurons from apoptosis in EAE. Manipulating PGC-1α levels in MS may help stave off this devastating disease.-Dang, C., Han, B., Li, Q., Han, R., Hao, J. Up-regulation of PGC-1α in neurons protects against experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Chun Dang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Han
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junwei Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Wang MR, Zhang XJ, Liu HC, Ma WD, Zhang ML, Zhang Y, Li X, Dou MM, Jing YL, Chu YJ, Zhu L. Matrine protects oligodendrocytes by inhibiting their apoptosis and enhancing mitochondrial autophagy. Brain Res Bull 2019; 153:30-38. [DOI: 10.1016/j.brainresbull.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
7
|
El-Deeb OS, Ghanem HB, El-Esawy RO, Sadek MT. The modulatory effects of luteolin on cyclic AMP/Ciliary neurotrophic factor signaling pathway in experimentally induced autoimmune encephalomyelitis. IUBMB Life 2019; 71:1401-1408. [PMID: 31185137 DOI: 10.1002/iub.2099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is considered to be an autoimmune disorder of the central nervous system (CNS) manifested by chronic inflammation. Although its etiology is not completely understood, inflammation and apoptosis are known to be major players involved in its pathogenesis. Luteolin, the naturally occurring flavonoid, is known by strong antioxidant and anti-inflammatory properties, yet research studies about its therapeutic role in MS are still lacking. The study aimed to provide insight into effects of luteolin in experimental autoimmune encephalomyelitis (EAE) by monitoring inflammatory, apoptotic, and antioxidant biochemical parameters in addition to histological examination findings. The study included 45 adult female Wistar rats allocated to three equal groups: (a) group I: control group, (b) group II: EAE group, EAE was induced by single intradermal injection of 0.2 mL inoculum comprising 20-μg recombinant rat myelin oligodendrocyte glycoprotein (MOG), and (c) group III: luteolin-treated EAE group, luteolin was given in a dose of 10 mg/kg/day, i.p. All groups were subjected to assessment of brain ciliary neurotropic factor (CNTF) mRNA gene expression and measurement of cleaved caspase 3, nuclear factor kappa B (NF-κB), cyclic AMP (cAMP), and macrophage inflammatory protein 1 alpha (MIP-1α) by the ELISA technique, total antioxidant capacity (TAC) level is assessed spectrophotometrically. Compared with the EAE group, luteolin-treated EAE group showed upregulation of CNTF expression and significant increase in cAMP and TAC levels, while it showed significant decrease in cleaved caspase 3, NF-κB, and MIP-1α levels. Based on our data herein, luteolin may provide a promising preclinical therapeutic line in MS being anti-inflammatory, antiapoptotic, and neurotrophic agent. © 2019 IUBMB Life, 71(9):1401-1408, 2019.
Collapse
Affiliation(s)
- Omnia Safwat El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba Bassiony Ghanem
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Mona Tayssir Sadek
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Feng X, Hou H, Zou Y, Guo L. Defective autophagy is associated with neuronal injury in a mouse model of multiple sclerosis. Bosn J Basic Med Sci 2017; 17:95-103. [PMID: 28086065 DOI: 10.17305/bjbms.2017.1696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/09/2017] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
Neurodegeneration, along with inflammatory demyelination, is an important component of multiple sclerosis (MS) pathogenesis. Autophagy is known to play a pivotal role in neuronal homeostasis and is implicated in several neurodegenerative disorders. However, whether autophagy is involved in the mechanisms of neuronal damage during MS remains to be investigated. Experimental autoimmune encephalomyelitis (EAE), an in vivo model of MS, was induced in female C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein p35-55. After that, autophagic flux in the spinal cord of mice was evaluated by detection of LC3-II and Beclin1 protein expressions. EAE mice were then administered with rapamycin and 3-methyladenine (3-MA) for 10 days. Afterward, the changes in LC3-II, Beclin1, and p62 expression, number of infiltrated inflammatory cells, demyelinated lesion area, and neuronal damage, as well as clinical scores, were assessed. Further, apoptotic cell rate and apoptosis-related protein expressions were monitored. We observed an impaired autophagic flux and increased neuronal damage in the spinal cords of EAE mice. We also found that rapamycin, an autophagy inducer, mitigated EAE-induced autophagy decrease, inflammation, demyelination and neuronal injury, as well as the abnormal clinical score. In addition, rapamycin suppressed cell apoptosis, and decreased Bax/Bcl-2 ratio and cleaved caspase-3 expression. Conversely, the effect of autophagy inhibitor 3-MA on EAE mice resulted in completely opposite results. These results indicated that autophagy deficiency, at least in part, contributed to EAE-induced neuronal injury and that pharmacological modulation of autophagy might be a therapeutic strategy for MS.
Collapse
Affiliation(s)
- Xuedan Feng
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | | | | | | |
Collapse
|
9
|
Bukreeva I, Campi G, Fratini M, Spanò R, Bucci D, Battaglia G, Giove F, Bravin A, Uccelli A, Venturi C, Mastrogiacomo M, Cedola A. Quantitative 3D investigation of Neuronal network in mouse spinal cord model. Sci Rep 2017; 7:41054. [PMID: 28112212 PMCID: PMC5253662 DOI: 10.1038/srep41054] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 12/16/2016] [Indexed: 12/04/2022] Open
Abstract
The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a "database" for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.
Collapse
Affiliation(s)
- I. Bukreeva
- Institute of Nanotechnology-CNR c/o Physics Department at ‘Sapienza’ University, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - G. Campi
- Institute of Crystallography-CNR, 00015 Monterotondo, Rome, Italy
| | - M. Fratini
- Institute of Nanotechnology-CNR c/o Physics Department at ‘Sapienza’ University, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via Ardeatina 306, 00179 Roma, Italy
| | - R. Spanò
- Department of Experimental Medicine, University of Genova & AUO San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132 Genova, Italy
| | - D. Bucci
- I.R.C.C.S. Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - G. Battaglia
- I.R.C.C.S. Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - F. Giove
- Fondazione Santa Lucia I.R.C.C.S., Via Ardeatina 306, 00179 Roma, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, 00184 Roma, Italy
| | - A. Bravin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, Cedex France
| | - A. Uccelli
- University of Genova DINOGMI Largo Daneo, 3 IT-16132 Genova, Italy
- IRCCS Azienda Ospedaliera Universitaria San Martino – IST, Genoa, Italy
| | - C. Venturi
- University of Genova DINOGMI Largo Daneo, 3 IT-16132 Genova, Italy
| | - M. Mastrogiacomo
- Department of Experimental Medicine, University of Genova & AUO San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132 Genova, Italy
| | - A. Cedola
- Institute of Nanotechnology-CNR c/o Physics Department at ‘Sapienza’ University, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
10
|
Ahmed Z. Cannabinoids: Do they have the potential to treat the symptoms of multiple sclerosis? World J Neurol 2013; 3:87-96. [DOI: 10.5316/wjn.v3.i4.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
This article reviews the role of cannabinoids in inhibiting neurodegeneration in models of multiple sclerosis (MS). MS is a chronic, debilitating disease of the central nervous system (CNS), induced by autoimmunity-driven inflammation that leads to demyelination and thus disconnection of the normal transmission of nerve impulses. Despite the use of an array of immune modulating drugs that restore blood brain barrier function, disability continues in patients concomitant with the loss of axons in the spinal cord. MS patients therefore suffer neuropathic pain, spasticity and tremor. Anecdotal evidence suggests that MS patients using cannabis, though illegal, achieve symptomatic relief from neuropathic pain and spasticity associated with MS. The discovery of the endogenous cannabinoid (endocannabinoid) system that naturally exists in the body and which responds to cannabinoids to exert their effects has aided research into the therapeutic utility of cannabinoids. The endocannabinoid system consists of two G-protein coupled receptors cannabinoid receptor type-1 (CB1) and CB2. CB1 is mainly expressed in the CNS and CB2 is predominantly found in leukocytes, while an increasing number of potential ligands and endocannabinoid degradation molecules are being isolated. Several studies have highlighted the involvement of this system in regulating neurotransmission and its ability to prevent excessive neurotransmitter release, consistent with a capacity to provide symptomatic relief. In summary, antagonism of the CB1 receptor pathway contributes to neuronal damage in chronic relapsing experimental allergic encephalomyelitis (EAE) and suppresses tremor and spasticity. The addition of exogenous CB1 agonists derived from cannabis also afforded significant neuroprotection from the consequences of inflammatory CNS disease in EAE and experimental allergic uveitis models. Although clear neuroprotective benefits of cannabinoids have been demonstrated, the unwanted psychotropic effects need to be addressed. However, manipulating the endogenous cannabinoid system may be one way of eliciting beneficial effects without some or all of the unwanted side effects.
Collapse
|
11
|
Beirowski B. Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 2013; 7:256. [PMID: 24391540 PMCID: PMC3867696 DOI: 10.3389/fncel.2013.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS).
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
12
|
Tellurium compound AS101 ameliorates experimental autoimmune encephalomyelitis by VLA-4 inhibition and suppression of monocyte and T cell infiltration into the CNS. Neuromolecular Med 2013; 16:292-307. [PMID: 24272426 DOI: 10.1007/s12017-013-8277-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/08/2013] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) involving demyelinating and neurodegenerative processes. Several of the major pathological CNS alterations and behavioral deficits of MS are recapitulated in the experimental autoimmune encephalitis (EAE) mouse model in which the disease process is induced by administration of myelin peptides. Development of EAE requires infiltration of inflammatory cytokine-generating monocytes and macrophages, and auto-reactive T cells, into the CNS. Very late antigen-4 (VLA-4, α4β1) is an integrin molecule that plays a role in inflammatory responses by facilitating the migration of leukocytes across the blood-brain barrier during inflammatory disease, and antibodies against VLA-4 exhibit therapeutic efficacy in mouse and monkey MS models. Here, we report that the tellurium compound AS101 (ammonium trichloro (dioxoethylene-o,o') tellurate) ameliorates EAE by inhibiting monocyte and T cell infiltration into the CNS. CD49d is an alpha subunit of the VLA-4 (α4β1) integrin. During the peak stage of EAE, AS101 treatment effectively ameliorated the disease process by reducing the number of CD49d(+) inflammatory monocyte/macrophage cells in the spinal cord. AS101 treatment markedly reduced the pro-inflammatory cytokine levels, while increasing anti-inflammatory cytokine levels. In contrast, AS101 treatment did not affect the peripheral populations of CD11b(+) monocytes and macrophages. AS101 treatment reduced the infiltration of CD4(+) and CD49(+)/VLA4 T cells. In addition, treatment of T cells from MS patients with AS101 resulted in apoptosis, while such treatment did not affect T cells from healthy donors. These results suggest that AS101 reduces accumulation of leukocytes in the CNS by inhibiting the activity of the VLA-4 integrin and provide a rationale for the potential use of Tellurium IV compounds for the treatment of MS.
Collapse
|
13
|
Neuroprotection in a novel mouse model of multiple sclerosis. PLoS One 2013; 8:e79188. [PMID: 24223903 PMCID: PMC3817036 DOI: 10.1371/journal.pone.0079188] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 09/24/2013] [Indexed: 01/16/2023] Open
Abstract
Multiple sclerosis is an immune-mediated, demyelinating and neurodegenerative disease that currently lacks any neuroprotective treatments. Innovative neuroprotective trial designs are required to hasten the translational process of drug development. An ideal target to monitor the efficacy of strategies aimed at treating multiple sclerosis is the visual system, which is the most accessible part of the human central nervous system. A novel C57BL/6 mouse line was generated that expressed transgenes for a myelin oligodendrocyte glycoprotein-specific T cell receptor and a retinal ganglion cell restricted-Thy1 promoter-controlled cyan fluorescent protein. This model develops spontaneous or induced optic neuritis, in the absence of paralytic disease normally associated with most rodent autoimmune models of multiple sclerosis. Demyelination and neurodegeneration could be monitored longitudinally in the living animal using electrophysiology, visual sensitivity, confocal scanning laser ophthalmoscopy and optical coherence tomography all of which are relevant to human trials. This model offers many advantages, from a 3Rs, economic and scientific perspective, over classical experimental autoimmune encephalomyelitis models that are associated with substantial suffering of animals. Optic neuritis in this model led to inflammatory damage of axons in the optic nerve and subsequent loss of retinal ganglion cells in the retina. This was inhibited by the systemic administration of a sodium channel blocker (oxcarbazepine) or intraocular treatment with siRNA targeting caspase-2. These novel approaches have relevance to the future treatment of neurodegeneration of MS, which has so far evaded treatment.
Collapse
|
14
|
Inoue M, Shinohara ML. The role of interferon-β in the treatment of multiple sclerosis and experimental autoimmune encephalomyelitis - in the perspective of inflammasomes. Immunology 2013; 139:11-8. [PMID: 23360426 DOI: 10.1111/imm.12081] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/01/2023] Open
Abstract
Inflammasomes in innate immune cells mediate the induction of inflammation by sensing microbes and pathogen-associated/damage-associated molecular patterns. Inflammasomes are also known to be involved in the development of some human and animal autoimmune diseases. The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is currently the most fully characterized inflammasome, although a limited number of studies have demonstrated its role in demyelinating autoimmune diseases in the central nervous system of humans and animals. Currently, the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), is known to be induced by the NLRP3 inflammasome through enhanced recruitment of inflammatory immune cells in the central nervous system. On the other hand, interferon-β (IFNβ), a first-line drug to treat MS, inhibits NLRP3 inflammasome activation, and ameliorates EAE. The NLRP3 inflammasome is indeed a factor capable of inducing EAE, but it is dispensable when EAE is induced by aggressive disease induction regimens. In such NLRP3 inflammasome-independent EAE, IFN-β treatment is generally not effective. This might therefore be one mechanism that leads to occasional failures of IFN-β treatment in EAE, and possibly, in MS as well. In the current review, we discuss inflammasomes and autoimmunity; in particular, the impact of the NLRP3 inflammasome on MS/EAE, and on IFN-β therapy.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Immunology, Duke University Medical Center, Durham, NC 277710, USA
| | | |
Collapse
|
15
|
Abstract
Inflammasomes are cytosolic sensors that detect pathogens and danger signals in the innate immune system. The NLRP3 inflammasome is currently the most fully characterized inflammasome and is known to detect a wide array of microbes and endogenous damage-associated molecules. Possible involvement of the NLRP3 inflammasome (or inflammasomes) in the development of multiple sclerosis (MS) was suggested in a number of studies. Recent studies showed that the NLRP3 inflammasome exacerbates experimental autoimmune encephalomyelitis (EAE), an animal model of MS, although EAE can also develop without the NLRP3 inflammasome. In this paper, we discuss the NLRP3 inflammasome in MS and EAE development.
Collapse
|
16
|
Inglis HR, Greer JM, McCombe PA. Gene expression in the spinal cord in female lewis rats with experimental autoimmune encephalomyelitis induced with myelin basic protein. PLoS One 2012; 7:e48555. [PMID: 23139791 PMCID: PMC3491034 DOI: 10.1371/journal.pone.0048555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE), the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE) is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model. Methodology/Principal Findings MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR. Conclusions/Significance EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease.
Collapse
Affiliation(s)
- Hayley R. Inglis
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Judith M. Greer
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Pamela A. McCombe
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
17
|
Zheng J, Dasgupta A, Bizzozero OA. Changes in 20S subunit composition are largely responsible for altered proteasomal activities in experimental autoimmune encephalomyelitis. J Neurochem 2012; 121:486-94. [PMID: 22353035 DOI: 10.1111/j.1471-4159.2012.07699.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We recently reported that the proteasomal peptidase activities are altered in the cerebellum of mice with myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). To determine whether these fluctuations are caused by proteasome activation/inactivation and/or changes in the levels of individual β subunits, we characterized the proteasome subunit composition by western blotting. The results show that the rise in proteasomal peptidase activity in acute EAE correlates with an augmented expression of inducible β subunits whereas the decline in activity in chronic EAE correlates with a reduction in the amount of standard β subunits. Using pure standard (s) and immuno (i) 20S particles for calibration, we determined that the changes in the levels of catalytic subunits account for all of the fluctuations in peptidase activities in EAE. The i-20S and s-20S proteasome were found to degrade carbonylated β-actin with similar efficiency, suggesting that the amount of protein carbonyls in EAE may be controlled by the activity of both core particles. We also found an increase in proteasome activator 11S regulatory particle and a decrease in inhibitor proteasome inhibitor with molecular mass of 31 kDa levels in acute EAE, reflecting a response to inflammation. Elevated levels of 19S regulatory particle and 11S regulatory particle in chronic EAE, however, may occur in response to diminished proteasomal activity in this phase. These findings are central towards understanding the altered proteasomal physiology in inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Jianzheng Zheng
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Albuquerque, NM, USA
| | | | | |
Collapse
|
18
|
Gnanapavan S, Grant D, Pryce G, Jackson S, Baker D, Giovannoni G. Neurofilament a biomarker of neurodegeneration in autoimmune encephalomyelitis. Autoimmunity 2012; 45:298-303. [DOI: 10.3109/08916934.2012.654865] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Hasseldam H, Fryd Johansen F. Cannabinoid Treatment Renders Neurons Less Vulnerable Than Oligodendrocytes in Experimental Autoimmune Encephalomyelitis. Int J Neurosci 2011; 121:510-20. [DOI: 10.3109/00207454.2011.582237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Smith B, Galbiati F, Cantuti Castelvetri L, Givogri MI, Lopez-Rosas A, Bongarzone ER. Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3. ASN Neuro 2011; 3:e00066. [PMID: 21929508 PMCID: PMC3192484 DOI: 10.1042/an20110019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/07/2011] [Accepted: 09/16/2011] [Indexed: 01/08/2023] Open
Abstract
Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine), demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein) isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.
Collapse
Key Words
- apoptosis
- caspase 3
- dying-back pathology
- krabbe disease
- leukodystrophies
- myelin
- twitcher mouse
- apc, adenomatous polyposis coli
- cct, central conduction time
- cns, central nervous system
- cmap, compound motor action potential
- cmep, cortical motor evoked potential
- dab, diaminobenzidine
- gfap, glial fibrillary acidic protein
- mbp, myelin basic protein
- mcv, motor conduction velocity
- ncam, neural cell adhesion molecule
- nf-h, neurofilament heavy chain
- pfa, paraformaldehyde
- wt, wild-type
Collapse
Affiliation(s)
- Benjamin Smith
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| | - Francesca Galbiati
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| | | | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| | - Aurora Lopez-Rosas
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| |
Collapse
|
21
|
The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci 2010; 30:15811-20. [PMID: 21106820 DOI: 10.1523/jneurosci.4088-10.2010] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammation is increasingly recognized as an important contributor to a host of CNS disorders; however, its regulation in the brain is not well delineated. Nucleotide-binding domain, leucine-rich repeat, pyrin domain containing 3 (NLRP3) is a key component of the inflammasome complex, which also includes ASC (apoptotic speck-containing protein with a card) and procaspase-1. Inflammasome formation can be triggered by membrane P2X(7)R engagement leading to cleavage-induced maturation of caspase-1 and interleukin-1β (IL-1β)/IL-18. This work shows that expression of the Nlrp3 gene was increased >100-fold in a cuprizone-induced demyelination and neuroinflammation model. Mice lacking the Nlrp3 gene (Nlrp3(-/-)) exhibited delayed neuroinflammation, demyelination, and oligodendrocyte loss in this model. These mice also showed reduced demyelination in the experimental autoimmune encephalomyelitis model of neuroinflammation. This outcome is also observed for casp1(-/-) and IL-18(-/-) mice, whereas IL-1β(-/-) mice were indistinguishable from wild-type controls, indicating that Nlrp3-mediated function is through caspase-1 and IL-18. Additional analyses revealed that, unlike the IL-1β(-/-) mice, which have been previously shown to show delayed remyelination, Nlrp3(-/-) mice did not exhibit delayed remyelination. Interestingly, IL-18(-/-) mice showed enhanced remyelination, thus providing a possible compensatory mechanism for the lack of a remyelination defect in Nlrp3(-/-) mice. These results suggest that NLRP3 plays an important role in a model of multiple sclerosis by exacerbating CNS inflammation, and this is partly mediated by caspase-1 and IL-18. Additionally, the therapeutic inhibition of IL-18 might decrease demyelination but enhance remyelination, which has broad implications for demyelinating diseases.
Collapse
|
22
|
Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J Neurosci 2010; 29:14965-79. [PMID: 19940192 DOI: 10.1523/jneurosci.3794-09.2009] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Axonal loss is the principal cause of chronic disability in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). In C57BL/6 mice with EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide 35-55, the first evidences of axonal damage in spinal cord were in acute subpial and perivascular foci of infiltrating neutrophils and lymphocytes and included intra-axonal accumulations of the endovesicular Toll-like receptor TLR8, and the inflammasome protein NAcht leucine-rich repeat protein 1 (NALP1). Later in the course of this illness, focal inflammatory infiltrates disappeared from the spinal cord, but there was persistent activation of spinal cord innate immunity and progressive, bilaterally symmetric loss of small-diameter corticospinal tract axons. These results support the hypothesis that both contact-dependent and paracrine interactions of systemic inflammatory cells with axons and an innate immune-mediated neurodegenerative process contribute to axonal loss in this multiple sclerosis model.
Collapse
|
23
|
Kim H, Moon C, Ahn M, Byun J, Lee Y, Kim MD, Matsumoto Y, Koh CS, Shin T. Heat shock protein 27 upregulation and phosphorylation in rat experimental autoimmune encephalomyelitis. Brain Res 2009; 1304:155-63. [DOI: 10.1016/j.brainres.2009.09.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/12/2009] [Accepted: 09/15/2009] [Indexed: 01/31/2023]
|
24
|
Kubajewska I, Constantinescu CS. Cannabinoids and experimental models of multiple sclerosis. Immunobiology 2009; 215:647-57. [PMID: 19765854 DOI: 10.1016/j.imbio.2009.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 01/07/2023]
Abstract
The inflammatory response is a hallmark in the development of autoimmune-mediated neurodegenerative diseases of the central nervous system (CNS). Research on these pathological phenomena is being extensively undertaken and experimental autoimmune encephalomyelitis (EAE) serves as a valuable animal model. Studies from this model have generated interesting insights into biological effects of cannabinoids and may, at least to a certain extent, reflect the cannabinoid-mediated protective mechanisms also in human diseases with similar characteristics, such as multiple sclerosis (MS). Cannabinoids are involved in regulation of the immune system. These effects comprise modulation of inflammatory reaction through components of the innate and adaptive immune responses. Cannabinoids also confer neuroprotection and assist neuroregeneration, thus maintaining a balance within the delicate CNS microenvironment and restoring function following pathological condition, commonly driven by neuroinflammation. Continued studies of cannabinoid actions in EAE pathogenesis should be beneficial for the better understanding of the mechanisms governing such a vast array of physiological effects and in development of new therapeutic strategies for the treatment of human neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilona Kubajewska
- Division of Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham NG72UH, UK
| | | |
Collapse
|
25
|
Melzer N, Meuth SG, Wiendl H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J 2009; 23:3659-73. [PMID: 19567369 DOI: 10.1096/fj.09-136200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytotoxic CD8(+) T cells are increasingly recognized as key players in various inflammatory and degenerative central nervous system (CNS) disorders. CD8(+) T cells are believed to actively contribute to neural damage in these CNS conditions. Conceptually, one can separate two possible ways that CD8(+) T cells harm neuronal function or integrity: CD8(+) T cells either directly target neurons and their neurites in an antigen- or contact-dependent fashion, or exert their action via "collateral" mechanisms of neuronal damage that might follow destruction of the myelin sheath or glial cells in both the CNS gray and white matter. After introducing clinical examples, in which the putative relevance CD8(+) T cells has been demonstrated, we summarize knowledge on the sequence of initiation and execution of CD8(+) T-cell responses in the CNS. This includes the initial antigen cross-presentation and priming of naive CD8(+) T cells, followed by the invasion, migration, and target-cell recognition of CD8(+) effector T cells in the CNS parenchyma. Moreover, we discuss mechanisms of impaired electrical signaling and cell death of neurons as direct and collateral targets of CD8(+) T cells in the CNS.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, University of Würzburg, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany.
| | | | | |
Collapse
|
26
|
Brylev LV, Nelkina EN, Yakovlev AA, Onufriev MV, Shabalina AA, Kostyreva MV, Zakharova MN, Zavalishin IA, Gulyaeva NV. Modulators of cystein proteases and cell-death markers in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409020093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Hampton DW, Anderson J, Pryce G, Irvine KA, Giovannoni G, Fawcett JW, Compston A, Franklin RJ, Baker D, Chandran S. An experimental model of secondary progressive multiple sclerosis that shows regional variation in gliosis, remyelination, axonal and neuronal loss. J Neuroimmunol 2008; 201-202:200-11. [DOI: 10.1016/j.jneuroim.2008.05.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 10/21/2022]
|
28
|
Papadopoulos D, Dukes S, Patel R, Nicholas R, Vora A, Reynolds R. Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol 2008; 19:238-53. [PMID: 18492094 DOI: 10.1111/j.1750-3639.2008.00177.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Recent studies have revealed extensive neocortical pathology in multiple sclerosis (MS). The hippocampus is a unique archaeocortical structure understudied in MS. It plays a central role in episodic and anterograde memory-the most frequently impaired cognitive modalities in MS. This histopathological study aimed to investigate inflammatory demyelination and neurodegenerative changes in the MS archaeocortex. A detailed quantitative analysis was performed on hippocampal autopsy tissue from 45 progressive MS cases and seven controls. Forty-one lesions were identified in 28 of the 45 hippocampal MS-blocks examined, with percentage area of demyelination averaging 30.4%. The majority of lesions were chronic and subpially or subependymally located. Compared to controls, neuronal numbers were decreased by 27% in CA1 and 29.7% in CA3-2. Furthermore, the size of neurones was decreased by 17.4% in CA1. There was evidence of gross hippocampal atrophy with a 22.3% reduction in the average cross-sectional area, which correlated with neuronal loss. Our study provides evidence of substantial archaeocortical pathology largely resembling patterns seen in the neocortex and suggests that hippocampal involvement could contribute to memory impairments often seen in MS.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Department of Cellular and Molecular Neuroscience, Imperial College Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci 2008; 270:70-6. [PMID: 18374360 DOI: 10.1016/j.jns.2008.02.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/30/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system (CNS) which includes a neurodegenerative component. Brain derived neurotrophic factor (BDNF) is a neuroprotective agent which might be useful in preventing neurodegeneration but its application has been limited because the blood brain barrier restricts its access to the CNS. We have developed a novel delivery system for BDNF using transformed bone marrow stem cells (BMSC) and undertook studies of EAE to determine whether the delivery of BDNF could reduce inflammation and apoptosis. Mice receiving BDNF producing BMSC had reduced clinical impairment compared to control mice receiving BMSC that did not produce BDNF. Pathological examination of brain and spinal cord showed a reduction in inflammatory infiltrating cells in treated compared to control mice. Apoptosis was reduced in brain and spinal cord based on TUNEL and cleaved Caspase-3 staining. Consistent with the known mechanism of action of BDNF on apoptosis, Bcl-2 and Akt were increased in treated mice. Further studies suggested that these increases could be mediated by inhibition of both caspase dependent and caspase independent pathways. These results suggest that the BDNF delivered by the transformed bone marrow stem cells reduced clinical severity, inflammation and apoptosis in this model.
Collapse
Affiliation(s)
- Tapas K Makar
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The role of immune-mediated axonal injury in the induction of nonremitting functional deficits associated with multiple sclerosis is an area of active research that promises to substantially alter our understanding of the pathogenesis of this disease and modify or change our therapeutic focus. This review summarizes the current state of research regarding changes in axonal function during demyelination, provides evidence of axonal dysmorphia and degeneration associated with demyelination, and identifies the cellular and molecular effectors of immune-mediated axonal injury. Finally, a unifying hypothesis that links neuronal stress associated with demyelination-induced axonal dysfunction to immune recognition and immunopathology is provided in an effort to shape future experimentation.
Collapse
|
31
|
Papadopoulos D, Ewans L, Pham-Dinh D, Knott J, Reynolds R. Upregulation of alpha-synuclein in neurons and glia in inflammatory demyelinating disease. Mol Cell Neurosci 2006; 31:597-612. [PMID: 16503161 DOI: 10.1016/j.mcn.2006.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/21/2005] [Accepted: 01/11/2006] [Indexed: 11/29/2022] Open
Abstract
A growing body of evidence suggests that axonal loss and neurodegeneration are responsible for the permanent neurological deficit that typically develops in the course of MS. To investigate the neurodegenerative component of MS pathogenesis, we examined the expression of alpha-synuclein, a protein whose accumulation is common to many neurodegenerative disorders, under conditions of immune-mediated inflammatory demyelination. alpha-Synuclein expression was examined in the spinal cord of myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in rats using immunofluorescence and in situ hybridization and in postmortem tissues from cases of secondary progressive MS using immunohistochemistry. alpha-Synuclein upregulation was detected in neurons and glia in and close by lesions and in normal appearing spinal cord EAE tissue at the protein and mRNA levels. alpha-Synuclein positive neurons and glia appeared early, and their number was maximal during EAE exacerbations, but some expression was maintained throughout the course of EAE. In addition, increased alpha-synuclein expression was detected in neurons and glia in and close to MS lesions. Although the increased expression of alpha-synuclein was detected as a granular cytoplasmic labeling rather than inclusion bodies, this result does suggest that neuronal cell death in immune-mediated demyelinating disease may share some common features with other neurodegenerative conditions.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience, Imperial College Faculty of Medicine, Charing Cross Hospital Campus, Fulham Palace Road, London W6 8RF, UK
| | | | | | | | | |
Collapse
|
32
|
Jackson SJ, Pryce G, Diemel LT, Cuzner ML, Baker D. Cannabinoid-receptor 1 null mice are susceptible to neurofilament damage and caspase 3 activation. Neuroscience 2005; 134:261-8. [PMID: 15953683 DOI: 10.1016/j.neuroscience.2005.02.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 01/27/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
Administered cannabinoids have been shown to ameliorate signs of CNS inflammatory disease in a number of animal models, including allergic encephalomyelitis. More recently, neuroprotective actions have been attributed to activation of the cannabinoid 1 receptor in a number of in vitro and in vivo models. One of these, chronic relapsing experimental allergic encephalomyelitis, is considered a robust analog of multiple sclerosis. In this study, spinal cord tissue from cannabinoid receptor 1 knockout mice was analyzed for neurofilament H and myelin basic protein content, as markers of neurons/axons and myelin respectively, during the course of chronic relapsing experimental allergic encephalomyelitis. Dephosphorylation of a neurofilament H epitope, immunoreactive to the SMI32 antibody, was assessed as a marker of axonal damage and levels of the endpoint cell death mediator caspase 3 were evaluated. It was found that both neurofilament and myelin basic protein levels decrease over the course of disease, indicating concomitant neuronal/axonal loss and demyelination. Loss of each marker was more severe in cannabinoid receptor 1 knockout animals. Increased SMI32 reactivity was observed as disease progressed. SMI32 reactivity was significantly increased in knockout animals over wildtype counterparts, an indication of greater axonal dephosphorylation and injury. Active caspase 3 levels were increased in all animals during disease, with knockout animals displaying highest levels, even in knockout animals prior to disease induction. These results indicate that lack of the cannabinoid receptor 1 is associated with increased caspase activation and greater loss and/or compromise of myelin and axonal/neuronal proteins. The increase of caspase 3 in knockout mice prior to disease induction indicates a latent physiological effect of the missing receptor. The data presented further strengthen the hypothesis of neuroprotection elicited via cannabinoid receptor 1 signaling.
Collapse
Affiliation(s)
- S J Jackson
- Department of Neuroinflammation, Institute of Neurology, Floor 2, 1 Wakefield Street, London WC1N 1PJ, UK
| | | | | | | | | |
Collapse
|
33
|
Camelo S, Iglesias AH, Hwang D, Due B, Ryu H, Smith K, Gray SG, Imitola J, Duran G, Assaf B, Langley B, Khoury SJ, Stephanopoulos G, De Girolami U, Ratan RR, Ferrante RJ, Dangond F. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2005; 164:10-21. [PMID: 15885809 DOI: 10.1016/j.jneuroim.2005.02.022] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/11/2005] [Accepted: 02/17/2005] [Indexed: 12/01/2022]
Abstract
We demonstrate that the histone deacetylase (HDAC) inhibitor drug trichostatin A (TSA) reduces spinal cord inflammation, demyelination, neuronal and axonal loss and ameliorates disability in the relapsing phase of experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). TSA up-regulates antioxidant, anti-excitotoxicity and pro-neuronal growth and differentiation mRNAs. TSA also inhibits caspase activation and down-regulates gene targets of the pro-apoptotic E2F transcription factor pathway. In splenocytes, TSA reduces chemotactic, pro-Th1 and pro-proliferative mRNAs. A transcriptional imbalance in MS may contribute to immune dysregulation and neurodegeneration, and we identify HDAC inhibition as a transcriptional intervention to ameliorate this imbalance.
Collapse
MESH Headings
- Animals
- Cell Death/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Drug Administration Schedule
- Drug Interactions
- Embryo, Mammalian
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation/drug effects
- Glycoproteins
- Hydroxamic Acids/therapeutic use
- Immunohistochemistry/methods
- Mice
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Neurons/drug effects
- Oligonucleotide Array Sequence Analysis/methods
- Peptide Fragments
- Protein Synthesis Inhibitors/therapeutic use
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Severity of Illness Index
- Spleen/drug effects
- Spleen/metabolism
- Tetrazolium Salts
- Thiazoles
- Time Factors
Collapse
Affiliation(s)
- Sandra Camelo
- Laboratory of Transcriptional and Immune Regulation, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bannerman PG, Hahn A, Ramirez S, Morley M, Bönnemann C, Yu S, Zhang GX, Rostami A, Pleasure D. Motor neuron pathology in experimental autoimmune encephalomyelitis: studies in THY1-YFP transgenic mice. ACTA ACUST UNITED AC 2005; 128:1877-86. [PMID: 15901645 DOI: 10.1093/brain/awh550] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using adult male C57BL/6 mice that express a yellow fluorescent protein transgene in their motor neurons, we induced experimental autoimmune encephalomyelitis (EAE) by immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG peptide) in complete Freund's adjuvant (CFA). Control mice of the same transgenic strain received CFA without MOG peptide. Early in the course of their illness, the EAE mice showed lumbosacral spinal cord inflammation, demyelination and axonal fragmentation. By 14 weeks post-MOG peptide, these abnormalities were much less prominent, but the mice remained weak and, as in patients with progressive multiple sclerosis, spinal cord atrophy had developed. There was no significant loss of lumbar spinal cord motor neurons in the MOG peptide-EAE mice. However, early in the course of the illness, motor neuron dendrites were disrupted and motor neuron expression of hypophosphorylated neurofilament-H (hypoP-NF-H) immunoreactivity was diminished. By 14 weeks post-MOG peptide, hypoP-NF-H expression had returned to normal, but motor neuron dendritic abnormalities persisted and motor neuron perikaryal atrophy had appeared. We hypothesize that these motor neuron abnormalities contribute to weakness in this form of EAE and speculate that similar motor neuron abnormalities are present in patients with progressive multiple sclerosis.
Collapse
Affiliation(s)
- P G Bannerman
- Neurology Research, Abramson Pediatric Research Center, Children's Hospital of Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grossman I, Avidan N, Singer C, Paperna T, Lancet D, Beckmann JS, Miller A. Genomic profiling of interpopulation diversity guides prioritization of candidate-genes for autoimmunity. Genes Immun 2005; 5:493-504. [PMID: 15269719 DOI: 10.1038/sj.gene.6364117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autoimmune diseases seem to have strong genetic attributes, and are affected to some extent by shared susceptibility loci. The latter potentially amount to hundreds of candidate genes (CG), creating the need for a prioritization strategy in genetic association studies. To form such a strategy, 26 autoimmune-related CG were genotyped for a total of 72 single nucleotide polymorphisms (SNPs) in three distinct Israeli ethnic populations: Ashkenazi Jews, Sephardic Jews and Arabs. Four quantitative criteria reflecting population stratification were analyzed: allele frequencies, haplotype frequencies, the Fst statistic for homozygotes distribution and linkage disequilibrium extents. According to the consequent interpopulation genomic diversity profiles, the genes were classified into conserved, intermediate and diversified gene groups. Our results demonstrate a correlation between the biological role of autoimmune-related CG and their interpopulation diversity profiles as classified by the different analyses. Annotation analysis suggests that genes more readily influenced by environmental conditions, such as immunological mediators, are 'population specific'. Conversely, genes showing genetic conservation across all populations are characterized by apoptotic and cleaving functions. We suggest a research strategy by which CG association studies should focus first on likely conserved gene categories, to increase the likelihood of attaining significant results and promote the development of gene-based therapies.
Collapse
Affiliation(s)
- I Grossman
- Division of Neuroimmunology and Multiple Sclerosis Center, Rappaport Faculty of Medicine and Research Institute, Technion and Carmel Medical Center, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
36
|
Deshpande M, Zheng J, Borgmann K, Persidsky R, Wu L, Schellpeper C, Ghorpade A. Role of activated astrocytes in neuronal damage: potential links to HIV-1-associated dementia. Neurotox Res 2005; 7:183-92. [PMID: 15897153 DOI: 10.1007/bf03036448] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1-associated dementia (HAD) is an important complication of HIV-1 infection. Reactive astrogliosis is a key pathological feature in HAD brains and in other central nervous system (CNS) diseases. Activated astroglia may play a critical role in CNS inflammatory diseases such as HAD. In order to test the hypothesis that activated astrocytes cause neuronal injury, we stimulated primary human fetal astrocytes with HAD-relevant pro-inflammatory cytokine IL-1beta. IL-1beta-activated astrocytes induced apoptosis and significant changes in metabolic activity in primary human neurons. An FITC-conjugated pan-caspase inhibitor peptide FITC-VAD-FMK was used for confirming caspase activation in neurons. IL-1beta activation enhanced the expression of death protein FasL in astrocytes, suggesting that FasL is one of the potential factors responsible for neurotoxicity observed in HAD and other CNS diseases involving glial inflammation. Our data presented here add to the developing picture of role of activated glia in HAD pathogenesis.
Collapse
Affiliation(s)
- M Deshpande
- Laboratories of Cellular Neuroimmunology and Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5215, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Fernandez M, Giuliani A, Pirondi S, D'Intino G, Giardino L, Aloe L, Levi-Montalcini R, Calzà L. Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc Natl Acad Sci U S A 2004; 101:16363-8. [PMID: 15534218 PMCID: PMC526198 DOI: 10.1073/pnas.0407262101] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic disabilities in multiple sclerosis are believed to be due to neuron damage and degeneration, which follow remyelination failure. Due to the presence of numerous oligodendrocyte precursors inside demyelination plaques, one reason for demyelination failure could be the inability of oligodendrocyte precursor cells to turn into myelinating oligodendrocytes. In this study, we show that thyroid hormone enhances and accelerates remyelination in an experimental model of chronic demyelination, i.e., experimental allergic encephalomyelitis in congenic female Dark Agouti rats immunized with complete guinea pig spinal cord. Thyroid hormone, when administered during the acute phase of the disease, increases expression of platelet-derived growth factor alpha receptor, restores normal levels of myelin basic protein mRNA and protein, and allows an early and morphologically competent reassembly of myelin sheaths. Moreover, thyroid hormone exerts a neuroprotective effect with respect to axonal pathology.
Collapse
MESH Headings
- Animals
- Demyelinating Autoimmune Diseases, CNS/drug therapy
- Demyelinating Autoimmune Diseases, CNS/genetics
- Demyelinating Autoimmune Diseases, CNS/metabolism
- Demyelinating Autoimmune Diseases, CNS/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Guinea Pigs
- Immunization
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/pathology
- Myelin Basic Protein/genetics
- Myelin Basic Protein/metabolism
- Myelin Sheath/drug effects
- Myelin Sheath/genetics
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Spinal Cord/immunology
- Thyroxine/administration & dosage
Collapse
Affiliation(s)
- Mercedes Fernandez
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hong J, Zang YCQ, Hutton G, Rivera VM, Zhang JZ. Gene expression profiling of relevant biomarkers for treatment evaluation in multiple sclerosis. J Neuroimmunol 2004; 152:126-39. [PMID: 15223245 DOI: 10.1016/j.jneuroim.2004.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 02/27/2004] [Accepted: 03/03/2004] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is thought to correlate with an array of clinically relevant biomarkers produced during inflammatory process. In this study, a novel gene expression profiling technology was developed and characterized to quantitatively measure the expression profiles of 34 genes selected based on their role in inflammation and their susceptibility to regulation by current MS treatment agents, beta-interferon (IFN) and glatiramer acetate (GA). Potential clinical applications of the technology were evaluated by in vitro and ex vivo analyses in peripheral blood mononuclear cells (PBMC) obtained from MS patients and controls. Interferon-inducible genes were universally up-regulated after in vitro treatment with beta-IFN while the expression of other selected genes encoding cytokines and molecules related to T cell trafficking, activation and apoptosis was variably affected. Beta-IFN and GA exhibited distinctive and characteristic regulatory effects on the expression of the selected genes. Similar regulatory properties of beta-IFN and GA were seen by ex vivo analysis of PBMC specimens in a self-paired study by comparing specific changes induced by beta-IFN or GA treatment in the same patients as well as in a group study by measuring specific profiles in treatment groups compared with an untreated group. Furthermore, the technology served as a simple and sensitive assay for detection of beta-IFN neutralizing antibody based on the blocking effect of serum antibodies on the known regulatory properties of beta-IFN on PBMC. The findings provide important information on the immunoregulatory properties of beta-IFN and GA and support potential clinical applications of this technology in detection of neutralizing antibody (NAB) and evaluation of treatment responses in MS patients.
Collapse
Affiliation(s)
- Jian Hong
- Department of Neurology and Baylor-Methodist Multiple Sclerosis Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
39
|
Pryce G, Ahmed Z, Hankey DJR, Jackson SJ, Croxford JL, Pocock JM, Ledent C, Petzold A, Thompson AJ, Giovannoni G, Cuzner ML, Baker D. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 2003; 126:2191-202. [PMID: 12876144 DOI: 10.1093/brain/awg224] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis is increasingly being recognized as a neurodegenerative disease that is triggered by inflammatory attack of the CNS. As yet there is no satisfactory treatment. Using experimental allergic encephalo myelitis (EAE), an animal model of multiple sclerosis, we demonstrate that the cannabinoid system is neuroprotective during EAE. Mice deficient in the cannabinoid receptor CB1 tolerate inflammatory and excitotoxic insults poorly and develop substantial neurodegeneration following immune attack in EAE. In addition, exogenous CB1 agonists can provide significant neuroprotection from the consequences of inflammatory CNS disease in an experimental allergic uveitis model. Therefore, in addition to symptom management, cannabis may also slow the neurodegenerative processes that ultimately lead to chronic disability in multiple sclerosis and probably other diseases.
Collapse
Affiliation(s)
- Gareth Pryce
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Croxford JL, Miller SD. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J Clin Invest 2003; 111:1231-40. [PMID: 12697742 PMCID: PMC152941 DOI: 10.1172/jci17652] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Theiler murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is a mouse model of chronic-progressive multiple sclerosis (MS) characterized by Th1-mediated CNS demyelination and spastic hindlimb paralysis. Existing MS therapies reduce relapse rates in 30% of relapsing-remitting MS patients, but are ineffective in chronic-progressive disease, and their effects on disability progression are unclear. Experimental studies demonstrate cannabinoids are useful for symptomatic treatment of spasticity and tremor in chronic-relapsing experimental autoimmune encephalomyelitis. Cannabinoids, however, have reported immunosuppressive properties. We show that the cannabinoid receptor agonist, R+WIN55,212, ameliorates progression of clinical disease symptoms in mice with preexisting TMEV-IDD. Amelioration of clinical disease is associated with downregulation of both virus and myelin epitope-specific Th1 effector functions (delayed-type hypersensitivity and IFN-gamma production) and the inhibition of CNS mRNA expression coding for the proinflammatory cytokines, TNF-alpha, IL1-beta, and IL-6. Clinical trials investigating the therapeutic potential of cannabinoids for the symptomatic treatment of MS are ongoing, and this study demonstrates that they may also have potent immunoregulatory properties.
Collapse
Affiliation(s)
- J Ludovic Croxford
- Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
41
|
Croxford JL, Miller SD. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)WIN55,212. J Clin Invest 2003. [DOI: 10.1172/jci200317652] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|