1
|
Udumula MP, Singh H, Rashid F, Poisson L, Tiwari N, Dimitrova I, Hijaz M, Gogoi R, Swenor M, Munkarah A, Giri S, Rattan R. Intermittent fasting induced ketogenesis inhibits mouse epithelial ovarian cancer by promoting antitumor T cell response. iScience 2023; 26:107839. [PMID: 37822507 PMCID: PMC10562806 DOI: 10.1016/j.isci.2023.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023] Open
Abstract
In various cancer models, dietary interventions have been shown to inhibit tumor growth, improve anticancer drug efficacy, and enhance immunity, but no such evidence exists for epithelial ovarian cancer (EOC), the most lethal gynecologic cancer. The anticancer immune responses induced by 16-h intermittent fasting (IF) were studied in mice with EOC. IF consistently reduced metabolic growth factors and cytokines that stimulate tumor growth, creating a tumor-hostile environment. Immune profiling showed that IF dramatically alters anti-cancer immunity by increasing CD4+ and CD8+ cells, Th1 and cytotoxic responses, and metabolic fitness. β-hydroxy butyrate (BHB), a bioactive metabolite produced by IF, partially imitates its anticancer effects by inducing CD8+ effector function. In a direct comparison, IF outperformed exogenous BHB treatment in survival and anti-tumor immune response, probably due to increased ketogenesis. Thus, IF and one of its metabolic mediators BHB suppress EOC growth and sustain a potent anti-tumor T cell response.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Harshit Singh
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Faraz Rashid
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Laila Poisson
- Department of Public Health Services and Center for Bioinformatics and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Irina Dimitrova
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Radhika Gogoi
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI, USA
| | - Margaret Swenor
- Department of Lifestyle and Functional Medicine, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Adnan Munkarah
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Shailendra Giri
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
- Department of Oncology, Wayne State University, Detroit, MI, USA
- Department of Ob/Gyn, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Meyer N, Hinz N, Schumacher A, Weißenborn C, Fink B, Bauer M, von Lenthe S, Ignatov A, Fest S, Zenclussen AC. Mast Cells Retard Tumor Growth in Ovarian Cancer: Insights from a Mouse Model. Cancers (Basel) 2023; 15:4278. [PMID: 37686555 PMCID: PMC10487127 DOI: 10.3390/cancers15174278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among female reproductive tract malignancies. A complex network, including the interaction between tumor and immune cells, regulates the tumor microenvironment, survival, and growth. The role of mast cells (MCs) in ovarian tumor pathophysiology is poorly understood. We aimed to understand the effect of MCs on tumor cell migration and growth using in vitro and in vivo approaches. Wound healing assays using human tumor cell lines (SK-OV-3, OVCAR-3) and human MCs (HMC-1) were conducted. Murine ID8 tumor cells were injected into C57BL6/J wildtype (WT) and MC-deficient C57BL/6-KitW-sh/W-sh (KitW-sh) mice. Reconstitution of KitW-sh was performed by the transfer of WT bone marrow-derived MCs (BMMCs). Tumor development was recorded by high-frequency ultrasonography. In vitro, we observed a diminished migration of human ovarian tumor cells upon direct or indirect MC contact. In vivo, application of ID8 cells into KitW-sh mice resulted in significantly increased tumor growth compared to C57BL6/J mice. Injection of BMMCs into KitW-sh mice reconstituted MCs and restored tumor growth. Our data show that MCs have a suppressive effect on ovarian tumor growth and may serve as a new therapeutic target.
Collapse
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany; (N.M.); (A.S.); (A.I.); (S.F.)
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (B.F.); (M.B.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Nicole Hinz
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany; (N.M.); (A.S.); (A.I.); (S.F.)
| | - Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany; (N.M.); (A.S.); (A.I.); (S.F.)
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (B.F.); (M.B.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Christine Weißenborn
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany; (N.M.); (A.S.); (A.I.); (S.F.)
| | - Beate Fink
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (B.F.); (M.B.)
| | - Mario Bauer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (B.F.); (M.B.)
| | - Sophie von Lenthe
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany; (N.M.); (A.S.); (A.I.); (S.F.)
| | - Atanas Ignatov
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany; (N.M.); (A.S.); (A.I.); (S.F.)
| | - Stefan Fest
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany; (N.M.); (A.S.); (A.I.); (S.F.)
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (B.F.); (M.B.)
- Department of Pediatrics, Städtisches Klinikum Dessau, Academic Hospital of University Brandenburg, 06847 Dessau-Rosslau, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39108 Magdeburg, Germany; (N.M.); (A.S.); (A.I.); (S.F.)
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (B.F.); (M.B.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Udumula MP, Singh H, Faraz R, Poisson L, Tiwari N, Dimitrova I, Hijaz M, Gogoi R, Swenor M, Munkarah A, Giri S, Rattan R. Intermittent Fasting induced ketogenesis inhibits mouse epithelial ovarian tumors by promoting anti-tumor T cell response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531740. [PMID: 36945428 PMCID: PMC10028914 DOI: 10.1101/2023.03.08.531740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Epithelial Ovarian Cancer (EOC) is the most lethal gynecologic cancer with limited genetic alterations identified that can be therapeutically targeted. In tumor bearing mice, short-term fasting, fasting mimicking diet and calorie restriction enhance the activity of antineoplastic treatment by modulating systemic metabolism and boosting anti-tumor immunity. We tested the outcome of sixteen-hour intermittent fasting (IF) on mouse EOC progression with focus on fasting driven antitumor immune responses. IF resulted in consistent decrease of tumor promoting metabolic growth factors and cytokines, recapitulating changes that creates a tumor antagonizing environment. Immune profiling revealed that IF profoundly reshapes anti-cancer immunity by inducing increase in CD4+ and CD8+ cells, paralleled by enhanced antitumor Th1 and cytotoxic responses, by enhancing their metabolic fitness. Metabolic studies revealed that IF generated bioactive metabolite BHB which can be a potential substitute for simulating the antitumor benefits of IF. However, in a direct comparison, IF surpassed exogenous BHB therapy in improving survival and activating anti-tumor immune response. Thus, our data provides strong evidence for IF and its metabolic mediator BHB for ameliorating EOC progression and as a viable approach in maintaining and sustaining an effective anti-tumor T cell response.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Harshit Singh
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Rashid Faraz
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Laila Poisson
- Department of Public Health Services and Center for Bioinformatics and Henry Ford Cancer Institute, Detroit, MI
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Irina Dimitrova
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Radhika Gogoi
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI
| | - Margaret Swenor
- Department of Lifestyle and Functional Medicine, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Adnan Munkarah
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Shailendra Giri
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
- Department of Oncology, Wayne State University, Detroit, MI
| |
Collapse
|
4
|
Mulchandani V, Banerjee A, Vadlamannati AV, Kumar S, Das Sarma J. Connexin 43 trafficking and regulation of gap junctional intercellular communication alters ovarian cancer cell migration and tumorigenesis. Biomed Pharmacother 2023; 159:114296. [PMID: 36701988 DOI: 10.1016/j.biopha.2023.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Ovarian cancer persists to be the most lethal gynecological malignancy, demanding rigorous treatments involving radio-chemotherapy that trigger toxicity and consequently mortality among patients. An improved understanding of the disease progression may pioneer curative therapies. Mouse epithelial ovarian cancer cell lines, ID8 and ID8-VEGF (overexpressing VEGF) were intraperitoneally injected in C57BL/6 female mice to develop a Syngeneic Ovarian cancer mouse model. It was observed that ID8-VEGF cells were able to induce aggressive tumor growth in mice compared to ID8 cells. Furthermore, results of the current in vitro study comparing ID8 and ID8-VEGF demonstrated that highly tumorigenic ID8-VEGF had reduced gap junctional intercellular communication (GJIC) due to intracellular Connexin 43 (Cx43) expression. Additionally, ID8 cells with reduced tumorigenic capability expressed significant GJIC. Furthermore, loss of GJIC in ID8-VEGF cells induced shorter tunneling nanotube formations, while ID8 cells develops longer tunneling nanotube to maintain cellular crosstalk. The administration of a pharmacological drug 4-phenylbutyrate (4PBA) ensured the restoration of GJIC in both the ovarian cancer cell lines. Additionally, 4PBA treatment significantly inhibited the migration of ovarian cancer cell lines and tumor formation in ovarian cancer mice models. In summary, the 4PBA-mediated restoration of GJIC suppressed migration (in vitro) and tumorigenesis (in vivo) of ovarian cancer cells. The present study suggests that Cx43 assembled GJIC and its supportive signaling pathways are a prospective target for restricting ovarian cancer progression.
Collapse
Affiliation(s)
- Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anurag Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arunima Vijaya Vadlamannati
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Saurav Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India; Department of Ophthalmology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
5
|
Lawler J. Counter Regulation of Tumor Angiogenesis by Vascular Endothelial Growth Factor and Thrombospondin-1. Semin Cancer Biol 2022; 86:126-135. [PMID: 36191900 DOI: 10.1016/j.semcancer.2022.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
Considerable progress has been made in our understanding of the process of angiogenesis in the context of normal and tumor tissue over the last fifty years. Angiogenesis, like most physiological processes, is carefully controlled by dynamic and opposing effects of positive factors, such as vascular endothelial growth factor (VEGF), and negative factors, such as thrombospondin-1. In most cases, the progression of a small mass of cancerous cells to a life-threatening tumor depends upon the initiation of angiogenesis and involves the dysregulation of the angiogenic balance. Whereas our newfound appreciation for the role of angiogenesis in cancer has opened up new avenues for treatment, the success of these treatments, which have focused almost exclusively on antagonizing the VEGF pathway, has been limited to date. It is anticipated that this situation will improve as more therapeutics that target other pathways are developed, more strategies for combination therapies are advanced, more detailed stratification of patient populations occurs, and a better understanding of resistance to anti-angiogenic therapy is gained.
Collapse
Affiliation(s)
- Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, The Center for Vascular Biology Research, 99 Brookline Ave, Boston MA 02215, United States.
| |
Collapse
|
6
|
Wang YC, Tian JY, Han YY, Liu YF, Chen SY, Guo FJ. Evaluation of the potential of ultrasound-mediated drug delivery for the treatment of ovarian cancer through preclinical studies. Front Oncol 2022; 12:978603. [PMID: 36132133 PMCID: PMC9483181 DOI: 10.3389/fonc.2022.978603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer (OC) has the greatest mortality rate among gynecological cancers, with a five-year survival rate of <50%. Contemporary adjuvant chemotherapy mostly fails in the case of OCs that are refractory, metastatic, recurrent, and drug-resistant. Emerging ultrasound (US)-mediated technologies show remarkable promise in overcoming these challenges. Absorption of US waves by the tissue results in the generation of heat due to its thermal effect causing increased diffusion of drugs from the carriers and triggering sonoporation by increasing the permeability of the cancer cells. Certain frequencies of US waves could also produce a cavitation effect on drug-filled microbubbles (MBs, phospholipid bilayers) thereby generating shear force and acoustic streaming that could assist drug release from the MBs, and promote the permeability of the cell membrane. A new class of nanoparticles that carry therapeutic agents and are guided by US contrast agents for precision delivery to the site of the ovarian tumor has been developed. Phase-shifting of nanoparticles by US sonication has also been engineered to enhance the drug delivery to the ovarian tumor site. These technologies have been used for targeting the ovarian cancer stem cells and protein moieties that are particularly elevated in OCs including luteinizing hormone-releasing hormone, folic acid receptor, and vascular endothelial growth factor. When compared to healthy ovarian tissue, the homeostatic parameters at the tissue microenvironment including pH, oxygen levels, and glucose metabolism differ significantly in ovarian tumors. US-based technologies have been developed to take advantage of these tumor-specific alterations for precision drug delivery. Preclinical efficacy of US-based targeting of currently used clinical chemotherapies presented in this review has the potential for rapid human translation, especially for formulations that use all substances that are deemed to be generally safe by the U.S. Food and Drug Administration.
Collapse
Affiliation(s)
- Yi-Chao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing-Yan Tian
- Department of Urology, The Second Division of the First Hospital of Jilin University, Changchun, China
| | - Ying-Ying Han
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Yun-Fei Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Si-Yao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Feng-Jun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Feng-Jun Guo,
| |
Collapse
|
7
|
Mukherjee S, Sakpal A, Mehrotra M, Phadte P, Rekhi B, Ray P. Homo and Heterotypic Cellular Cross-Talk in Epithelial Ovarian Cancer Impart Pro-Tumorigenic Properties through Differential Activation of the Notch3 Pathway. Cancers (Basel) 2022; 14:3365. [PMID: 35884426 PMCID: PMC9319742 DOI: 10.3390/cancers14143365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
An active fluidic microenvironment governs peritoneal metastasis in epithelial ovarian cancer (EOC), but its critical functional/molecular cues are not fully understood. Utilizing co-culture models of NIH3T3 cells (differentially overexpressing Jagged1) and SKOV3 cells expressing a Notch3 luciferase reporter-sensor (SNFT), we showed that incremental expression of Jagged1 led to proportional Notch3 activation in SNFT. With no basal luciferase activity, this system efficiently recorded dose-dependent Notch3 activation by rh-Jag1 peptide and the non-appearance of such induction in co-culture with NIH3T3Δjag1 cells indicates its sensitivity and specificity. Similar Notch3 modulation was shown for the first time in co-cultures with HGSOC patients' ascites-derived cancer-associated fibroblasts and Jagged1-expressing EOC cell lines. NIH3T3J1-A and OVCAR3 co-cultured SNFT cells showed maximum proliferation, invasion, and cisplatin resistance among all the heterotypic/homotypic cellular partners. VEGFA and CDKN1A are the two most upregulated genes identified across co-cultures by the gene profiler array. Co-culture induced VEGFA secretion from SNFT cells which also reduced cancer stem cell differentiation in platinum-resistant A2780 cells. rh-Jag1-peptide promoted enhanced nuclear-cytoplasmic p21 expression. Additionally, metastatic HGSOC tumors had higher VEGFA than corresponding primary tumors. This study thus demonstrates the tumoral and non-tumoral cell-mediated differential Notch3 activation imparting its tumorigenic effects through two critical molecular regulators, VEGFA and p21, during EOC progression.
Collapse
Affiliation(s)
- Souvik Mukherjee
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Asmita Sakpal
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
| | - Megha Mehrotra
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Pratham Phadte
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| | - Bharat Rekhi
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
- Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai 400012, India
| | - Pritha Ray
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai 410210, India; (S.M.); (A.S.); (M.M.); (P.P.)
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India;
| |
Collapse
|
8
|
Preclinical models of epithelial ovarian cancer: practical considerations and challenges for a meaningful application. Cell Mol Life Sci 2022; 79:364. [PMID: 35705879 PMCID: PMC9200670 DOI: 10.1007/s00018-022-04395-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Despite many improvements in ovarian cancer diagnosis and treatment, until now, conventional chemotherapy and new biological drugs have not been shown to cure the disease, and the overall prognosis remains poor. Over 90% of ovarian malignancies are categorized as epithelial ovarian cancers (EOC), a collection of different types of neoplasms with distinctive disease biology, response to chemotherapy, and outcome. Advances in our understanding of the histopathology and molecular features of EOC subtypes, as well as the cellular origins of these cancers, have given a boost to the development of clinically relevant experimental models. The overall goal of this review is to provide a comprehensive description of the available preclinical investigational approaches aimed at better characterizing disease development and progression and at identifying new therapeutic strategies. Systems discussed comprise monolayer (2D) and three-dimensional (3D) cultures of established and primary cancer cell lines, organoids and patient-derived explants, animal models, including carcinogen-induced, syngeneic, genetically engineered mouse, xenografts, patient-derived xenografts (PDX), humanized PDX, and the zebrafish and the laying hen models. Recent advances in tumour-on-a-chip platforms are also detailed. The critical analysis of strengths and weaknesses of each experimental model will aid in identifying opportunities to optimize their translational value.
Collapse
|
9
|
Combination microRNA-based cellular reprogramming with paclitaxel enhances therapeutic efficacy in a relapsed and multidrug-resistant model of epithelial ovarian cancer. Mol Ther Oncolytics 2022; 25:57-68. [PMID: 35399604 PMCID: PMC8971728 DOI: 10.1016/j.omto.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Most advanced-stage ovarian cancer patients, including those with epithelial ovarian cancer (EOC), develop recurrent disease and acquisition of resistance to chemotherapy, leading to limited treatment options. Decrease in Let7b miRNA levels in clinical ovarian cancer has been associated with chemoresistance, increased proliferation, invasion, and relapse in EOC. We have established a murine EOC relapsed model by administering paclitaxel (PTX) and stopping therapy to allow for tumor regrowth. Global microRNA profiling in the relapsed tumor showed significant downregulation of Let7b relative to untreated tumors. Here, we report the use of hyaluronic acid (HA)-based nanoparticle formulation that can deliver Let7b miRNA mimic to tumor cells and achieve cellular programming both in vitro and in vivo. We demonstrate that a therapeutic combination of Let7b miRNA and PTX leads to significant improvement in anti-tumor efficacy in the relapsed model of EOC. We further demonstrate that the combination therapy is safe for repeated administration. This novel approach of cellular reprogramming of tumor cells using clinically relevant miRNA mimic in combination with chemotherapy could enable more effective therapeutic outcomes for patients with advanced-stage relapsed EOC.
Collapse
|
10
|
Blocking TGF-β Expression Attenuates Tumor Growth in Lung Cancers, Potentially Mediated by Skewing Development of Neutrophils. JOURNAL OF ONCOLOGY 2022; 2022:3447185. [PMID: 35498537 PMCID: PMC9050332 DOI: 10.1155/2022/3447185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
In the tumor microenvironment (TME), cells secrete a cytokine known as transforming growth factor-β (TGF-β), which polarizes tumor-associated neutrophils (TANs) towards a protumor phenotype. In this work, C57BL/6 mice with TGF-β1 gene knocked out selectively in myofibroblasts receive orthotopic implantation of Lewis lung carcinoma (LLC). Then, TANs' differentiation and tumor growth are studied both in vivo and in vitro, to examine the potential effects of TGF-β levels in TME on neutrophil polarization and cancer progression. Possible results are anticipated and discussed from various aspects. Though tumor suppression via inhibition of TGF-β signaling has been widely studied in this field, this study is the first to present a detailed experimental design for evaluating the potential antitumor effects of blocking TGF-β expression. This work provides a creative approach for cancer treatment targeting specific cytokines, and the experimental design presented here may apply to future research on other cytokines, promoting the development of novel cancer-treating strategies.
Collapse
|
11
|
Yee C, Dickson KA, Muntasir MN, Ma Y, Marsh DJ. Three-Dimensional Modelling of Ovarian Cancer: From Cell Lines to Organoids for Discovery and Personalized Medicine. Front Bioeng Biotechnol 2022; 10:836984. [PMID: 35223797 PMCID: PMC8866972 DOI: 10.3389/fbioe.2022.836984] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has the highest mortality of all of the gynecological malignancies. There are several distinct histotypes of this malignancy characterized by specific molecular events and clinical behavior. These histotypes have differing responses to platinum-based drugs that have been the mainstay of therapy for ovarian cancer for decades. For histotypes that initially respond to a chemotherapeutic regime of carboplatin and paclitaxel such as high-grade serous ovarian cancer, the development of chemoresistance is common and underpins incurable disease. Recent discoveries have led to the clinical use of PARP (poly ADP ribose polymerase) inhibitors for ovarian cancers defective in homologous recombination repair, as well as the anti-angiogenic bevacizumab. While predictive molecular testing involving identification of a genomic scar and/or the presence of germline or somatic BRCA1 or BRCA2 mutation are in clinical use to inform the likely success of a PARP inhibitor, no similar tests are available to identify women likely to respond to bevacizumab. Functional tests to predict patient response to any drug are, in fact, essentially absent from clinical care. New drugs are needed to treat ovarian cancer. In this review, we discuss applications to address the currently unmet need of developing physiologically relevant in vitro and ex vivo models of ovarian cancer for fundamental discovery science, and personalized medicine approaches. Traditional two-dimensional (2D) in vitro cell culture of ovarian cancer lacks critical cell-to-cell interactions afforded by culture in three-dimensions. Additionally, modelling interactions with the tumor microenvironment, including the surface of organs in the peritoneal cavity that support metastatic growth of ovarian cancer, will improve the power of these models. Being able to reliably grow primary tumoroid cultures of ovarian cancer will improve the ability to recapitulate tumor heterogeneity. Three-dimensional (3D) modelling systems, from cell lines to organoid or tumoroid cultures, represent enhanced starting points from which improved translational outcomes for women with ovarian cancer will emerge.
Collapse
Affiliation(s)
- Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammed N. Muntasir
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
12
|
PD-L1 near Infrared Photoimmunotherapy of Ovarian Cancer Model. Cancers (Basel) 2022; 14:cancers14030619. [PMID: 35158887 PMCID: PMC8833482 DOI: 10.3390/cancers14030619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Despite advances in surgical approaches and drug development, ovarian cancer is still a leading cause of death from gynecological malignancies. Patients diagnosed with late-stage disease are treated with aggressive surgical resection and chemotherapy, but recurrence with resistant disease is often observed following treatment. There is a critical need for effective therapy for late-stage ovarian cancer. Photoimmunotherapy (PIT), using an antibody conjugated to a near infrared (NIR) dye, constitutes an effective theranostic strategy to detect and selectively eliminate targeted cell populations. (2) Methods: Here, we are targeting program death ligand 1 (PD-L1) using NIR-PIT in a syngeneic mouse model of ovarian cancer. PD-L1 PIT-mediated cytotoxicity was quantified in RAW264.7 macrophages and ID8-Defb29-VEGF cells in culture, and in vivo with orthotopic ID8-Defb29-VEGF tumors. (3) Results: Treatment efficacy was observed both in vitro and in vivo. (4) Conclusions: Our data highlight the need for further investigations to assess the potential of using NIR-PIT for ovarian cancer therapy to improve the treatment outcome of ovarian cancer.
Collapse
|
13
|
Bi F, Jiang Z, Park W, Hartwich TMP, Ge Z, Chong KY, Yang K, Morrison MJ, Kim D, Kim J, Zhang W, Kril LM, Watt DS, Liu C, Yang-Hartwich Y. A Benzenesulfonamide-Based Mitochondrial Uncoupler Induces Endoplasmic Reticulum Stress and Immunogenic Cell Death in Epithelial Ovarian Cancer. Mol Cancer Ther 2021; 20:2398-2409. [PMID: 34625503 PMCID: PMC8643344 DOI: 10.1158/1535-7163.mct-21-0396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and requires new therapeutic strategies to improve clinical outcomes. EOC metastasizes in the abdominal cavity through dissemination in the peritoneal fluid and ascites, efficiently adapt to the nutrient-deprived microenvironment, and resist current chemotherapeutic agents. Accumulating evidence suggests that mitochondrial oxidative phosphorylation is critical for the adaptation of EOC cells to this otherwise hostile microenvironment. Although chemical mitochondrial uncouplers can impair mitochondrial functions and thereby target multiple, essential pathways for cancer cell proliferation, traditional mitochondria uncouplers often cause toxicity that precludes their clinical application. In this study, we demonstrated that a mitochondrial uncoupler, specifically 2,5-dichloro-N-(4-nitronaphthalen-1-yl)benzenesulfonamide, hereinafter named Y3, was an antineoplastic agent in ovarian cancer models. Y3 treatment activated AMP-activated protein kinase and resulted in the activation of endoplasmic reticulum stress sensors as well as growth inhibition and apoptosis in ovarian cancer cells in vitro Y3 was well tolerated in vivo and effectively suppressed tumor progression in three mouse models of EOC, and Y3 also induced immunogenic cell death of cancer cells that involved the release of damage-associated molecular patterns and the activation of antitumor adaptive immune responses. These findings suggest that mitochondrial uncouplers hold promise in developing new anticancer therapies that delay tumor progression and protect patients with ovarian cancer against relapse.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wonmin Park
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Tobias M P Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Zhiping Ge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kay Y Chong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Kevin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Madeline J Morrison
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
| | - Liliia M Kril
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky.
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Pisano S, Lenna S, Healey GD, Izardi F, Meeks L, Jimenez YS, Velazquez OS, Gonzalez D, Conlan RS, Corradetti B. Assessment of the immune landscapes of advanced ovarian cancer in an optimized in vivo model. Clin Transl Med 2021; 11:e551. [PMID: 34709744 PMCID: PMC8506632 DOI: 10.1002/ctm2.551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is typically diagnosed late, associated with high rates of metastasis and the onset of ascites during late stage disease. Understanding the tumor microenvironment and how it impacts the efficacy of current treatments, including immunotherapies, needs effective in vivo models that are fully characterized. In particular, understanding the role of immune cells within the tumor and ascitic fluid could provide important insights into why OC fails to respond to immunotherapies. In this work, we comprehensively described the immune cell infiltrates in tumor nodules and the ascitic fluid within an optimized preclinical model of advanced ovarian cancer. METHODS Green Fluorescent Protein (GFP)-ID8 OC cells were injected intraperitoneally into C57BL/6 mice and the development of advanced stage OC monitored. Nine weeks after tumor injection, mice were sacrificed and tumor nodules analyzed to identify specific immune infiltrates by immunohistochemistry. Ascites, developed in tumor bearing mice over a 10-week period, was characterized by mass cytometry (CyTOF) to qualitatively and quantitatively assess the distribution of the immune cell subsets, and their relationship to ascites from ovarian cancer patients. RESULTS Tumor nodules in the peritoneal cavity proved to be enriched in T cells, antigen presenting cells and macrophages, demonstrating an active immune environment and cell-mediated immunity. Assessment of the immune landscape in the ascites showed the predominance of CD8+ , CD4+ , B- , and memory T cells, among others, and the coexistance of different immune cell types within the same tumor microenvironment. CONCLUSIONS We performed, for the first time, a multiparametric analysis of the ascitic fluid and specifically identify immune cell populations in the peritoneal cavity of mice with advanced OC. Data obtained highlights the impact of CytOF as a diagnostic tool for this malignancy, with the opportunity to concomitantly identify novel targets, and define personalized therapeutic options.
Collapse
Affiliation(s)
- Simone Pisano
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Stefania Lenna
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | | | - Lucille Meeks
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | - Yajaira S. Jimenez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| | - Oscar S Velazquez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | - Robert Steven Conlan
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Bruna Corradetti
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| |
Collapse
|
15
|
Bella Á, Di Trani CA, Fernández-Sendin M, Arrizabalaga L, Cirella A, Teijeira Á, Medina-Echeverz J, Melero I, Berraondo P, Aranda F. Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications. Cancers (Basel) 2021; 13:cancers13050963. [PMID: 33669017 PMCID: PMC7956655 DOI: 10.3390/cancers13050963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Peritoneal carcinomatosis mouse models as a platform to test, improve and/or predict the appropriate therapeutic interventions in patients are crucial to providing medical advances. Here, we overview reported mouse models to explore peritoneal carcinomatosis in translational biomedical research. Abstract Peritoneal carcinomatosis of primary tumors originating in gastrointestinal (e.g., colorectal cancer, gastric cancer) or gynecologic (e.g., ovarian cancer) malignancies is a widespread type of tumor dissemination in the peritoneal cavity for which few therapeutic options are available. Therefore, reliable preclinical models are crucial for research and development of efficacious treatments for this condition. To date, a number of animal models have attempted to reproduce as accurately as possible the complexity of the tumor microenvironment of human peritoneal carcinomatosis. These include: Syngeneic tumor cell lines, human xenografts, patient-derived xenografts, genetically induced tumors, and 3D scaffold biomimetics. Each experimental model has its own strengths and limitations, all of which can influence the subsequent translational results concerning anticancer and immunomodulatory drugs under exploration. This review highlights the current status of peritoneal carcinomatosis mouse models for preclinical development of anticancer drugs or immunotherapeutic agents.
Collapse
Affiliation(s)
- Ángela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Myriam Fernández-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (P.B.); (F.A.)
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Correspondence: (P.B.); (F.A.)
| |
Collapse
|
16
|
Morse CB, Voillet V, Bates BM, Chiu EY, Garcia NM, Gottardo R, Greenberg PD, Anderson KG. Development of a clinically relevant ovarian cancer model incorporating surgical cytoreduction to evaluate treatment of micro-metastatic disease. Gynecol Oncol 2020; 160:427-437. [PMID: 33229044 DOI: 10.1016/j.ygyno.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Mouse models of ovarian cancer commonly transfer large numbers of tumor cells into the peritoneal cavity to establish experimental metastatic disease, which may not adequately model early metastatic spread from a primary tumor site. We hypothesized we could develop an ovarian cancer model that predictably represents micro-metastatic disease. METHODS Murine ID8VEGF ovarian cancer cells were transduced to express enhanced luciferase (eLuc) to enable intravital detection of microscopic disease burden and injected beneath the ovarian bursa of C57Bl/6 mice. At 6 or 10 weeks after orthotopic injection, when mice had detectable metastases, hysterectomy and bilateral salpingo-oophorectomy was performed to remove all macroscopic disease, and survival monitored. Immunohistochemistry and gene expression profiling were performed on primary and metastatic tumors. RESULTS eLuc-transduced ID8VEGF cells were brighter than cells transduced with standard luciferase, enabling in vivo visualization of microscopic intra-abdominal metastases developing after orthotopic injection. Primary surgical cytoreduction removed the primary tumor mass but left minimal residual disease in all mice. Metastatic sites that developed following orthotopic injection were similar to metastatic human ovarian cancer sites. Gene expression and immune infiltration were similar between primary and metastatic mouse tumors. Surgical cytoreduction prolonged survival compared to no surgery, with earlier cytoreduction more beneficial than delayed, despite micro-metastatic disease in both settings. CONCLUSIONS Mice with primary ovarian tumors established through orthotopic injection develop progressively fatal metastatic ovarian cancer, and benefit from surgical cytoreduction to remove bulky disease. This model enables the analysis of therapeutic regimens designed to target and potentially eradicate established minimal residual disease.
Collapse
Affiliation(s)
- Christopher B Morse
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, United States of America; Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America; Division of Gynecologic Oncology, Allegheny Health Network, West Penn Hospital, Mellon Pavilion, Suite 310, 4815 Liberty Avenue, Pittsburgh, PA 15224, United States of America.
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Breanna M Bates
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Edison Y Chiu
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Nicolas M Garcia
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Philip D Greenberg
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America; Divison of Medical Oncology, Department of Medicine, Department of Immunology, University of Washington, Seattle, WA 98195, United States of America.
| | - Kristin G Anderson
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America.
| |
Collapse
|
17
|
Adams SF, Grimm AJ, Chiang CLL, Mookerjee A, Flies D, Jean S, McCann GA, Michaux J, Pak H, Huber F, Neal C, Dangaj D, Bassani-Sternberg M, Rusakiewicz S, Facciabene A, Coukos G, Gimotty PA, Kandalaft LE. Rapid tumor vaccine using Toll-like receptor-activated ovarian cancer ascites monocytes. J Immunother Cancer 2020; 8:jitc-2020-000875. [PMID: 32817208 PMCID: PMC7430560 DOI: 10.1136/jitc-2020-000875] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Novel therapeutic strategies in ovarian cancer (OC) are needed as the survival rate remains dismally low. Although dendritic cell-based cancer vaccines are effective in eliciting therapeutic responses, their complex and costly manufacturing process hampers their full clinical utility outside specialized clinics. Here, we describe a novel approach of generating a rapid and effective cancer vaccine using ascites-derived monocytes for treating OC. Methods Using the ID8 mouse ovarian tumor model and OC patient samples, we isolated ascites monocytes and evaluated them with flow cytometry, Luminex cytokine and chemokine array analysis, ex vivo cocultures with T cells, in vivo tumor challenge and T cell transfer experiments, RNA-sequencing and mass spectrometry. Results We demonstrated the feasibility of isolating ascites monocytes and restoring their ability to function as bona fide antigen-presenting cells (APCs) with Toll-like receptor (TLR) 4 lipopolysaccharide and TLR9 CpG-oligonucleotides, and a blocking antibody to interleukin-10 receptor (IL-10R Ab) in the ID8 model. The ascites monocytes were laden with tumor antigens at a steady state in vivo. After a short 48 hours activation, they upregulated maturation markers (CD80, CD86 and MHC class I) and demonstrated strong ex vivo T cell stimulatory potential and effectively suppressed tumor and malignant ascites in vivo. They also induced protective long-term T cell memory responses. To evaluate the translational potential of this approach, we isolated ascites monocytes from stage III/IV chemotherapy-naïve OC patients. Similarly, the human ascites monocytes presented tumor-associated antigens (TAAs), including MUC1, ERBB2, mesothelin, MAGE, PRAME, GPC3, PMEL and TP53 at a steady state. After a 48-hour treatment with TLR4 and IL-10R Ab, they efficiently stimulated oligoclonal tumor-associated lymphocytes (TALs) with strong reactivity against TAAs. Importantly, the activated ascites monocytes retained their ability to activate TALs in the presence of ascitic fluid. Conclusions Ascites monocytes are naturally loaded with tumor antigen and can perform as potent APCs following short ex vivo activation. This novel ascites APC vaccine can be rapidly prepared in 48 hours with a straightforward and affordable manufacturing process, and would be an attractive therapeutic vaccine for OC.
Collapse
Affiliation(s)
- Sarah F Adams
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Cheryl L-L Chiang
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Ananda Mookerjee
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dallas Flies
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Stephanie Jean
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Georgia A McCann
- Division of Gynecologic Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Justine Michaux
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - HuiSong Pak
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Florian Huber
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Christopher Neal
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Andrea Facciabene
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lana E Kandalaft
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland .,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
18
|
Bimodal magnetic resonance and optical imaging of extracellular matrix remodelling by orthotopic ovarian tumours. Br J Cancer 2020; 123:216-225. [PMID: 32390007 PMCID: PMC7374547 DOI: 10.1038/s41416-020-0878-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The extracellular matrix modulates the development of ovarian tumours. Currently, evaluation of the extracellular matrix in the ovary is limited to histological methods. Both magnetic resonance imaging (MRI) and two-photon microscopy (2PM) enable dynamic visualisation and quantification of fibrosis by endogenous contrast mechanisms: magnetisation transfer (MT) MRI and second-harmonic generation (SHG) 2PM, respectively. METHODS Here, we applied the MT-MRI protocol for longitudinal imaging of the stroma in orthotopic human ovarian cancer ES-2 xenograft model in CD1 athymic nude mice, and for orthotopically implanted ovarian PDX using a MR-compatible imaging window chamber implanted into NSG mice. RESULTS We observed differences between ECM deposition in ovarian and skin lesions, and heterogeneous collagen distribution in ES-2 lesions. An MR-compatible imaging window chamber enabled visual matching between T2 MRI maps of orthotopically implanted PDX grafts and anatomical images of their microenvironment acquired with a stereomicroscope and SHG-2PM intravital microscopy of the collagen. Bimodal MRI/2PM imaging allowed us to quantify the fibrosis within the same compartments, and demonstrated the consistent results across the modalities. CONCLUSIONS This work demonstrates a novel approach for measuring the stromal biomarkers in orthotopic ovarian tumours in mice, on both macroscopic and microscopic levels.
Collapse
|
19
|
Nguyen KB, Spranger S. Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. J Cell Biol 2020; 219:e201908224. [PMID: 31816057 PMCID: PMC7039199 DOI: 10.1083/jcb.201908224] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
The development of cancer immunotherapies has been guided by advances in our understanding of the dynamics between tumor cells and immune populations. An emerging consensus is that immune control of tumors is mediated by cytotoxic CD8+ T cells, which directly recognize and kill tumor cells. The critical role of T cells in tumor control has been underscored by preclinical and clinical studies that observed that T cell presence is positively correlated with patient response to checkpoint blockade therapy. However, the vast majority of patients do not respond or develop resistance, frequently associated with exclusion of T cells from the tumor microenvironment. This review focuses on tumor cell-intrinsic alterations that blunt productive anti-tumor immune responses by directly or indirectly excluding effector CD8+ T cells from the tumor microenvironment. A comprehensive understanding of the interplay between tumors and the immune response holds the promise for increasing the response to current immunotherapies via the development of rational novel combination treatments.
Collapse
Affiliation(s)
- Kim Bich Nguyen
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
20
|
Phillippi B, Singh M, Loftus T, Smith H, Muccioli M, Wright J, Pate M, Benencia F. Effect of laminin environments and tumor factors on the biology of myeloid dendritic cells. Immunobiology 2019; 225:151854. [PMID: 31753553 DOI: 10.1016/j.imbio.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are immune cells that surveil the organism for infections or malignancies and activate specific T lymphocytes initiating specific immune responses. Contrariwise, DCs have been show to participate in the development of diseases, among them some types of cancer by inducing angiogenesis or immunosuppression. The ultimate fate of DC functions regarding their role in disease or health is prompted by signals from the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. The objective of the current studies was to investigate the angiogenic and immune profile of murine myeloid DCs upon interaction with laminin environments, with a particular emphasis on ovarian cancer. Our results show that murine ovarian tumors produce several types of laminins, as determined by PCR analysis, and also that tumor-associated DCs, both from ascites or solid tumors express adhesion molecules capable of interacting with these molecules as determined by flow cytometry and PCR analysis. Further, we established that DCs cultured on laminin upregulate both AKT and MEK signaling pathways, and that long-term culture on laminin surfaces decreases the immunological capacities of these cells when compared to the same cells cultured on synthetic substrates. In addition, we observed that tumor conditioned media was able to modify the metabolic status of these cells, and also reprogram the development of DCs from bone marrow precursors towards the generation of myeloid-derived suppressor cells. Overall, these studies demonstrate that the interaction between soluble factors and extracellular matrix components of the ovarian cancer microenvironment shape the biology of DCs and thus help them become co-conspirators of tumor growth.
Collapse
Affiliation(s)
- Ben Phillippi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, United States
| | - Tiffany Loftus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Hannah Smith
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Maria Muccioli
- Molecular and Cellular Biology Program, Ohio University, United States
| | - Julia Wright
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, United States; Molecular and Cellular Biology Program, Ohio University, United States; Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, United States; The Diabetes Institute at Ohio University, United States.
| |
Collapse
|
21
|
Anderson KG, Voillet V, Bates BM, Chiu EY, Burnett MG, Garcia NM, Oda SK, Morse CB, Stromnes IM, Drescher CW, Gottardo R, Greenberg PD. Engineered Adoptive T-cell Therapy Prolongs Survival in a Preclinical Model of Advanced-Stage Ovarian Cancer. Cancer Immunol Res 2019; 7:1412-1425. [PMID: 31337659 DOI: 10.1158/2326-6066.cir-19-0258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Adoptive T-cell therapy using high-affinity T-cell receptors (TCR) to target tumor antigens has potential for improving outcomes in high-grade serous ovarian cancer (HGSOC) patients. Ovarian tumors develop a hostile, multicomponent tumor microenvironment containing suppressive cells, inhibitory ligands, and soluble factors that facilitate evasion of antitumor immune responses. Developing and validating an immunocompetent mouse model of metastatic ovarian cancer that shares antigenic and immunosuppressive qualities of human disease would facilitate establishing effective T-cell therapies. We used deep transcriptome profiling and IHC analysis of human HGSOC tumors and disseminated mouse ID8VEGF tumors to compare immunologic features. We then evaluated the ability of CD8 T cells engineered to express a high-affinity TCR specific for mesothelin, an ovarian cancer antigen, to infiltrate advanced ID8VEGF murine ovarian tumors and control tumor growth. Human CD8 T cells engineered to target mesothelin were also evaluated for ability to kill HLA-A2+ HGSOC lines. IHC and gene-expression profiling revealed striking similarities between tumors of both species, including processing/presentation of a leading candidate target antigen, suppressive immune cell infiltration, and expression of molecules that inhibit T-cell function. Engineered T cells targeting mesothelin infiltrated mouse tumors but became progressively dysfunctional and failed to persist. Treatment with repeated doses of T cells maintained functional activity, significantly prolonging survival of mice harboring late-stage disease at treatment onset. Human CD8 T cells engineered to target mesothelin were tumoricidal for three HGSOC lines. Treatment with engineered T cells may have clinical applicability in patients with advanced-stage HGSOC.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression
- Gene Expression Profiling
- Genetic Engineering
- HLA-A Antigens/genetics
- HLA-A Antigens/immunology
- Humans
- Immunophenotyping
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Mesothelin
- Mice
- Neoplasm Grading
- Neoplasm Staging
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Prognosis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kristin G Anderson
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Breanna M Bates
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Edison Y Chiu
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - Madison G Burnett
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nicolas M Garcia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shannon K Oda
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Christopher B Morse
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Ingunn M Stromnes
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles W Drescher
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip D Greenberg
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
22
|
Lee W, Ko SY, Mohamed MS, Kenny HA, Lengyel E, Naora H. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J Exp Med 2019; 216:176-194. [PMID: 30567719 PMCID: PMC6314534 DOI: 10.1084/jem.20181170] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer preferentially metastasizes to the omentum, a fatty tissue characterized by immune structures called milky spots, but the cellular dynamics that direct this tropism are unknown. Here, we identified that neutrophil influx into the omentum is a prerequisite premetastatic step in orthotopic ovarian cancer models. Ovarian tumor-derived inflammatory factors stimulated neutrophils to mobilize and extrude chromatin webs called neutrophil extracellular traps (NETs). NETs were detected in the omentum of ovarian tumor-bearing mice before metastasis and of women with early-stage ovarian cancer. NETs, in turn, bound ovarian cancer cells and promoted metastasis. Omental metastasis was decreased in mice with neutrophil-specific deficiency of peptidylarginine deiminase 4 (PAD4), an enzyme that is essential for NET formation. Blockade of NET formation using a PAD4 pharmacologic inhibitor also decreased omental colonization. Our findings implicate NET formation in rendering the premetastatic omental niche conducive for implantation of ovarian cancer cells and raise the possibility that blockade of NET formation prevents omental metastasis.
Collapse
Affiliation(s)
- WonJae Lee
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Song Yi Ko
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muhaned S Mohamed
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hilary A Kenny
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Ernst Lengyel
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
23
|
Penet MF, Krishnamachary B, Wildes FB, Mironchik Y, Hung CF, Wu TC, Bhujwalla ZM. Ascites Volumes and the Ovarian Cancer Microenvironment. Front Oncol 2018; 8:595. [PMID: 30619738 PMCID: PMC6304435 DOI: 10.3389/fonc.2018.00595] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/26/2018] [Indexed: 01/23/2023] Open
Abstract
Epithelial ovarian cancer is the leading cause of death from gynecologic malignancy among women in developed countries. Epithelial ovarian cancer has a poor prognosis, due to the aggressive characteristics of the disease combined with the lack of effective therapies. Options for late-stage ovarian cancer are limited and invasive, especially once malignant ascites develops. Malignant ascites, a complication observed in terminal ovarian cancer, significantly contributes to poor quality of life and to mortality. Excess accumulation of fluid in the peritoneal cavity occurs due to a combination of impaired fluid drainage and increased net filtration, mostly due to increasing intraperitoneal vascular permeability. Here we applied non-invasive magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI) of syngeneic mouse tumors in vivo, and high-resolution 1H MRS of mouse tumor extracts, to characterize the relationship between ascites volumes and the vasculature and metabolism of an experimental model of ovarian cancer. Differences were observed in the tumor vasculature and metabolism in tumors based on ascites volumes that provide new insights into the development of this condition.
Collapse
Affiliation(s)
- Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Flonné B Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - T C Wu
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Muccioli M, Nandigam H, Loftus T, Singh M, Venkatesh A, Wright J, Pate M, McCall K, Benencia F. Modulation of double-stranded RNA pattern recognition receptor signaling in ovarian cancer cells promotes inflammatory queues. Oncotarget 2018; 9:36666-36683. [PMID: 30613350 PMCID: PMC6291178 DOI: 10.18632/oncotarget.26378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation and cancer are inter-related, and both pro- and anti-tumorigenic effects are possible in different contexts, highlighting the importance of characterizing specific inflammatory pathways in distinct tumor types. Malignant cells and non-cancerous cells such as fibroblasts, infiltrating leukocytes (i.e., dendritic cells [DC], macrophages, or lymphocytes) and endothelial cells, in combination with the extracellular matrix, constitute the tumor microenvironment (TME). In the last decades, the role of the TME in cancer progression has gained increased attention and efforts directed at abrogating its deleterious effects on anti-cancer therapies have been ongoing. In this context, we investigated the potential of mouse and human ovarian cancer cells to produce inflammatory factors in response to pathogen recognition receptor (PRR) signaling, which might help to shape the biology of the TME. We determined that mouse ovarian tumors generate chemokines that are able to interact with receptors harbored by tumor-associated DCs. We also found that dsRNA triggers significant pro-inflammatory cytokine up-regulation in both human and mouse ovarian tumor cell lines, and that several PRR can simultaneously contribute to the stimulated inflammatory response displayed by these cells. Thus, dsRNA-activated PRRs may not only constitute potentially relevant drug targets for therapies aiming to prevent inflammation associated with leukocyte recruitment, or as co-adjuvants of therapeutic treatments, but also might have a role in development of nascent tumors, for example via activation of cancer cells by microbial molecules associated to pathogens, or with those appearing in circulation due to dysbiosis.
Collapse
Affiliation(s)
- Maria Muccioli
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Harika Nandigam
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Tiffany Loftus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Manindra Singh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Amritha Venkatesh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Julia Wright
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Kelly McCall
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| | - Fabian Benencia
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
25
|
Huang B, Yin M, Li X, Cao G, Qi J, Lou G, Sheng S, Kou J, Chen K, Yu B. Migration-inducing gene 7 promotes tumorigenesis and angiogenesis and independently predicts poor prognosis of epithelial ovarian cancer. Oncotarget 2018; 7:27552-66. [PMID: 27050277 PMCID: PMC5053671 DOI: 10.18632/oncotarget.8487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Epithelial ovarian carcinomas (EOC) cause more mortality than any other cancer of the female reproductive system. New therapeutic approaches to reduce EOC mortality have been largely unsuccessful due to the poor understanding of the mechanisms underlying EOC proliferation and metastasis. Progress in EOC treatment is further hampered by a lack of reliable prognostic biomarkers for early risk assessment. In this study, we identify that Migration-Inducting Gene 7 (MIG-7) is specifically induced in human EOC tissues but not normal ovaries or ovarian cyst. Ovarian MIG-7 expression strongly correlated with EOC progression. Elevated MIG-7 level at the time of primary cytoreductive surgery was a strong and independent predictor of poor survival of EOC patients. Cell and murine xenograft models showed that MIG-7 was required for EOC proliferation and invasion, and MIG-7 enhanced EOC-associated angiogenesis by promoting the expression of vascular endothelial growth factor. Inhibiting MIG-7 by RNA interference in grafted EOC cells retarded tumor growth, angiogenesis and improved host survival, and suppressing MIG-7 expression with a small molecule inhibitor D-39 identified from the medicinal plant Liriope muscari mitigated EOC growth and invasion and specifically abrogated the expression of vascular endothelial growth factor. Our data not only reveal a critical function of MIG-7 in EOC growth and metastasis and support MIG-7 as an independent prognostic biomarker for EOC, but also demonstrate that therapeutic targeting of MIG-7 is likely beneficial in the treatment of EOC.
Collapse
Affiliation(s)
- Bihui Huang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, Michigan, USA
| | - Mingzhu Yin
- State Key Laboratory of Natural Products and Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xia Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Yale Stem Cell Center, Yale University, New Haven, Connecticut, USA
| | - Guosheng Cao
- State Key Laboratory of Natural Products and Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Jin Qi
- State Key Laboratory of Natural Products and Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Ge Lou
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
| | - Shijie Sheng
- Department of Pathology, Wayne State University, Detroit, Michigan, USA.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Center and Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Junping Kou
- State Key Laboratory of Natural Products and Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, Michigan, USA.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Center and Department of Oncology, Wayne State University, Detroit, Michigan, USA.,Department of Immunology and Microbiology, Wayne State University, Detroit, Michigan, USA.,Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Boyang Yu
- State Key Laboratory of Natural Products and Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
26
|
Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci U S A 2017; 114:E10981-E10990. [PMID: 29203668 DOI: 10.1073/pnas.1712514114] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.
Collapse
|
27
|
Orientation of Preclinical Research in Ovarian Cancer. Int J Gynecol Cancer 2017; 27:1579-1586. [PMID: 28945211 DOI: 10.1097/igc.0000000000001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES A large variety of mouse models for cancer exist, also in the field of ovarian cancer. Each model possesses different features, which makes it difficult to interpret their translational value. This review provides an overview of the available ovarian cancer mouse models and their possible use in search for new treatments. METHODS This was a PubMed search of available literature on genetically engineered mouse models, xenografts, transplantable models, and immunocompetent mouse models in ovarian cancer, with a specific focus on clinically relevant features of the described models. RESULTS/CONCLUSIONS Several preclinical models are available for ovarian cancer. Based on their properties, a model should be carefully selected as a function of the experimental setup to achieve clinically relevant results.
Collapse
|
28
|
Lin KT, Sun SP, Wu JI, Wang LH. Low-dose glucocorticoids suppresses ovarian tumor growth and metastasis in an immunocompetent syngeneic mouse model. PLoS One 2017; 12:e0178937. [PMID: 28591224 PMCID: PMC5462394 DOI: 10.1371/journal.pone.0178937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/22/2017] [Indexed: 01/25/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic malignancies. Despite chemotherapy and surgical debulking options, ovarian cancer recurs and disseminates frequently with a poor prognosis. We previously reported a novel role of glucocorticoids (GCs) in metastatic ovarian cancer by upregulating microRNA-708. In this study, we used an immunocompetent syngeneic mouse model and further evaluated the effect and optimal dosages of GCs in treating metastatic ovarian cancer. The treatment of C57BL/6-derived ovarian cancer ID-8 cells with a synthetic GC, dexamethasone (DEX), induced the expression of microRNA-708, leading to decreased cell migration and invasion through targeting Rap1B. Administration of DEX at a low dose, as low as 5 μg/kg body weight, inhibited the primary tumor size and abdominal metastasis in mice bearing ID-8 cell-derived ovarian tumors. In the treated primary tumors, microRNA-708 was upregulated, whereas some proinflammatory cytokines, namely interleukin (IL)-1β and IL-18, were downregulated. The number of tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment were reduced. Overall, our study shows that low-dose GCs can suppress ovarian cancer progression and metastasis likely through not only the upregulation of the metastasis suppressor microRNA-708, but also the modulation of TAMs and MDSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Kai-Ti Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Shu-Pin Sun
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jui-I Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Life Sciences, National Central University, Jungli District, Taoyuan City, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Arauchi A, Yang CH, Cho S, Jarboe EA, Peterson CM, Bae YH, Okano T, Janát-Amsbury MM. An immunocompetent, orthotopic mouse model of epithelial ovarian cancer utilizing tissue engineered tumor cell sheets. Tissue Eng Part C Methods 2015; 21:23-34. [PMID: 24745555 DOI: 10.1089/ten.tec.2014.0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite the development of a myriad of anticancer drugs that appeared promising in preclinical ovarian cancer animal models, they failed to predict efficacy in clinical testing. To improve the accuracy of preclinical testing of efficacy and toxicity, including pharmacokinetic and pharmacodynamic evaluations, a novel animal model was developed and characterized. In this study, murine ID8 (epithelial ovarian cancer [EOC]) cells as injected cell suspensions (ICS) and as intact cultured monolayer cell sheets (CS) were injected or surgically grafted, respectively, into the left ovarian bursa of 6-8 week-old, female C57BL/6 black mice and evaluated at 8 and 12 weeks after engraftment. Tumor volumes at 8 weeks were as follows: 30.712 ± 18.800 mm(3) versus 55.837 ± 10.711 mm(3) for ICS and CS, respectively, p = 0.0990 (n = 5). At 12 weeks, tumor volumes were 128.129 ± 44.018 mm(3) versus 283.953 ± 71.676 mm(3) for ICS and CS, respectively, p = 0.0112 (n = 5). The ovarian weights at 8 and 12 weeks were 0.02138 ± 0.01038 g versus 0.04954 ± 0.00667 g for ICS and CS, respectively (8 weeks), p = 0.00602 (n = 5); and 0.10594 ± 0.03043 g versus 0.39264 ± 0.09271 g for ICS and CS, respectively (12 weeks), p = 0.0008 (n = 5). These results confirm a significant accelerated tumorigenesis in CS-derived tumors compared with ICS-derived tumors when measured by tumor volume/time and ovarian weight/time. Furthermore, the CS-derived tumors closely replicated the metastatic spread found in human EOC and histopathological identity with the primary tumor of origin.
Collapse
Affiliation(s)
- Ayumi Arauchi
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ophir E, Bobisse S, Coukos G, Harari A, Kandalaft LE. Personalized approaches to active immunotherapy in cancer. Biochim Biophys Acta Rev Cancer 2015; 1865:72-82. [PMID: 26241169 DOI: 10.1016/j.bbcan.2015.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
Abstract
Immunotherapy is emerging as a promising anti-cancer curative modality. However, in contrast to recent advances obtained employing checkpoint blockade agents and T cell therapies, clinical efficacy of therapeutic cancer vaccines is still limited. Most vaccination attempts in the clinic represent "off-the shelf" approaches since they target common "self" tumor antigens, shared among different patients. In contrast, personalized approaches of vaccination are tailor-made for each patient and in spite being laborious, hold great potential. Recent technical advancement enabled the first steps in the clinic of personalized vaccines that target patient-specific mutated neo-antigens. Such vaccines could induce enhanced tumor-specific immune response since neo-antigens are mutation-derived antigens that can be recognized by high affinity T cells, not limited by central tolerance. Alternatively, the use of personalized vaccines based on whole autologous tumor cells, overcome the need for the identification of specific tumor antigens. Whole autologous tumor cells could be administered alone, pulsed on dendritic cells as lysate, DNA, RNA or delivered to dendritic cells in-vivo through encapsulation in nanoparticle vehicles. Such vaccines may provide a source for the full repertoire of the patient-specific tumor antigens, including its private neo-antigens. Furthermore, combining next-generation personalized vaccination with other immunotherapy modalities might be the key for achieving significant therapeutic outcome.
Collapse
Affiliation(s)
- Eran Ophir
- Ludwig Center for Cancer Research at the University of Lausanne, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Center for Cancer Research at the University of Lausanne, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Center for Cancer Research at the University of Lausanne, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland; Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandre Harari
- Ludwig Center for Cancer Research at the University of Lausanne, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland; Center of Experimental Therapeutics, Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Center for Cancer Research at the University of Lausanne, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland; Center of Experimental Therapeutics, Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
31
|
Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong STC, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015. [PMID: 26224579 DOI: 10.1152/ajpcell.00188.2015] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. It is usually diagnosed at a late stage, with a 5-yr survival rate of <30%. The majority of ovarian cancer cases are diagnosed after tumors have widely spread within the peritoneal cavity, limiting the effectiveness of debulking surgery and chemotherapy. Owing to a substantially lower survival rate at late stages of disease than at earlier stages, the major cause of ovarian cancer deaths is believed to be therapy-resistant metastasis. Although metastasis plays a crucial role in promoting ovarian tumor progression and decreasing patient survival rates, the underlying mechanisms of ovarian cancer spread have yet to be thoroughly explored. For many years, researchers have believed that ovarian cancer metastasizes via a passive mechanism by which ovarian cancer cells are shed from the primary tumor and carried by the physiological movement of peritoneal fluid to the peritoneum and omentum. However, the recent discovery of hematogenous metastasis of ovarian cancer to the omentum via circulating tumor cells instigated rethinking of the mode of ovarian cancer metastasis and the importance of the "seed-and-soil" hypothesis for ovarian cancer metastasis. In this review we discuss the possible mechanisms by which ovarian cancer cells metastasize from the primary tumor to the omentum, the cross-talk signaling events between ovarian cancer cells and various stromal cells that play crucial roles in ovarian cancer metastasis, and the possible clinical implications of these findings in the management of this deadly, highly metastatic disease.
Collapse
Affiliation(s)
- Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cecilia S Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Chi Lam Au Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas; NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Houston, Texas
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas;
| |
Collapse
|
32
|
Huang J, Wang L, Cong Z, Amoozgar Z, Kiner E, Xing D, Orsulic S, Matulonis U, Goldberg MS. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer. Biochem Biophys Res Commun 2015; 463:551-6. [PMID: 26047697 DOI: 10.1016/j.bbrc.2015.05.083] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/21/2022]
Abstract
Familial breast and ovarian cancer are often caused by inherited mutations of BRCA1. While current prognoses for such patients are rather poor, inhibition of poly-ADP ribose polymerase 1 (PARP1) induces synthetic lethality in cells that are defective in homologous recombination. BMN 673 is a potent PARP1 inhibitor that is being clinically evaluated for treatment of BRCA-mutant cancers. Using the Brca1-deficient murine epithelial ovarian cancer cell line BR5FVB1-Akt, we investigated whether the antitumor effects of BMN 673 extend beyond its known pro-apoptotic function. Administration of modest amounts of BMN 673 greatly improved the survival of mice bearing subcutaneous or intraperitoneal tumors. We thus hypothesized that BMN 673 may influence the composition and function of immune cells in the tumor microenvironment. Indeed, BMN 673 significantly increases the number of peritoneal CD8(+) T cells and NK cells as well as their production of IFN-γ and TNF-α. These data suggest that the cell stress caused by BMN 673 induces not only cancer cell-intrinsic apoptosis but also cancer cell-extrinsic antitumor immune effects in a syngeneic murine model of ovarian cancer. BMN 673 may therefore serve as a promising adjuvant therapy to immunotherapy to achieve durable responses among patients whose tumors harbor defects in homologous recombination.
Collapse
Affiliation(s)
- Jing Huang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lei Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhongyi Cong
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zohreh Amoozgar
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Evgeny Kiner
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deyin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Sandra Orsulic
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ursula Matulonis
- Gynecologic Oncology Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Goldberg
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
33
|
Lungchukiet P, Sun Y, Kasiappan R, Quarni W, Nicosia SV, Zhang X, Bai W. Suppression of epithelial ovarian cancer invasion into the omentum by 1α,25-dihydroxyvitamin D3 and its receptor. J Steroid Biochem Mol Biol 2015; 148:138-47. [PMID: 25448740 PMCID: PMC4465764 DOI: 10.1016/j.jsbmb.2014.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer death in women, mainly because it has spread to intraperitoneal tissues such as the omentum in the peritoneal cavity by the time of diagnosis. In the present study, we established in vitro assays, ex vivo omental organ culture system and syngeneic animal tumor models using wild type (WT) and vitamin D receptor (VDR) null mice to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25D3) and VDR on EOC invasion. Treatment of human EOC cells with 1,25D3 suppressed their migration and invasion in monolayer scratch and transwell assays and ability to colonize the omentum in the ex vivo system, supporting a role for epithelial VDR in interfering with EOC invasion. Furthermore, VDR knockdown in OVCAR3 cells increased their ability to colonize the omentum in the ex vivo system in the absence of 1,25D3, showing a potential ligand-independent suppression of EOC invasion by epithelial VDR. In syngeneic models, ID8 tumors exhibited an increased ability to colonize omenta of VDR null over that of WT mice; pre-treatment of WT, not VDR null, mice with EB1089 reduced ID8 colonization, revealing a role for stromal VDR in suppressing EOC invasion. These studies are the first to demonstrate a role for epithelial and stromal VDR in mediating the activity of 1,25D3 as well as a 1,25D3-independent action of the VDR in suppressing EOC invasion. The data suggest that VDR-based drug discovery may lead to the development of new intervention strategies to improve the survival of patients with EOC at advanced stages. This article is part of a Special Issue entitled "Vitamin D Workshop".
Collapse
Affiliation(s)
- Panida Lungchukiet
- The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
| | - Yuefeng Sun
- The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
| | - Ravi Kasiappan
- The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
| | - Waise Quarni
- The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
| | - Santo V Nicosia
- The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA; Oncological Sciences, H. Lee Moffitt Cancer Center, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA; Chemical Biology and Molecular Medicine, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
| | - Xiaohong Zhang
- The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA; Oncological Sciences, H. Lee Moffitt Cancer Center, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA; University of South Florida College of Medicine, and Programs of Cancer Biology & Evolution, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
| | - Wenlong Bai
- The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA; Oncological Sciences, H. Lee Moffitt Cancer Center, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA; University of South Florida College of Medicine, and Programs of Cancer Biology & Evolution, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA.
| |
Collapse
|
34
|
Sanders KL, Fox BA, Bzik DJ. Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations. Cancer Immunol Res 2015; 3:891-901. [PMID: 25804437 DOI: 10.1158/2326-6066.cir-14-0235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023]
Abstract
Suppressive myeloid cells represent a significant barrier to the generation of productive antitumor immune responses to many solid tumors. Eliminating or reprogramming suppressive myeloid cells to abrogate tumor-associated immune suppression is a promising therapeutic approach. We asked whether treatment of established aggressive disseminated pancreatic cancer with the immunotherapeutic attenuated Toxoplasma gondii vaccine strain CPS would trigger tumor-associated myeloid cells to generate therapeutic antitumor immune responses. CPS treatment significantly decreased tumor-associated macrophages and markedly increased dendritic cell infiltration of the pancreatic tumor microenvironment. Tumor-resident macrophages and dendritic cells, particularly cells actively invaded by CPS, increased expression of costimulatory molecules CD80 and CD86 and concomitantly boosted their production of IL12. CPS treatment increased CD4(+) and CD8(+) T-cell infiltration into the tumor microenvironment, activated tumor-resident T cells, and increased IFNγ production by T-cell populations. CPS treatment provided a significant therapeutic benefit in pancreatic tumor-bearing mice. This therapeutic benefit depended on IL12 and IFNγ production, MyD88 signaling, and CD8(+) T-cell populations. Although CD4(+) T cells exhibited activated effector phenotypes and produced IFNγ, CD4(+) T cells as well as natural killer cells were not required for the therapeutic benefit. In addition, CD8(+) T cells isolated from CPS-treated tumor-bearing mice produced IFNγ after re-exposure to pancreatic tumor antigen, suggesting this immunotherapeutic treatment stimulated tumor cell antigen-specific CD8(+) T-cell responses. This work highlights the potency and immunotherapeutic efficacy of CPS treatment and demonstrates the significance of targeting tumor-associated myeloid cells as a mechanism to stimulate more effective immunity to pancreatic cancer.
Collapse
Affiliation(s)
- Kiah L Sanders
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| |
Collapse
|
35
|
Intraperitoneal administration of cisplatin plus bevacizumab for the management of malignant ascites in ovarian epithelial cancer: results of a phase III clinical trial. Med Oncol 2015; 32:292. [PMID: 25609006 DOI: 10.1007/s12032-014-0292-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Bevacizumab is a humanized antihuman VEGF-A monoclonal antibody. This study aims to evaluate the efficacy and safety of intraperitoneal administration of cisplatin plus bevacizumab (Avastin) in the management of malignant ascites in ovarian epithelial cancer. Fifty-eight ovarian epithelial cancer patients with malignant ascites were randomly assigned to receive either intraperitoneal administration of cisplatin only (control group, n = 27, cisplatin: 40 mg/m(2) every 2 weeks, for 6 weeks) or cisplatin plus bevacizumab (study group, n = 31, cisplatin: 40 mg/m(2), bevacizumab: 300 mg, every 2 weeks for 6 weeks). All patients regularly received TC regimen (paclitaxel 135 mg/m(2) d1 + carboplatin AUC 5 d1) every 3 weeks. The outcome, quality of life (QoL) and adverse effect of the treatment were analyzed, and VEGF and CA-125 level in ascites were detected by ELISA. After treatment with cisplatin plus bevacizumab, VEGF level in ascites was significantly decreased compared to baseline (P < 0.05). Meanwhile, ascites VEGF level of study group was significantly lower than that of control group (P < 0.05). The overall response rate (ORR) of study group was significantly higher than that of control group (ORR 90.32 vs. 59.26 %, P < 0.05). QoL improvement rate of study group was also significantly higher than that of control group (93.55 vs. 48.15 %, P < 0.05). All patients were well tolerated, and no serious adverse effect occurred. Intraperitoneal administration of cisplatin plus bevacizumab is effective and safe for the management of malignant ascites in ovarian epithelial cancer.
Collapse
|
36
|
Santoro SP, Kim S, Motz GT, Alatzoglou D, Li C, Irving M, Powell DJ, Coukos G. T Cells Bearing a Chimeric Antigen Receptor against Prostate-Specific Membrane Antigen Mediate Vascular Disruption and Result in Tumor Regression. Cancer Immunol Res 2014; 3:68-84. [DOI: 10.1158/2326-6066.cir-14-0192] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Mirandola L, Yu Y, Cannon MJ, Jenkins MR, Rahman RL, Nguyen DD, Grizzi F, Cobos E, Figueroa JA, Chiriva-Internati M. Galectin-3 inhibition suppresses drug resistance, motility, invasion and angiogenic potential in ovarian cancer. Gynecol Oncol 2014; 135:573-9. [PMID: 25284038 DOI: 10.1016/j.ygyno.2014.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 09/26/2014] [Accepted: 09/28/2014] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Ovarian cancer is the most deadly gynecologic malignancy worldwide. Since the pathogenesis of ovarian cancer is incompletely understood, and there are no available screening techniques for early detection, most patients are diagnosed with advanced, incurable disease. In an effort to develop innovative and effective therapies for ovarian cancer, we tested the effectiveness of Galecti-3C in vitro. This is a truncated, dominant negative form of Galectin-3, which is thought to act by blocking endogenous Galectin-3. METHODS We produced a truncated, dominant-negative form of Galectin-3, namely Galetic-3C. Ovarian cancer cell lines and primary cells from ovarian cancer patients were treated with Galectin-3C, and growth, drug sensitivity, and angiogenesis were tested. RESULT We show, for the first time, that Galectin-3C significantly reduces the growth, motility, invasion, and angiogenic potential of cultured OC cell lines and primary cells established from OC patients. CONCLUSIONS Our findings indicate that Galectin-3C is a promising new compound for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Leonardo Mirandola
- Department of Internal Medicine at the Division of Hematology & Oncology & Oncology, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Laura W Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA
| | - Yuefei Yu
- Department of Internal Medicine at the Division of Hematology & Oncology & Oncology, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Martin J Cannon
- University of Arkansas for Medical Sciences, Department of Obstetrics and Gynecology, Little Rock, AR, USA
| | - Marjorie R Jenkins
- Laura W Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA
| | - Rakhshanda L Rahman
- Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA
| | - Diane D Nguyen
- Department of Internal Medicine at the Division of Hematology & Oncology & Oncology, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Kiromic, Inc., Lubbock, TX, USA
| | - Fabio Grizzi
- Humanitas Clinical and Research Center, Milano, Italy
| | - Everardo Cobos
- Department of Internal Medicine at the Division of Hematology & Oncology & Oncology, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Laura W Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA; Kiromic, Inc., Lubbock, TX, USA
| | - Jose A Figueroa
- Department of Internal Medicine at the Division of Hematology & Oncology & Oncology, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Kiromic, Inc., Lubbock, TX, USA
| | - Maurizio Chiriva-Internati
- Department of Internal Medicine at the Division of Hematology & Oncology & Oncology, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Laura W Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA; Kiromic, Inc., Lubbock, TX, USA
| |
Collapse
|
38
|
Abstract
Ovarian cancer is the most lethal malignancy of the female reproductive system and the fifth leading cause of cancer death in women. In the year 2012 alone, United States had 22,280 new ovarian cancer cases and 15,500 deaths were reported. About 7%-10% of ovarian cancers result from an inherited tendency to develop the disease. Ovarian cancer has the ability to escape the immune system because of its pathological interactions between cancer cells and host immune cells in the tumor microenvironment create an immunosuppressive network that promotes tumor growth, protects the tumor from immune system. The levels of immune suppressive elements like regulatory T cells, plasmacytoid dendritic cells and cytokines such as IL-10, IL-6, TNF-α, and TGF-β are elevated in the tumor microenvironment. Vascular endothelial growth factor is known to have an immune suppressing role besides its angiogenic role in the tumor microenvironment. Ovarian cancer is associated with high mortality partly due to difficulties in early diagnosis and development of metastases. These problems may overcome by developing accurate mouse models that should mimic the complexity of human ovarian cancer. Such animal models are better suited to understand pathophysiology, metastases, and also for preclinical testing of targeted molecular therapeutics. Immunotherapy is an area of active investigation and off late many clinical trials is ongoing to prevent disease progression. The main aim of dendritic cells vaccination is to stimulate tumor specific effector T cells that can reduce tumor size and induce immunological memory to prevent tumor relapse.
Collapse
Affiliation(s)
- T Sree Latha
- 1Department of Genetics & Genomics, Yogi Vemana University, Kadapa, India
| | | | | | | | | |
Collapse
|
39
|
Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 2014; 20:607-15. [PMID: 24793239 PMCID: PMC4060245 DOI: 10.1038/nm.3541] [Citation(s) in RCA: 718] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
We describe a novel mechanism regulating the tumor endothelial barrier and T cell homing to tumors. Selective expression of the death mediator Fas ligand (FasL/CD95L) was detected in the vasculature of many human and mouse solid tumors but not in normal vasculature, and in these tumors it was associated with scarce CD8+ infiltration and predominance of FoxP3+ T regulatory (Treg) cells. Tumor-derived vascular endothelial growth factor A (VEGF-A), interleukin 10 (IL-10) and prostaglandin E2 (PGE2) cooperatively induced FasL expression on endothelial cells, which acquired the ability to kill effector CD8+ T cells, but not Treg cells, due to higher levels of cFLIP expression in Tregs. In the mouse, genetic or pharmacologic suppression of FasL produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells. Pharmacologic inhibition of VEGF and PGE2 attenuated tumor endothelial FasL expression, produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells, which was FasL-dependent, and led to CD8-dependent tumor growth suppression. Thus, tumor paracrine mechanisms establish a tumor endothelial death barrier, which plays a critical role in establishing immune tolerance and determining the fate of tumors.
Collapse
|
40
|
Jara JA, Castro-Castillo V, Saavedra-Olavarría J, Peredo L, Pavanni M, Jaña F, Letelier ME, Parra E, Becker MI, Morello A, Kemmerling U, Maya JD, Ferreira J. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J Med Chem 2014; 57:2440-54. [PMID: 24568614 DOI: 10.1021/jm500174v] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor cells principally exhibit increased mitochondrial transmembrane potential (ΔΨ(m)) and altered metabolic pathways. The therapeutic targeting and delivery of anticancer drugs to the mitochondria might improve treatment efficacy. Gallic acid exhibits a variety of biological activities, and its ester derivatives can induce mitochondrial dysfunction. Four alkyl gallate triphenylphosphonium lipophilic cations were synthesized, each differing in the size of the linker chain at the cationic moiety. These derivatives were selectively cytotoxic toward tumor cells. The better compound (TPP(+)C10) contained 10 carbon atoms within the linker chain and exhibited an IC50 value of approximately 0.4-1.6 μM for tumor cells and a selectivity index of approximately 17-fold for tumor compared with normal cells. Consequently, its antiproliferative effect was also assessed in vivo. The oxygen consumption rate and NAD(P)H oxidation levels increased in the tumor cell lines (uncoupling effect), resulting in a ΔΨ(m) decrease and a consequent decrease in intracellular ATP levels. Moreover, TPP(+)C10 significantly inhibited the growth of TA3/Ha tumors in mice. According to these results, the antineoplastic activity and safety of TPP(+)C10 warrant further comprehensive evaluation.
Collapse
Affiliation(s)
- José A Jara
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile , Independencia 1027, Santiago 8380453, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sprague L, Muccioli M, Pate M, Singh M, Xiong C, Ostermann A, Niese B, Li Y, Li Y, Courreges MC, Benencia F. Dendritic cells: In vitro culture in two- and three-dimensional collagen systems and expression of collagen receptors in tumors and atherosclerotic microenvironments. Exp Cell Res 2014; 323:7-27. [PMID: 24569142 DOI: 10.1016/j.yexcr.2014.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are immune cells found in the peripheral tissues where they sample the organism for infections or malignancies. There they take up antigens and migrate towards immunological organs to contact and activate T lymphocytes that specifically recognize the antigen presented by these antigen presenting cells. In the steady state there are several types of resident DCs present in various different organs. For example, in the mouse, splenic DC populations characterized by the co-expression of CD11c and CD8 surface markers are specialized in cross-presentation to CD8 T cells, while CD11c/SIRP-1α DCs seem to be dedicated to activating CD4 T cells. On the other hand, DCs have also been associated with the development of various diseases such as cancer, atherosclerosis, or inflammatory conditions. In such disease, DCs can participate by inducing angiogenesis or immunosuppression (tumors), promoting autoimmune responses, or exacerbating inflammation (atherosclerosis). This change in DC biology can be prompted by signals in the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. Building on those studies, herewith we analyzed the angiogenic profile of murine myeloid DCs upon interaction with 2D and 3D type-I collagen environments. As determined by PCR array technology and quantitative PCR analysis we observed that interaction with these collagen environments induced the expression of particular angiogenic molecules. In addition, DCs cultured on collagen environments specifically upregulated the expression of CXCL-1 and -2 chemokines. We were also able to establish DC cultures on type-IV collagen environments, a collagen type expressed in pathological conditions such as atherosclerosis. When we examined DC populations in atherosclerotic veins of Apolipoprotein E deficient mice we observed that they expressed adhesion molecules capable of interacting with collagen. Finally, to further investigate the interaction of DCs with collagen in other pathological conditions, we determined that both murine ovarian and breast cancer cells express several collagen molecules that can contribute to shape their particular tumor microenvironment. Consistently, tumor-associated DCs were shown to express adhesion molecules capable of interacting with collagen molecules as determined by flow cytometry analysis. Of particular relevance, tumor-associated DCs expressed high levels of CD305/LAIR-1, an immunosuppressive receptor. This suggests that signaling through this molecule upon interaction with collagen produced by tumor cells might help define the poorly immunogenic status of these cells in the tumor microenvironment. Overall, these studies demonstrate that through interaction with collagen proteins, DCs can be capable of modifying the microenvironments of inflammatory disease such as cancer or atherosclerosis.
Collapse
Affiliation(s)
- Leslee Sprague
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA
| | - Maria Muccioli
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Chengkai Xiong
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA
| | - Alexander Ostermann
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Brandon Niese
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Yihan Li
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Yandi Li
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Maria Cecilia Courreges
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Fabian Benencia
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA; Molecular and Cellular Biology Program, Ohio University, USA; Diabetes Institute, Ohio University, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA.
| |
Collapse
|
42
|
House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol 2014; 4:26. [PMID: 24592355 PMCID: PMC3923136 DOI: 10.3389/fonc.2014.00026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.
Collapse
Affiliation(s)
| | - Lidia Hernandez
- Women's Malignancies Branch, National Cancer Institute , Bethesda, MD , USA
| | | |
Collapse
|
43
|
Jiang H, Wortsman J, Matsuoka L, Granese J, Carlson JA, Mihm M, Slominski A. Molecular spectrum of pigmented skin lesions: from nevus to melanoma. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.5.679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Kandalaft LE, Chiang CL, Tanyi J, Motz G, Balint K, Mick R, Coukos G. A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer. J Transl Med 2013; 11:149. [PMID: 23777306 PMCID: PMC3693890 DOI: 10.1186/1479-5876-11-149] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 02/04/2023] Open
Abstract
Purpose Ovarian cancer, like most solid tumors, is in dire need of effective therapies. The significance of this trial lies in its promise to spearhead the development of combination immunotherapy and to introduce novel approaches to therapeutic immunomodulation, which could enable otherwise ineffective vaccines to achieve clinical efficacy. Rationale Tumor-infiltrating T cells have been associated with improved outcome in ovarian cancer, suggesting that activation of antitumor immunity will improve survival. However, molecularly defined vaccines have been generally disappointing. Cancer vaccines elicit a modest frequency of low-to-moderate avidity tumor-specific T-cells, but powerful tumor barriers dampen the engraftment, expansion and function of these effector T-cells in the tumor, thus preventing them from reaching their full therapeutic potential. Our work has identified two important barriers in the tumor microenvironment: the blood-tumor barrier, which prevents homing of effector T cells, and T regulatory cells, which inactivate effector T cells. We hypothesize that cancer vaccine therapy will benefit from combinations that attenuate these two barrier mechanisms. Design We propose a three-cohort sequential study to investigate a combinatorial approach of a new dendritic cell (DC) vaccine pulsed with autologous whole tumor oxidized lysate, in combination with antiangiogenesis therapy (bevacizumab) and metronomic cyclophosphamide, which impacts Treg cells. Innovation This study uses a novel autologous tumor vaccine developed with 4-day DCs pulsed with oxidized lysate to elicit antitumor response. Furthermore, the combination of bevacizumab with a whole tumor antigen vaccine has not been tested in the clinic. Finally the combination of bevacizumab and metronomic cyclophosphamide in immunotherapy is novel.
Collapse
Affiliation(s)
- Lana E Kandalaft
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 2013; 73:3591-603. [PMID: 23633484 DOI: 10.1158/0008-5472.can-12-4100] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Ovarian Cancer Research Center; Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
46
|
Abstract
An in vitro syngeneic model of neoplastic progression of murine ovarian surface epithelial (MOSE) cells represents a valid and significant model that allows for investigations into early mechanisms that impact tumorigenesis. Importantly, MOSE cells representing different stages of neoplastic transformation can be implanted back into immunocompetent mice to investigate host microenvironmental interactions that impact peritoneal dissemination and suppress immune surveillance mechanisms. Here we describe the isolation of MOSE cells that undergo spontaneous transformation upon repeated passage in cell culture. We also provide detailed in vitro assays for 3-D culturing of MOSE cells for characterizing anchorage-independent and invasive growth properties of these cells. Cell lines derived from this model have provided numerous insights into genetic, epigenetic, and biomechanical changes associated with neoplastic progression, as well as the immune responses associated with peritoneal dissemination of ovarian cancer cells.
Collapse
Affiliation(s)
- Paul C Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | |
Collapse
|
47
|
Rathinavelu A, Narasimhan M, Muthumani P. A novel regulation of VEGF expression by HIF-1α and STAT3 in HDM2 transfected prostate cancer cells. J Cell Mol Med 2012; 16:1750-7. [PMID: 22004076 PMCID: PMC3822688 DOI: 10.1111/j.1582-4934.2011.01472.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
On the basis of increasing roles for HDM2 oncoprotein in cancer growth and progression, we speculated that HDM2 might play a major role in hypoxia-induced metastatic process. For verification of this hypothesis, wild-type LNCaP prostate cancer cells and HDM2 transfected LNCaP-MST (HDM2 stably transfected) cells were studied. The data obtained from our experiments revealed that the HDM2 transfected LNCaP-MST cells possessed an ability to multiply rapidly and show distinct morphological features compared to non-transfected LNCaP cells. During exposures to hypoxia HDM2 expression in the LNCaP and LNCaP-MST cells was significantly higher compared to the normoxic levels. The LNCaP-MST cells also expressed higher levels of HIF-1α (hypoxia-inducible factor-1α) and p-STAT3 even under the normoxic conditions compared to the non-transfected cells. The HIF-1α and p-STAT3 expressions were increased several fold when the cells were subjected to hypoxic conditions. The HIF-1α and p-STAT3 protein expressions observed in HDM2 transfected LNCaP-MST cells were 20 and 15 folds higher, respectively, compared to the non-transfected wild-type LNCaP cells. These results demonstrate that HDM2 may have an important regulatory role in mediating the HIF-1α and p-STAT3 protein expression during both normoxic and hypoxic conditions. Furthermore, the vascular endothelial growth factor (VEGF) expression that is typically regulated by HIF-1α and p-STAT3 was also increased significantly by 136% (P < 0.01) after HDM2 transfection. The overall results point towards a novel ability of HDM2 in regulating HIF-1α and p-STAT3 levels even in normoxic conditions that eventually lead to an up-regulation of VEGF expression.
Collapse
Affiliation(s)
- Appu Rathinavelu
- Health Professions Division, Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33313, USA.
| | | | | |
Collapse
|
48
|
Coffman L, Mooney C, Lim J, Bai S, Silva I, Gong Y, Yang K, Buckanovich RJ. Endothelin receptor-A is required for the recruitment of antitumor T cells and modulates chemotherapy induction of cancer stem cells. Cancer Biol Ther 2012. [PMID: 23192269 DOI: 10.4161/cbt.22959] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The endothelin receptor-A (ETRA) plays an important role in tumor cell migration, metastasis, and proliferation. The endothelin receptor B (ETRB) plays a critical role in angiogenesis and the inhibition of anti-tumor immune cell recruitment. Thus dual blockade of ETRA and ETRB could have significant anti-tumor effects. RESULTS Dual ETRA/ETRB blockade with macitentan (or the combination of the ETRA and ETRB antagonists BQ123 and BQ788) did not enhance antitumor immune cell recruitment. In vitro studies demonstrate that ETRA inhibition prevents the induction of ICAM1 necessary for immune cell recruitment. When used as a single agent against human tumor xenografts, macitentan demonstrated non-significant anti-tumor activity. However, when used in combination with chemotherapy, macitentan specifically reduced tumor growth in cell lines with CD133+ cancer stem cells. We found that ETRA is primarily expressed on CD133+ CSC in both cell lines and primary human tumor cells. ETRA inhibition of CSC prevented chemotherapy induced increases in tumor stem cells. Furthermore, ETRA inhibition in combination with chemotherapy reduced the formation of tumor spheres. METHODS We tested the dual ETRA/ETRB antagonist macitentan in conjunction with (1) an anti-tumor vaccine and (2) chemotherapy, in order to assess the impact of dual ETRA/ETRB blockade on anti-tumor immune cell infiltration and ovarian tumor growth. In vitro murine and human cell line, tumor sphere assays and tumor xenograft models were utilized to evaluate the effect of ETRA/ETRB blockade on cell proliferation, immune cell infiltration and cancer stem cell populations. CONCLUSIONS These studies indicate a critical role for ETRA in the regulation of immune cell recruitment and in the CSC resistance to chemotherapy.
Collapse
Affiliation(s)
- Lan Coffman
- Department of Internal Medicine, Division of Hematology Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Differential roles of uPAR in peritoneal ovarian carcinomatosis. Neoplasia 2012; 14:259-70. [PMID: 22577342 DOI: 10.1593/neo.12442] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 01/10/2023] Open
Abstract
Epithelial ovarian cancer is the fourth leading cause of death from gynecologic malignancies in the United States. Most cases are diagnosed at late stages, with the solid tumor masses growing as peritoneal implants, or floating within the ascitic fluid (peritoneal ovarian carcinomatosis). Despite aggressive surgical "debulking," recurrence of recalcitrant disease is frequent with poor patient survival. Efforts to improve survival rates are hindered by lack of biomarkers that can detect and effectively treat ovarian cancer in its early stages. Urokinase plasminogen activator receptor (uPAR) is a multifunctional receptor involved in a myriad of tumor cell processes. However, the role of host uPAR in ovarian cancer is still elusive. To define the potential proinflammatory role of uPAR in ovarian cancer, first, using a syngeneic murine model in uPAR(-/-) mice, we found that ablation of uPAR restrained tumor take and peritoneal implants and prolonged the survival of uPAR(-/-) mice compared with their uPAR(+/+) counterparts. Ascitic fluid accumulation was significantly decreased in uPAR(-/-) mice with decreased macrophage infiltration. Second, in vitro mechanistic studies revealed that host uPAR is involved in the multiple steps of peritoneal metastatic cascade. Third, we evaluated the prognostic utility of tumor and stromal uPAR in human ovarian cancer tissue microarray. In summary, our studies indicated that uPAR plays a significant role in ovarian cancer cell-stromal crosstalk and contributes to increased vascular permeability and inflammatory ovarian cancer microenvironment. This provides a rationale for targeting the uPAR with either specific neutralizing antibodies or targeting its downstream inflammatory effectors in patients with ovarian cancer.
Collapse
|
50
|
Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev 2012; 31:143-62. [PMID: 22101807 PMCID: PMC3350632 DOI: 10.1007/s10555-011-9337-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination.
Collapse
Affiliation(s)
- Samar Masoumi Moghaddam
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - Afshin Amini
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - David L. Morris
- Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - Mohammad H. Pourgholami
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| |
Collapse
|