1
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
2
|
Cun JE, Pan Y, Zhang Z, Lu Y, Li J, Pan Q, Gao W, Luo K, He B, Pu Y. Photo-enhanced upcycling H 2O 2 into hydroxyl radicals by IR780-embedded Fe 3O 4@MIL-100 for intense nanocatalytic tumor therapy. Biomaterials 2022; 287:121687. [PMID: 35872555 DOI: 10.1016/j.biomaterials.2022.121687] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS)-based nanocatalytic tumor therapy is alluring owing to the capability to generate highly cytotoxic ∙OH radicals from tumoral H2O2. However, the antitumor efficacy is highly dependent on the radical generation efficiency and challenged by the high levels of antioxidative glutathione (GSH) in cancer cells. Herein, we report an IR-780 decorated, GSH-depleting Fe3O4@MIL-100 (IFM) nanocomposite for photo-enhanced tumor catalytic therapy by extensive production of ∙OH, which is realized by an integration of excellent peroxidase-like activity of IFM, selective upregulation of tumoral H2O2 by β-lapachone, and localized hyperthermia by near infrared light irradiation. IFM shows potentiated antiproliferative effect in 4T1 cancer cells by ∙OH overproduction and glutathione scavenging, inducing intracellular redox dyshomeostasis and cell death by concurrent apoptosis and ferroptosis. In vivo antitumor investigation further demonstrates photoacoustic and fluorescence imaging-guided combinational therapy with a tumor inhibition rate of 96.4%. This study provides a strategy of photo-enhanced nanocatalytic tumor therapy by tumor-specific H2O2 amplification and hyperthermia.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Ruggeberg KG, O'Sullivan P, Kovacs TJ, Dawson K, Capponi VJ, Chan PP, Golobish TD, Gruda MC. Hemoadsorption Improves Survival of Rats Exposed to an Acutely Lethal Dose of Aflatoxin B 1. Sci Rep 2020; 10:799. [PMID: 31964964 PMCID: PMC6972926 DOI: 10.1038/s41598-020-57727-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022] Open
Abstract
Mycotoxins, such as aflatoxin B1 (AFB1), pose a serious threat as biological weapons due to their high toxicity, environmental stability, easy accessibility and lack of effective therapeutics. This study investigated if blood purification therapy with CytoSorb (CS) porous polymer beads could improve survival after a lethal aflatoxin dose (LD90). The effective treatment window and potential therapeutic mechanisms were also investigated. Sprague Dawley rats received a lethal dose of AFB1 (0.5-1.0 mg/kg) intravenously and hemoperfusion with a CS or Control device was initiated immediately, or after 30, 90, or 240-minute delays and conducted for 4 hours. The CS device removes AFB1 from circulation and significantly improves survival when initiated within 90 minutes of toxin administration. Treated subjects exhibited improved liver morphology and health scores. Changes in the levels of cytokines, leukocytes and platelets indicate a moderately-severe inflammatory response to acute toxin exposure. Quantitative proteomic analysis showed significant changes in the level of a broad spectrum of plasma proteins including serine protease/endopeptidase inhibitors, coagulation factors, complement proteins, carbonic anhydrases, and redox enzymes that ostensibly contribute to the therapeutic effect. Together, these results suggest that hemoadsorption with CS could be a viable countermeasure against acute mycotoxin exposure.
Collapse
Affiliation(s)
| | | | | | - Kathryn Dawson
- CytoSorbents Medical, Monmouth Junction, NJ, United States
| | | | - Phillip P Chan
- CytoSorbents Medical, Monmouth Junction, NJ, United States
| | | | | |
Collapse
|
4
|
Self-assembling Dextran prodrug for redox- and pH-responsive co-delivery of therapeutics in cancer cells. Colloids Surf B Biointerfaces 2020; 185:110537. [DOI: 10.1016/j.colsurfb.2019.110537] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 12/25/2022]
|
5
|
Multi-Acting Mitochondria-Targeted Platinum(IV) Prodrugs of Kiteplatin with α-Lipoic Acid in the Axial Positions. Int J Mol Sci 2018; 19:ijms19072050. [PMID: 30011897 PMCID: PMC6073472 DOI: 10.3390/ijms19072050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Platinum(II) drugs are activated intracellularly by aquation of the leaving groups and then bind to DNA, forming DNA adducts capable to activate various signal-transduction pathways. Mostly explored in recent years are Pt(IV) complexes which allow the presence of two additional ligands in the axial positions suitable for the attachment of other cancer-targeting ligands. Here we have extended this strategy by coordinating in the axial positions of kiteplatin ([PtCl₂(cis-1,4-DACH)], DACH = Diaminocyclohexane) and its CBDCA (1,1-cyclobutanedicarboxylate) analogue the antioxidant α-Lipoic acid (ALA), an inhibitor of the mitochondrial pyruvate dehydrogenase kinase (PDK). The new compounds (cis,trans,cis-[Pt(CBDCA)(ALA)₂(cis-1,4-DACH)], 2, and cis,trans,cis-[PtCl₂(ALA)₂(cis-1,4-DACH)], 3), after intracellular reduction, release the precursor Pt(II) species and two molecules of ALA. The Pt residue is able to target DNA, while ALA could act on mitochondria as activator of the pyruvate dehydrogenase complex, thus suppressing anaerobic glycolysis. Compounds 2 and 3 were tested in vitro on a panel of five human cancer cell lines and compared to cisplatin, oxaliplatin, and kiteplatin. They proved to be much more effective than the reference compounds, with complex 3 most effective in 3D spheroid tumor cultures. Notably, treatment of human A431 carcinoma cells with 2 and 3 did not determine increase of cellular ROS (usually correlated to inhibition of mitochondrial PDK) and did not induce a significant depolarization of the mitochondrial membrane or alteration of other morphological mitochondrial parameters.
Collapse
|
6
|
Iorga A, Dara L, Kaplowitz N. Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis. Int J Mol Sci 2017; 18:ijms18051018. [PMID: 28486401 PMCID: PMC5454931 DOI: 10.3390/ijms18051018] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) can broadly be divided into predictable and dose dependent such as acetaminophen (APAP) and unpredictable or idiosyncratic DILI (IDILI). Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable) results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis) of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER) and mitochondrial stress) leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI) is usually the result of engagement of the innate and adaptive immune system (likely apoptotic), involving death receptors (DR). Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death.
Collapse
Affiliation(s)
- Andrea Iorga
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lily Dara
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Neil Kaplowitz
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
7
|
TAMH: A Useful In Vitro Model for Assessing Hepatotoxic Mechanisms. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4780872. [PMID: 28074186 PMCID: PMC5198153 DOI: 10.1155/2016/4780872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
In vitro models for hepatotoxicity can be useful tools to predict in vivo responses. In this review, we discuss the use of the transforming growth factor-α transgenic mouse hepatocyte (TAMH) cell line, which is an attractive model to study drug-induced liver injury due to its ability to retain a stable phenotype and express drug-metabolizing enzymes. Hepatotoxicity involves damage to the liver and is often associated with chemical exposure. Since the liver is a major site for drug metabolism, drug-induced liver injury is a serious health concern for certain agents. At the molecular level, various mechanisms may protect or harm the liver during drug-induced hepatocellular injury including signaling pathways and endogenous factors (e.g., Bcl-2, GSH, Nrf2, or MAPK). The interplay between these and other pathways in the hepatocyte can change upon drug or drug metabolite exposure leading to intracellular stress and eventually cell death and liver injury. This review focuses on mechanistic studies investigating drug-induced toxicity in the TAMH line and how alterations to hepatotoxic mechanisms in this model relate to the in vivo situation. The agents discussed herein include acetaminophen (APAP), tetrafluoroethylcysteine (TFEC), flutamide, PD0325901, lapatinib, and flupirtine.
Collapse
|
8
|
Dara L, Liu ZX, Kaplowitz N. Questions and controversies: the role of necroptosis in liver disease. Cell Death Discov 2016; 2:16089. [PMID: 27924226 PMCID: PMC5136616 DOI: 10.1038/cddiscovery.2016.89] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Acute and chronic liver injury results in hepatocyte death and turnover. If injury becomes chronic, the continuous cell death and turnover leads to chronic inflammation, fibrosis and ultimately cirrhosis and hepatocellular carcinoma. Controlling liver cell death both in acute injury, to rescue the liver from acute liver failure, and in chronic injury, to curb secondary inflammation and fibrosis, is of paramount importance as a therapeutic strategy. Both apoptosis and necrosis occur in the liver, but the occurrence of necroptosis in the liver and its contribution to liver disease is controversial. Necroptosis is a form of regulated necrosis which occurs in certain cell types when caspases (+/-cIAPs) are inhibited through the RIPK1-RIPK3 activation of MLKL. The occurrence of necroptosis in the liver has recently been examined in multiple liver injury models with conflicting results. The aim of this review is to summarize the published data with an emphasis on the controversies and remaining questions in the field.
Collapse
Affiliation(s)
- Lily Dara
- Research Center for Liver Disease, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA; Division of GI/Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhang-Xu Liu
- Research Center for Liver Disease, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA; Division of GI/Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Kaplowitz
- Research Center for Liver Disease, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA; Division of GI/Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Liver Fatty Acid Binding Protein Deficiency Provokes Oxidative Stress, Inflammation, and Apoptosis-Mediated Hepatotoxicity Induced by Pyrazinamide in Zebrafish Larvae. Antimicrob Agents Chemother 2016; 60:7347-7356. [PMID: 27697757 DOI: 10.1128/aac.01693-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/24/2016] [Indexed: 01/30/2023] Open
Abstract
Pyrazinamide (PZA) is an essential antitubercular drug, but little is still known about its hepatotoxicity potential. This study examined the effects of PZA exposure on zebrafish (Danio rerio) larvae and the mechanisms underlying its hepatotoxicity. A transgenic line of zebrafish larvae that expressed enhanced green fluorescent protein (EGFP) in the liver was incubated with 1, 2.5, and 5 mM PZA from 72 h postfertilization (hpf). Different endpoints such as mortality, morphology changes in the size and shape of the liver, histological changes, transaminase analysis and apoptosis, markers of oxidative and genetic damage, as well as the expression of certain genes were selected to evaluate PZA-induced hepatotoxicity. Our results confirm the manner of PZA dose-dependent hepatotoxicity. PZA was found to induce marked injury in zebrafish larvae, such as liver atrophy, elevations of transaminase levels, oxidative stress, and hepatocyte apoptosis. To further understand the mechanism behind PZA-induced hepatotoxicity, changes in gene expression levels in zebrafish larvae exposed to PZA for 72 h postexposure (hpe) were determined. The results of this study demonstrated that PZA decreased the expression levels of liver fatty acid binding protein (L-FABP) and its target gene, peroxisome proliferator-activated receptor α (PPAR-α), and provoked more severe oxidative stress and hepatitis via the upregulation of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and transforming growth factor β (TGF-β). These findings suggest that L-FABP-mediated PPAR-α downregulation appears to be a hepatotoxic response resulting from zebrafish larva liver cell apoptosis, and L-FABP can be used as a biomarker for the early detection of PZA-induced liver damage in zebrafish larvae.
Collapse
|
10
|
Kryl’skiy ED, Popova TN, Kirilova EM, Safonova OA. Effect of lipoic acid on the activity of caspases and the characteristics of the immune and antioxidant statuses in rats with rheumatoid arthritis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016040130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wu KL, Chang SH, Manousakas I, Huang HH, Teong B, Chuang CW, Kuo SM. Effects of culturing media on hepatocytes differentiation using Volvox sphere as co-culturing vehicle. Biochem Biophys Res Commun 2015; 458:620-625. [DOI: 10.1016/j.bbrc.2015.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/04/2015] [Indexed: 12/24/2022]
|
12
|
Toomer KH, Chen Z. Autoimmunity as a double agent in tumor killing and cancer promotion. Front Immunol 2014; 5:116. [PMID: 24672527 PMCID: PMC3957029 DOI: 10.3389/fimmu.2014.00116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/05/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy through manipulation of the immune system holds great potential for the treatment of human cancers. However, recent trials targeting the negative immune regulators cytotoxic T-lymphocyte antigen 4, programed death 1 (PD-1), and PD-1 receptor ligand (PD-L1) demonstrated that clinically significant antitumor responses were often associated with the induction of autoimmune toxicity. This finding suggests that the same immune mechanisms that elicit autoimmunity may also contribute to the destruction of tumors. Given the fact that the immunological identity of tumors might be largely an immunoprivileged self, autoimmunity may not represent a wholly undesirable outcome in the context of cancer immunotherapy. Rather, targeted killing of cancer cells and autoimmune damage to healthy tissues may be intricately linked through molecular mechanisms, in particular inflammatory cytokine signaling. On the other hand, since chronic inflammation is a well-recognized condition that promotes tumor development, it appears that autoimmunity can be a "double agent" in mediating either pro-tumor or antitumor effects. This review surveys the tumor-promoting and tumoricidal activities of several prominent cytokines: IFN-γ, TNF-α, TGF-β, IL-17, IL-23, IL-4, and IL-13, produced by three major subsets of T helper cells that interact with innate immune cells. Many of these cytokines exert divergent and seemingly contradictory effects on cancer development in different human and animal models, suggesting a high degree of context dependence in their functions. We hypothesize that these inflammatory cytokines could mediate a feedback loop of autoimmunity, antitumor immunity, and tumorigenesis. Understanding the diverse and paradoxical roles of cytokines from autoimmune responses in the setting of cancer will advance the long-term goal of improving cancer immunotherapy, while minimizing the hazards of immune-mediated tissue damage and the possibility of de novo tumorigenesis, through proper monitoring and preventive measures.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine , Miami, FL , USA ; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
13
|
α-Lipoic acid prevents p53 degradation in colon cancer cells by blocking NF-κB induction of RPS6KA4. Anticancer Drugs 2013; 24:555-65. [PMID: 23599020 DOI: 10.1097/cad.0b013e32836181eb] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α-Lipoic acid (α-LA) is a biogenic antioxidant that has been used successfully in the treatment of diabetic polyneuropathy and its application to many oxidative stress-associated chronic diseases has increased. In this study, we investigated the effect of α-LA on colorectal cancer cell growth and its underlying mechanism. α-LA treatment resulted in a marked reduction in the growth of HCT116 colon cancer cells in a dose-dependent manner through the G1 arrest of the cell cycle and apoptosis induction. α-LA treatment significantly increased tumor cell response to various apoptotic stresses, such as etoposide, 5-fluorouracil, UVC, γ-irradiation, hypoxia, and tumor necrosis factor α (TNFα). Interestingly, α-LA increased p53 protein stability and its apoptosis-enhancing effect was more evident in wild-type p53-carrying cells compared with p53-deficient cells, suggesting that the proapoptotic role of α-LA is associated with its p53-stabilizing function. On the basis of our microarray data showing α-LA downregulation of the ribosomal protein p90S6K (RPS6KA4), which has been reported to inhibit p53 function, we tested whether α-LA regulation of RPS6KA4 is associated with its proapoptotic function. α-LA treatment led to a marked reduction in the RPS6KA4 mRNA level in multiple colorectal cancer cells and restoration of RPS6KA4 expression markedly attenuated α-LA induction of apoptosis in a p53-dependent manner. In addition, we observed that RPS6KA4 expression is activated by TNFα whereas both basal and TNFα induction of RPS6KA4 are inhibited by the nuclear factor-κB (NF-κB) inhibitor BAY11-7082 or transfection of a dominant-negative mutant of NF-κB, indicating that NF-κB plays a crucial role in RPS6KA4 gene expression. Finally, we found that α-LA exerts an inhibitory effect on the nuclear translocation of NF-κB triggered by TNFα. Collectively, our study shows that α-LA suppresses colorectal tumor cell growth at least partially by preventing RPS6KA4-mediated p53 inhibition through blockade of NF-κB signaling.
Collapse
|
14
|
Sarra M, Cupi ML, Bernardini R, Ronchetti G, Monteleone I, Ranalli M, Franzè E, Rizzo A, Colantoni A, Caprioli F, Maggioni M, Gambacurta A, Mattei M, Macdonald TT, Pallone F, Monteleone G. IL-25 prevents and cures fulminant hepatitis in mice through a myeloid-derived suppressor cell-dependent mechanism. Hepatology 2013; 58:1436-50. [PMID: 23564603 DOI: 10.1002/hep.26446] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 03/27/2013] [Accepted: 04/04/2013] [Indexed: 12/21/2022]
Abstract
UNLABELLED Fulminant hepatitis (FH) is a disease characterized by massive destruction of hepatocytes with severe impairment of liver function. The pathogenesis of FH is not fully understood, but hyperactivity of T cells and macrophages with excessive production of cytokines are important hallmarks of the condition. In this study, we investigated the role of interleukin (IL)-25 in FH. IL-25 expression was evaluated in patients with FH and in livers of mice with FH induced by D-galactosamine (D-Gal) and lipopolysaccharide (LPS). Mice were treated with IL-25 before D-Gal/LPS-induced FH and before or after concanavalin A (ConA)-induced FH. Mononuclear cells were isolated from livers of mice treated with or without IL-25 and analyzed for GR1(+) CD11b(+) cells. CFSE-labeled T cells were cocultured with GR1(+) CD11b(+) cells and their proliferation was evaluated by flow cytometry. Mice were also treated with a depleting anti-GR1 antibody before IL-25 and D-Gal/LPS administration. IL-25 was constitutively expressed in mouse and human liver and down-regulated during FH. IL-25 prevented D-Gal/LPS-induced FH and this effect was associated with increased infiltration of the liver with cells coexpressing GR1 and CD11b. In vitro studies showed that GR1(+) CD11b(+) cells isolated from mice given IL-25 inhibited T-cell proliferation. Consistently, in vivo depletion of GR1(+) cells abrogated the protective effect of IL-25 in experimental D-Gal/LPS-induced FH. IL-25 was both preventive and therapeutic in ConA-induced FH. CONCLUSIONS IL-25 expression is markedly reduced during human and experimental FH. IL-25 promotes liver accumulation of GR1(+) CD11b(+) cells with immunoregulatory properties.
Collapse
Affiliation(s)
- Massimiliano Sarra
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jung YS, Kim SJ, Kwon DY, Jun DS, Kim YC. Significance of alterations in the metabolomics of sulfur-containing amino acids during liver regeneration. Biochimie 2013; 95:1605-10. [PMID: 23669448 DOI: 10.1016/j.biochi.2013.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
It has been known that liver regeneration is accompanied with a profound change in the metabolomics of sulfur-containing substances in liver. However, its physiological significance in the liver regenerative process is still unclear. Our previous work showed that buthioninesulfoximine and phorone, both widely used to deplete intracellular glutathione (GSH) in biological experiments, induced contrasting changes in the sulfur-containing amino acid metabolism in liver. In this study we employed these GSH-depleting agents to evaluate the role of sulfur-containing substances in the early phase of liver regeneration. Male rats treated with buthioninesulfoximine or phorone were subjected to two-thirds partial hepatectomy (PHx). At the doses used, the magnitude of GSH depletion after PHx was comparable, but buthioninesulfoximine administration inhibited the progression of liver regeneration as determined by liver weight increase, elevation of serum alanine aminotransferase activity, and cyclin D1 and proliferating cell nuclear antigen (PCNA) protein expressions, whereas liver recovery was significantly accelerated in the phorone-treated rats, suggesting that the role of GSH in this process is minimal. Hepatic concentrations of methionine, S-adenosylmethionine, cysteine, taurine and GSH were all elevated by PHx. Methionine adenosyltransferase activity was also induced in the remnant liver. Buthioninesulfoximine administration depressed the elevation of S-adenosylmethionine, but increased the catabolism of cysteine to taurine. In contrast, S-adenosylmethionine elevation was augmented whereas cysteine, hypotaurine and taurine were decreased in the phorone-treated rats. PHx elevated hepatic putrescine and spermidine, but lowered spermine concentrations. Buthioninesulfoximine administration increased putrescine further, but decreased spermidine and spermine concentrations. On the contrary, both spermidine and spermine concentrations were elevated in the rats treated with phorone. The results suggest that the availability of S-adenosylmethionine plays a critical role in the progression of liver regeneration via enhancement of polyamine synthesis. These findings raise the possibility that regulating hepatic transsulfuration reactions may be capable of modifying the recovery process after liver injury.
Collapse
Affiliation(s)
- Young S Jung
- College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, South Korea
| | | | | | | | | |
Collapse
|
16
|
AL-Rasheed NM, Al-Rasheed NM, Attia HA, Hasan IH, Al-Amin M, Al-Ajmi H, Mohamad RA. Adverse cardiac responses to alpha-lipoic acid in a rat-diabetic model: possible mechanisms? J Physiol Biochem 2013; 69:761-78. [DOI: 10.1007/s13105-013-0252-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
|
17
|
Karakus E, Halici Z, Albayrak A, Polat B, Bayir Y, Kiki İ, Cadirci E, Topcu A, Aksak S. Agomelatine. Hum Exp Toxicol 2013; 32:846-57. [DOI: 10.1177/0960327112472994] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Paracetamol was shown to induce hepatotoxicity or more severe fatal acute hepatic damage. Agomelatine, commonly known as melatonin receptor agonist, is a new antidepressant, which resynchronizes circadian rhythms with subjective and objective improvements in sleep quality and architecture, as melatonin does. In the present study, it was aimed to evaluate the hepatoprotective activity of agomelatine on paracetamol-induced hepatotoxicity and to understand the relationship between the hepatoprotective mechanism of agomelatine and antioxidant system and proinflammatory cytokines. A total of 42 rats were divided into 7 groups as each composed of 6 rats: (1) intact, (2) 40 mg/kg agomelatine, (3) 140 mg/kg N-acetylcysteine (NAC), (4) 2 g/kg paracetamol, (5) 2 g/kg paracetamol + 140 mg/kg NAC, (6) 2 g/kg paracetamol + 20 mg/kg agomelatine, and (7) 2 g/kg paracetamol + 40 mg/kg agomelatine groups. Paracetamol-induced hepatotoxicity was applied and liver and blood samples were analyzed histopathologically and biochemically. There were statistically significant increases in the activities of aspartate aminotransferase, alanine aminotransferase, levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) and 8-iso-prostane, and decreases in the activity of superoxide dismutase and level of glutathione in the group treated with paracetamol. Administration of agomelatine and NAC separately reversed these changes significantly. In conclusion, agomelatine administration protects liver cells from paracetamol-induced hepatotoxicity via antioxidant activity and reduced proinflammatory cytokines, such as TNF-α and IL-6.
Collapse
Affiliation(s)
- E Karakus
- Department of Pharmacology and Toxicology, Ataturk University School of Veterinary Medicine, Erzurum, Turkey
| | - Z Halici
- Department of Pharmacology, School of Medicine, Ataturk University, Erzurum, Turkey
| | - A Albayrak
- Department of Pharmacology, School of Medicine, Ataturk University, Erzurum, Turkey
| | - B Polat
- Department of Pharmacology, School of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Y Bayir
- Department of Biochemistry, School of Pharmacy, Ataturk University, Erzurum, Turkey
| | - İ Kiki
- Division of Hematology, Department of Internal Medicine, School of Medicine, Ataturk University, Erzurum, Turkey
| | - E Cadirci
- Department of Pharmacology, School of Pharmacy, Ataturk University, Erzurum, Turkey
| | - A Topcu
- Department of Pharmacology, School of Medicine, Ataturk University, Erzurum, Turkey
| | - S Aksak
- Department of Histology and Embryology, School of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
18
|
Ferah I, Halici Z, Bayir Y, Demirci E, Unal B, Cadirci E. The role of infliximab on paracetamol-induced hepatotoxicity in rats. Immunopharmacol Immunotoxicol 2013; 35:373-81. [PMID: 23496246 DOI: 10.3109/08923973.2013.775589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paracetamol has a reasonable safety profile when consumed in therapeutic doses. However, it could induce hepatotoxicity and even acute liver failure when taken at an overdose. Infliximab is tumor necrosis factor alpha (TNF-α) inhibitor agent, which has been developed as a therapeutic agent for TNF-α-mediated disease. It acts by binding and neutralizing TNF. The aim of our study was to evaluate the hepatoprotective activity of infliximab on paracetamol-induced hepatotoxicity and to understand the relationship between the TNF-α and paracetamol-induced liver injury. Fifty-six rats were divided into eight groups as each composed of seven rats: (1) intact, (2) 7 mg/kg infliximab, (3) 140 mg/kg NAC, (4) 2 g/kg paracetamol, (5) 2 g/kg paracetamol + 140 mg/kg NAC, (6) 2 g/kg paracetamol + 3 mg/kg infliximab, (7) 2 g/kg paracetamol + 5 mg/kg infliximab and (8) 2 g/kg paracetamol + 7 mg/kg infliximab groups. Liver function tests including lipid peroxidation levels were analyzed and histopathological changes of liver were also observed. There were statistically significant increases in the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), levels of TNF-α and malondialdehyde (MDA) and decreases in the activity of superoxide dismutase (SOD) and level of glutathione (GSH) in the group treated with paracetamol. Infliximab administration dramatically reduced serum ALT, AST and TNF-α level. Also, it restored GSH, SOD and decreased MDA levels in liver. Liver histopathological examination showed that infliximab administration antagonized paracetamol-induced liver pathological damage. The results of present study suggest that infliximab has significant hepatoprotective activity on paracetamol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Irmak Ferah
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | | | | | | | | | | |
Collapse
|
19
|
Riehle KJ, Haque J, McMahan RS, Kavanagh TJ, Fausto N, Campbell JS. Sustained Glutathione Deficiency Interferes with the Liver Response to TNF-α and Liver Regeneration after Partial Hepatectomy in Mice. JOURNAL OF LIVER: DISEASE & TRANSPLANTATION 2013; 1:1000105. [PMID: 24611135 PMCID: PMC3943358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glutathione (GSH) is a critical intracellular antioxidant that is active in free radical scavenging and as a reducing equivalent in biological reactions. Recent studies have suggested that GSH can affect cellular function at the level of gene transcription as well, in particular by affecting NF-κB activation. Additionally, increased or decreased GSH levels in vitro have been tied to increased or decreased hepatocyte proliferation, respectively. Here, we investigated the effect of GSH on the liver's response to TNF-α injection and 2/3 partial hepatectomy (PH), using mice deficient for the modifier subunit of glutamate-cysteine ligase (GCLM), the rate-limiting enzyme in de novo GSH synthesis. We demonstrate that Gclm-/- mice have a delay in IκBα degradation after TNF-α injection, resulting in delayed NF-κB nuclear translocation. These mice display profound deficiencies in GSH levels both before and during regeneration, and after PH, Gclm-/- mice have an overall delay in cell cycle progression, with slower DNA synthesis, mitosis, and expression of cell cycle proteins. Moreover, there is a delay in expression of downstream targets of NF-κB in the regenerating liver in Gclm-/- mice. These data suggest that GSH may play a role in hepatic NF-κB activation in vivo, which is necessary for accurate timing of liver regeneration.
Collapse
Affiliation(s)
- Kimberly J. Riehle
- Department of Surgery, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jamil Haque
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Ryan S. McMahan
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Nelson Fausto
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jean S. Campbell
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Antigenotoxic effect of lipoic acid against mitomycin-C in human lymphocyte cultures. Cytotechnology 2012; 65:553-65. [PMID: 23132681 DOI: 10.1007/s10616-012-9504-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/24/2012] [Indexed: 12/14/2022] Open
Abstract
Antitumor agents are used in therapy against many forms of human cancer. One of these is mitomycin-C (MMC). As with many agents, it can interact with biological molecules and can induce genetic hazards in non-tumor cells. One of the possible approaches to protect DNA from this damage is to supply antioxidants that can remove free radicals produced by antitumor agents. Lipoic acid (LA) is known as one of the most powerful antioxidants. The aim of this study was to investigate antigenotoxic effects of LA against MMC induced chromosomal aberrations (CA), sister chromatid exchanges (SCE) and micronucleus (MN) formation in human lymphocytes. Lymphocytes were treated with 0.2 μg MMC/heparinized mL for 48 h. Three different concentrations (0.5, 1, 2 μg/mL) of LA were used together with MMC in three different applications; 1 h pre-treatment, simultaneous treatment and 1 h post-treatment. A negative, a positive and a solvent control were also included. In all the cultures treated with MMC + LA, the frequency of abnormal cells and CA/cell significantly decreased compared to MMC. Statistically significant reduction was also observed in SCE/cell and MN frequencies in all treatments. These results demonstrated anticlastogenic and antimutagenic effects of LA against MMC induced genotoxicity. LA showed the most efficient effect during 1 h pretreatment. On the other hand, MMC + LA treatments induced significant reduction in mitotic index than that of MMC treatment alone. These results are encouraging that LA can be a possible chemopreventive agent in tumorigenesis in both cancer patients and in health care persons handling anti-cancer drugs.
Collapse
|
21
|
Tseilikman V, Kozochkin D, Synitsky A, Sibiriak S, Tseilikman O, Katashinsky E, Nikitina A, Vinogradov D, Simbirtsev A. Does stress-induced release of interleukin-1 cause liver injury? Cell Mol Neurobiol 2012; 32:1069-78. [PMID: 22869351 DOI: 10.1007/s10571-012-9866-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 07/18/2012] [Indexed: 12/13/2022]
Abstract
It is well established that repeated immobilization stress (RIS) is induced by increased levels of cytokines and the emergence of lesions in the liver. Our data prove that interleukin-1 (IL-1) causes liver lesions in stressed Wistar rats. In essence, the relationship between IL-1 and stress-induced liver injury is based on three findings: (1) IL-1β treatment causes liver inflammation, consisting of infiltrating monocytes and the appearance of necrosis by increasing lipid peroxidation and protein carbonylation. Positive correlations between the content of heptane-soluble diene conjugates and an area of necrosis, as well as between content carbonylated proteins and an area of necrosis, were found after injection of IL-1β to unstressed rats. (2) RIS is accompanied by increased levels of circulating IL-1β and corticosterone. In the liver, stress causes the emergence of foci of necrosis with perivascular and lobular infiltration of mononuclear cells as well as increased free radical oxidation. Moreover, there were observed down-regulations of cytochrome P450 (CYP)-dependent enzymes, CYP1A1 activities, and decreased CYP1A1 mRNA content. Positive correlations between the level of circulating IL-1β and necrosis areas, as well as between circulating IL-1β and the content of heptane-soluble diene conjugates, were observed in stressed rats. In addition, the positive correlation between necrosis foci and heptane-soluble diene conjugates was revealed after stress cessation. (3) Use of the IL-1 receptor antagonist Anakinra at a dose of 2 μg/kg to treat the effects of stress prevents infiltration of mononuclear cells and reduces the level of free radical oxidation as well as necrosis of lesions. As a result, blocking IL-1 receptors with an antagonist significantly rescues stress-induced liver injury, suggesting that IL-1 might be involve in the cascade of liver injury that initiated by sustained stress.
Collapse
|
22
|
Kim JI, Cho SR, Lee CM, Park ES, Kim KN, Kim HC, Lee HY. Induction of ER Stress-Mediated Apoptosis by α-Lipoic Acid in A549 Cell Lines. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2012; 45:1-10. [PMID: 22363901 PMCID: PMC3283777 DOI: 10.5090/kjtcs.2012.45.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/25/2011] [Accepted: 11/25/2011] [Indexed: 12/25/2022]
Abstract
Background α-Lipoic acid (α-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of α-LA in a lung cancer cell line, A549. Materials and Methods α-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription-polymerase chain reaction analyses. Results α-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. α-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by α-LA, and the antioxidant N-acetyl-L-cysteine decreased the α-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion α-LA induced ER stress-mediated apoptosis in A549 cells via ROS. α-LA may therefore be clinically useful for treating lung cancer.
Collapse
Affiliation(s)
- Jong In Kim
- Department of Thoracic and Cardiovascular Surgery, Gospel Hospital, Kosin University College of Medicine, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Singh BK, Tripathi M, Pandey PK, Kakkar P. Alteration in mitochondrial thiol enhances calcium ion dependent membrane permeability transition and dysfunction in vitro: a cross-talk between mtThiol, Ca(2+), and ROS. Mol Cell Biochem 2011; 357:373-85. [PMID: 21748338 DOI: 10.1007/s11010-011-0908-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/28/2011] [Indexed: 12/16/2022]
Abstract
Mitochondrial permeability transition (MPT) and dysfunctions play a pivotal role in many patho-physiological and toxicological conditions. The interplay of mitochondrial thiol (mtThiol), MPT, Ca(2+) homeostasis, and resulting dysfunctions still remains controversial despite studies by several research groups. Present study was undertaken to ascertain the correlation between Ca(2+) homeostasis, mtThiol alteration and reactive oxygen species (ROS) in causing MPT leading to mitochondrial dysfunction. mtThiol depletion significantly enhanced Ca(2+) dependent MPT (swelling) and depolarization of mitochondria resulting in release of pro-apoptotic proteins like Cyt c, AIF, and EndoG. mtThiol alteration and Ca(2+) overload caused reduced mitochondrial electron flow, oxidation of pyridine nucleotides (NAD(P)H) and significantly enhanced ROS generation (DHE and DCFH-DA fluorescence). Studies with MPT inhibitor (Cyclosporin A), Ca(2+) uniport blocker (ruthenium red) and Ca(2+) chelator (BAPTA) indicated that mitochondrial dysfunction was more pronounced under dual stress of altered mtThiol and Ca(2+) overload in comparison with single stress of excessive Ca(2+). Transmission electron microscopy confirmed the changes in mitochondrial integrity under stress. Our findings suggest that the Ca(2+) overload itself is not solely responsible for structural and functional impairment of mitochondria. A multi-factorial cross-talk between mtThiol, Ca(2+) and ROS is responsible for mitochondrial dysfunction. Furthermore, minor depletion of mtThiol was found to be an important factor along with Ca(2+) overload in triggering MPT in isolated mitochondria, tilting the balance towards disturbed functionality.
Collapse
Affiliation(s)
- Brijesh Kumar Singh
- Herbal Research Section, Indian Institute of Toxicology Research, Formerly-Industrial Toxicology Research Centre, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | |
Collapse
|
24
|
|
25
|
Speicher T, Foehrenbacher A, Pochic I, Weiland T, Wendel A. Malignant but not naïve hepatocytes of human and rodent origin are killed by TNF after metabolic depletion of ATP by fructose. J Hepatol 2010; 53:896-902. [PMID: 20800309 DOI: 10.1016/j.jhep.2010.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 04/11/2010] [Accepted: 05/01/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS TNF was the first cytokine employed for cancer therapy, but its use was limited due to its insufficient selectivity towards malignant cells. Fructose induces transient hepatic ATP depletion in humans and rodents due to the liver-specific fructose metabolism via fructokinase, while other cells e.g. Muscle cells metabolize fructose via hexokinase. Under ATP depleted conditions hepatocytes are protected against TNF-induced apoptosis. Our aim was to identify metabolic differences between normal and malignant liver cells that can be exploited for selective immunotherapy. METHODS We analyzed the expression and activities of enzymes involved in fructose metabolism in primary hepatocytes and hepatoma cell lines. Furthermore, we studied the influence of hexokinase II (HKII) on fructose-mediated ATP depletion and cytoprotection in murine hepatocytes. RESULTS Primary mouse, rat and human hepatocytes depleted of ATP by fructose were fully protected against TNF-induced cytotoxicity. By contrast, hepatic tumor cell lines showed increased HKII expression, lack of fructose-mediated ATP depletion and, therefore, remained susceptible to TNF/ActD-induced apoptosis. Inhibition of hexokinases restored fructose-induced ATP depletion in hepg2 cells. Finally, hypoxia-inducible factor1 (HIF1)-mediated up-regulation of HKII prevented fructose-induced ATP depletion and overexpression of HKII inhibited fructose-mediated cytoprotection against TNF-induced apoptosis in primary murine hepatocytes. CONCLUSION Increased expression of HKII in malignant cells of hepatic origin shifts the fructose metabolism from liver- to muscle-type, thereby preventing ATP depletion and subsequent cytoprotection of the target cells. Therefore, healthy liver cells are transiently protected from TNF-mediated cell death by fructose-induced ATP depletion, while malignant cells can be selectively eliminated through TNF-induced apoptosis.
Collapse
Affiliation(s)
- Tobias Speicher
- Faculty of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
26
|
Ventura-Holman T, Mamoon A, Subauste MC, Subauste JS. The effect of oncoprotein v-erbA on thyroid hormone-regulated genes in hepatocytes and their potential role in hepatocellular carcinoma. Mol Biol Rep 2010; 38:1137-44. [DOI: 10.1007/s11033-010-0211-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/11/2010] [Indexed: 12/29/2022]
|
27
|
Lee HS, Na MH, Kim WK. α-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells. Nutr Res 2010; 30:403-9. [DOI: 10.1016/j.nutres.2010.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
28
|
Dozio E, Ruscica M, Passafaro L, Dogliotti G, Steffani L, Marthyn P, Pagani A, Demartini G, Esposti D, Fraschini F, Magni P. The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells. Eur J Pharmacol 2010; 641:29-34. [PMID: 20580704 DOI: 10.1016/j.ejphar.2010.05.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/13/2010] [Accepted: 05/06/2010] [Indexed: 01/10/2023]
Abstract
Unlike normal cells, tumor cells survive in a specific redox environment where the elevated reactive oxygen species contribute to enhance cell proliferation and to suppress apoptosis. Alpha-lipoic acid, a naturally occurring reactive oxygen species scavenger, has been shown to possess anticancer activity, due to its ability to suppress proliferation and to induce apoptosis in different cancer cell lines. Since at the moment little information is available regarding the potential effects of alpha-lipoic acid on breast cancer, in the present study we addressed the question whether alpha-lipoic acid induces cell cycle arrest and apoptosis in the human breast cancer cell line MCF-7. Moreover, we investigated some molecular mechanisms which mediate alpha-lipoic acid actions, focusing on the role of the PI3-K/Akt signalling pathway. We observed that alpha-lipoic acid is able to scavenge reactive oxygen species in MCF-7 cells and that the reduction of reactive oxygen species is followed by cell growth arrest in the G1 phase of the cell cycle, via the specific inhibition of Akt pathway and the up-regulation of the cyclin-dependent kinase inhibitor p27(kip1), and by apoptosis, via changes of the ratio of the apoptotic-related protein Bax/Bcl-2. Thus, the anti-tumor activity of alpha-lipoic acid observed in MCF-7 cells further stresses the role of redox state in regulating cancer initiation and progression.
Collapse
Affiliation(s)
- Elena Dozio
- Department of Human Morphology and Biomedical Sciences Città Studi, via L. Mangiagalli 31, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Singh BK, Tripathi M, Pandey PK, Kakkar P. Nimesulide aggravates redox imbalance and calcium dependent mitochondrial permeability transition leading to dysfunction in vitro. Toxicology 2010; 275:1-9. [PMID: 20457212 DOI: 10.1016/j.tox.2010.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 12/15/2022]
Abstract
Nimesulide (selective cyclooxygenase-2 inhibitor) is a nonsteroidal anti-inflammatory drug for the symptomatic treatment of painful conditions like osteoarthritis, spondilitis and primary dysmenorrhoea. Nimesulide induced liver damage is a serious side effect of this otherwise popular drug. The mechanism involved in nimesulide induced hepatotoxicity is still not fully elucidated. However, both mitochondrial dysfunction and oxidative stress have been implicated in contributing to liver injury in susceptible patients. Mitochondria besides being the primary source of energy, act as a hub of signals responsible for initiating cell death, irrespective of the pathway, i.e. apoptosis or necrosis. The present study was aimed to explore the role of compounding stress, i.e. Ca(2+) overload and GSH depletion in nimesulide induced mitochondrial toxicity and dysfunction. Our study showed that, nimesulide (100 microM) treatment resulted into rapid depletion of GSH (60%) in isolated rat liver mitochondria and significant Ca(2+) dependent MPT changed. Enhanced ROS generation (DCF fluorescence) was also observed in mitochondria treated with nimesulide. An important finding was that the concentration at which nimesulide oxidized reduced pyridine nucleotides (autofluorescence of NAD(P)H), it affected mitochondrial electron flow (MTT activity decreased by 75%) and enhanced mitochondrial depolarization significantly as assessed by Rhodamine 123 fluorescent probe. Therefore, nimesulide was found to aggravate redox imbalance and affect Ca(2+) dependent mitochondrial membrane permeability transition leading to dysfunction and ultimately cell death.
Collapse
Affiliation(s)
- Brijesh Kumar Singh
- Herbal Research Section, Indian Institute of Toxicology Research (CSIR) (Formerly-Industrial Toxicology Research Centre), P.O. Box-80, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | |
Collapse
|
30
|
Cuevas EP, Escribano O, Monserrat J, Martínez-Botas J, Sánchez MG, Chiloeches A, Hernández-Breijo B, Sánchez-Alonso V, Román ID, Fernández-Moreno MD, Guijarro LG. RNAi-mediated silencing of insulin receptor substrate-4 enhances actinomycin D- and tumor necrosis factor-alpha-induced cell death in hepatocarcinoma cancer cell lines. J Cell Biochem 2010; 108:1292-301. [PMID: 19795387 DOI: 10.1002/jcb.22359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Insulin receptor substrate-4 (IRS-4) transmits signals from the insulin-like growth factor receptor (IGF-IR) and the insulin receptor (IR) to the PI3K/AKT and the ERK1/2 pathways. IRS-4 expression increases dramatically after partial hepatectomy and plays an important role in HepG2 hepatoblastoma cell line proliferation/differentiation. In human hepatocarcinoma, IRS-4 overexpression has been associated with tumor development. Herein, we describe the mechanism whereby IRS-4 depletion induced by RNA interference (siRNA) sensitizes HepG2 cells to treatment with actinomycin D (Act D) and combined treatment with Act D plus tumor necrosis factor-alpha (TNF-alpha). Similar results have been obtained in HuH 7 and Chang cell lines. Act D therapy drove the cells to a mitochondrial-dependent apoptotic program involving cytochrome c release, caspase 3 activation, PARP fragmentation and DNA laddering. TNF-alpha amplifies the effect of Act D on HepG2 cell apoptosis increasing c-jun N-terminal kinase (JNK) activity, IkappaB-alpha proteolysis and glutathione depletion. IRS-4 depleted cells that were treated with Act D showed an increase in cytochrome c release and procaspase 3 and PARP proteolysis with respect to control cells. The mechanism involved in IRS-4 action is independent of Akt, IkappaB kinase and JNK. IRS-4 down regulation, however, decreased gamma-glutamylcysteine synthetase content and cell glutathione level in the presence of Act D plus TNF-alpha. These results suggest that IRS-4 protects HepG2 cells from oxidative stress induced by drug treatment.
Collapse
Affiliation(s)
- Eva P Cuevas
- Unidad de Toxicología Molecular Hepática, Departamento de Bioquímica y Biología Molecular, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD). Universidad de Alcalá, E-28871 Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Barnes EA, Kenerson HL, Mak BC, Yeung RS. The loss of tuberin promotes cell invasion through the ß-catenin pathway. Am J Respir Cell Mol Biol 2009; 43:617-27. [PMID: 20042714 DOI: 10.1165/rcmb.2008-0335oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in the tumor suppressor tuberin (TSC2) are a common factor in the development of lymphangioleiomyomatosis (LAM). LAM is a cystic lung disease that is characterized by the infiltration of smooth muscle-like cells into the pulmonary parenchyma. The mechanism by which the loss of tuberin promotes the development of LAM has yet to be elucidated, although several lines of evidence suggest it is due to the metastasis of tuberin-deficient cells. Here we show that tuberin-null cells become nonadherent and invasive. These nonadherent cells express cleaved forms of β-catenin. In reporter assays, the β-catenin products are transcriptionally active and promote MMP7 expression. Invasion by the tuberin-null cells is mediated by MMP7. Examination of LAM tissues shows the expression of cleaved β-catenin products and MMP7 consistent with a model that tuberin-deficient cells acquire invasive properties through a β-catenin-dependent mechanism, which may underlie the development of LAM.
Collapse
Affiliation(s)
- Elizabeth A Barnes
- University of Washington, Department of Surgery, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
32
|
Thompson JA, Franklin CC. Enhanced glutathione biosynthetic capacity promotes resistance to As3+-induced apoptosis. Toxicol Lett 2009; 193:33-40. [PMID: 20006689 DOI: 10.1016/j.toxlet.2009.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 02/01/2023]
Abstract
Trivalent arsenite (As(3+)) is a known human carcinogen capable of inducing both cellular transformation and apoptotic cell death by mechanisms involving the production of reactive oxygen species. The tripeptide antioxidant glutathione (GSH) constitutes a vital cellular defense mechanism against oxidative stress. While intracellular levels of GSH are an important determinant of cellular susceptibility to undergo apoptotic cell death, it is not known whether cellular GSH biosynthetic capacity per se regulates As(3+)-induced apoptosis. The rate-limiting enzyme in GSH biosynthesis is glutamate cysteine ligase (GCL), a heterodimeric holoenzyme composed of a catalytic (GCLC) and a modifier (GCLM) subunit. To determine whether increased GSH biosynthetic capacity enhanced cellular resistance to As(3+)-induced apoptotic cell death, we utilized a mouse liver hepatoma (Hepa-1c1c7) cell line stably overexpressing both GCLC and GCLM. Overexpression of the GCL subunits increased GCL holoenzyme formation and activity and inhibited As(3+)-induced apoptosis. This cytoprotective effect was associated with a decrease in As(3+)-induced caspase activation, cleavage of caspase substrates and translocation of cytochrome c to the cytoplasm. In aggregate, these findings demonstrate that enhanced GSH biosynthetic capacity promotes resistance to As(3+)-induced apoptosis by preventing mitochondrial dysfunction and cytochrome c release and highlight the role of the GSH antioxidant defense system in dictating hepatocyte sensitivity to As(3+)-induced apoptotic cell death.
Collapse
Affiliation(s)
- James A Thompson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | | |
Collapse
|
33
|
Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal 2009; 11:2245-63. [PMID: 19361274 PMCID: PMC2819802 DOI: 10.1089/ars.2009.2611] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor-alpha (TNF) is a key cytokine that has been shown to play important physiologic (e.g., inflammation) and pathophysiologic (e.g., various liver pathologies) roles. In liver and other tissues, TNF treatment results in the simultaneous activation of an apoptotic pathway (i.e., TRADD, RIP, JNK) and a survival pathway mediated by NF-kappaB transcription of survival genes (i.e., GADD45beta, Mn-SOD, cFLIP). The cellular response (e.g., proliferation versus apoptosis) to TNF is determined by the balance between the apoptotic signaling pathway and the NF-kappaB survival pathway stimulated by TNF. Reactive oxygen species (ROS) are important modulators of signaling pathways and can regulate both apoptotic signaling and NF-kappaB transcription triggered by TNF. ROS are important in mediating the sustained activation of JNK, to help mediate apoptosis after TNF treatment. In some cells, ROS are second messengers that mediate apoptosis after TNF stimulation. Conversely, ROS can cause redox modifications that inhibit NF-kappaB activation, which can lead to cell death triggered by TNF. Consequently, the redox status of cells can determine the biologic response that TNF will induce in cells. In many liver pathologies, ROS generated extrinsically (e.g., inflammation) or intrinsically (i.e., drugs, toxins) may act in concert with TNF to promote hepatocyte death and liver injury through redox inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Derick Han
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9121, USA.
| | | | | | | | | |
Collapse
|
34
|
Susnow N, Zeng L, Margineantu D, Hockenbery DM. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 2008. [PMID: 19138742 DOI: 10.1016/j.semcancer.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Bcl-2 family of proteins includes pro- and anti-apoptotic factors acting at mitochondrial and microsomal membranes. An impressive body of published studies, using genetic and physical reconstitution experiments in model organisms and cell lines, supports a view of Bcl-2 proteins as the critical arbiters of apoptotic cell death decisions in most circumstances (excepting CD95 death receptor signaling in Type I cells). Evasion of apoptosis is one of the hallmarks of cancer [Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70], relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins is observed in many cancers [Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105-14; Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G, et al. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res. 2007;5:331-9]. The rekindled interest in aerobic glycolysis as a cancer trait raises interesting questions as to how metabolic changes in cancer cells are integrated with other essential alterations in cancer, e.g. promotion of angiogenesis and unbridled growth signals. Apoptosis induced by multiple different signals involves loss of mitochondrial homeostasis, in particular, outer mitochondrial membrane integrity, releasing cytochrome c and other proteins from the intermembrane space. This integrative process, controlled by Bcl-2 family proteins, is also influenced by the metabolic state of the cell. In this review, we consider the role of reactive oxygen species, a metabolic by-product, in the mitochondrial pathway of apoptosis, and the relationships between Bcl-2 functions and oxidative stress.
Collapse
Affiliation(s)
- Nathan Susnow
- Department of Medicine, University of Washington, Seattle, 98195-6424, United States
| | | | | | | |
Collapse
|
35
|
Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 2008; 19:42-9. [PMID: 19138742 DOI: 10.1016/j.semcancer.2008.12.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 12/13/2008] [Indexed: 12/22/2022]
Abstract
The Bcl-2 family of proteins includes pro- and anti-apoptotic factors acting at mitochondrial and microsomal membranes. An impressive body of published studies, using genetic and physical reconstitution experiments in model organisms and cell lines, supports a view of Bcl-2 proteins as the critical arbiters of apoptotic cell death decisions in most circumstances (excepting CD95 death receptor signaling in Type I cells). Evasion of apoptosis is one of the hallmarks of cancer [Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70], relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins is observed in many cancers [Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105-14; Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G, et al. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res. 2007;5:331-9]. The rekindled interest in aerobic glycolysis as a cancer trait raises interesting questions as to how metabolic changes in cancer cells are integrated with other essential alterations in cancer, e.g. promotion of angiogenesis and unbridled growth signals. Apoptosis induced by multiple different signals involves loss of mitochondrial homeostasis, in particular, outer mitochondrial membrane integrity, releasing cytochrome c and other proteins from the intermembrane space. This integrative process, controlled by Bcl-2 family proteins, is also influenced by the metabolic state of the cell. In this review, we consider the role of reactive oxygen species, a metabolic by-product, in the mitochondrial pathway of apoptosis, and the relationships between Bcl-2 functions and oxidative stress.
Collapse
|
36
|
Rossi C, Di Lena A, La Sorda R, Lattanzio R, Antolini L, Patassini C, Piantelli M, Alberti S. Intestinal tumour chemoprevention with the antioxidant lipoic acid stimulates the growth of breast cancer. Eur J Cancer 2008; 44:2696-704. [PMID: 18926695 DOI: 10.1016/j.ejca.2008.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/14/2008] [Accepted: 08/26/2008] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Breast and intestinal cancers chemoprevention would significantly impact on cancer care. Hence, we assessed the chemopreventive efficacy of the antioxidant lipoic acid (LA) in mice overexpressing a wild-type Her2/neu, as an animal model of breast cancer, and in APCmin mice for intestinal cancer. METHODS Mice were randomised at weaning, and were treated with LA for lifetime. Tumour incidence, growth rate and histopathology were analysed on an individual tumour basis. RESULTS LA efficiently chemoprevented tumour appearance in APCmin mice. Strikingly, though, LA doses, that were chemopreventive in APCmin mice (> or = 300 microg/day), increased breast cancer growth in Her2/neu mice. Even in experimental groups, where LA overall reduced tumour risk (80 microg/day), LA consistently stimulated the growth rate of established breast tumours. Breast and colon tumours incidence was unaffected by LA, indicating no significant impact of LA on tumour initiation and no protection from mutations driving tumour progression. CONCLUSIONS Stimulation of breast cancer growth and inhibition of intestinal tumours by LA indicate that diverse growth control mechanisms are modulated by LA in different organs. Concern is raised about the use of LA for cancer chemoprevention.
Collapse
Affiliation(s)
- Cosmo Rossi
- Animal Care Unit, Consorzio Mario Negri Sud, SM Imbaro (Chieti), Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Campbell JS, Johnson MM, Bauer RL, Hudkins KL, Gilbertson DG, Riehle KJ, Yeh MM, Alpers CE, Fausto N. Targeting stromal cells for the treatment of platelet-derived growth factor C-induced hepatocellular carcinogenesis. Differentiation 2008; 75:843-52. [PMID: 17999742 DOI: 10.1111/j.1432-0436.2007.00235.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-invasive therapies for the treatment of hepatocellular carcinoma (HCC) would be of great benefit to public health. To this end, we have developed a platelet-derived growth factor-C (PDGF-C) transgenic (Tg) mouse model, which mimics many aspects of human liver carcinogenesis. Specifically, overexpression of PDGF-C results in liver fibrosis, which is preceded by activation and proliferation of hepatic stellate cells, and is followed by the development of dysplastic lesions and angiogenesis, and progression to HCCs by 8 months of age. Here, we show that PDGF-C overexpression induces the proliferation of endothelial-like cells that are present in tumors and adjacent non-neoplastic parenchyma. The protein tyrosine kinase inhibitor, imatinib (Gleevec), decreases the proliferation of non-parenchymal cells (NPC) in vitro and in vivo, with concomitant inhibition of Akt. In vivo treatment with imatinib also blocks the expression of CD34 in PDGF-C Tg mice. Decreased NPC proliferation and CD34 expression correlated with lower levels of active ERK1/2 and total levels of PDGF receptor alpha (PDGFRalpha). In summary, the small molecule inhibitor imatinib attenuates stromal cell proliferation in PDGF-C-induced HCC, which coincides with decreased expression of both CD34 and PDGFRalpha, and activated Akt. Our findings suggest that imatinib may be efficacious in the treatment of hepatocarcinogenesis, particularly when neovascularization is present.
Collapse
Affiliation(s)
- Jean S Campbell
- Department of Pathology, University of Washington School of Medicine, Box 357705, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
39
|
Abstract
Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
40
|
Nguyen LN, Holdren MS, Nguyen AP, Furuya MH, Bianchini M, Levy E, Mordoh J, Liu A, Guncay GD, Campbell JS, Parks WT. Sorting nexin 1 down-regulation promotes colon tumorigenesis. Clin Cancer Res 2007; 12:6952-9. [PMID: 17145813 DOI: 10.1158/1078-0432.ccr-06-0317] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Colon cancer is one of the most common human malignancies, yet studies have only begun to identify the multiple mechanisms that underlie the development of this tumor. In this study, we have identified a novel mechanism, dysregulation of endocytic sorting, which promotes colon cancer development. EXPERIMENTAL DESIGN Immunohistochemical and microarray analyses were done on human colon cancer tissue specimens to determine the levels of one endocytic protein, sorting nexin 1 (SNX1). SW480 cells, a human colon cancer cell line that retains a relatively high level of SNX1 expression, were used to assess the effects of down-regulating this protein by small hairpin RNA. Activation of signal transduction cascades was evaluated in these cells using Western blotting, and multiple functional assays were done. RESULTS We determined by immunohistochemistry that the level of SNX1 was significantly down-regulated in 75% of human colon cancers. In corroborative studies using microarray analysis, SNX1 message was significantly decreased (log(2) ratio less than -1) for 8 of 19 colon carcinomas. Cell lines with reduced SNX1 levels showed increased proliferation, decreased apoptosis, and decreased susceptibility to anoikis. They also showed increased activation of epidermal growth factor receptor and extracellular signal-regulated kinase 1/2 in response to epidermal growth factor. This increased activation was abolished by inhibition of endocytosis. CONCLUSIONS These data suggest that loss of SNX1 may play a significant role in the development and aggressiveness of human colon cancer, at least partially through the mechanism of increased signaling from endosomes. Further, these findings suggest that dysregulation of endocytic proteins may represent a new paradigm in the process of carcinogenesis.
Collapse
Affiliation(s)
- Lananh N Nguyen
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Watanabe N, Tanaka M, Suzuki K, Kumanogoh A, Kikutani H, Miyajima A. Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation. Hepatology 2007; 45:1240-9. [PMID: 17465005 DOI: 10.1002/hep.21539] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. CONCLUSION It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.
Collapse
Affiliation(s)
- Natsumi Watanabe
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Kwiecień I, Rokita H, Lorenc-Koci E, Sokolowska M, Włodek L. The effect of modulation of gamma-glutamyl transpeptidase and nitric oxide synthase activity on GSH homeostasis in HepG2 cells. Fundam Clin Pharmacol 2007; 21:95-103. [PMID: 17227450 DOI: 10.1111/j.1472-8206.2006.00458.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High glutathione (GSH) level and elevated gamma-glutamyl transpeptidase (gammaGT) activity are hallmarks of tumor cells. Toxicity of drugs and radiation to the cells is largely dependent on the level of thiols. In the present studies, we attempted to inhibit gammaGT activity in human hepatoblastoma (HepG2) cells to examine whether the administration of gammaGT inhibitors, acivicin (AC) and 1,2,3,4-tetrahydroisoquinoline (TIQ) influences cell proliferation and enhances cytostatic action of doxorubicin (DOX) and cisplatin (CP) on HepG2 cells. The effects of these inhibitors were determined by 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), BrdU and lactate dehydrogenase (LDH) tests and by estimation of GSH level. Additionally, we investigated the changes in caspase-3 activity, which is a marker of apoptosis. The obtained results showed that the gammaGT inhibitors introduced to the medium alone elicited cytotoxic effect, which was accompanied by an increase in GSH level in the cells. TIQ concomitantly increased caspase-3 activity. Doxorubicin and CP proved to be cytotoxic, and both inhibitors augmented this effect. As well DOX as CP radically decreased GSH levels, whereas gammaGT inhibitors had diverse effects. Therefore, the obtained results confirm that gammaGT inhibitors can enhance pharmacological action of DOX and CP, which may permit clinicians to decrease their doses thereby alleviating side effects. Aminoguanidine (nitric oxide synthase inhibitor) given alone was little cytotoxic to HepG2 cells, while its introduction to the medium together with DOX and CP significantly increased their cytotoxicity. Aminoguanidine on its own did not show any effect on GSH level in HepG2 cells, but markedly and significantly elevated its concentration when added in combination with CP but not with DOX. This indicates that when CP was used as a cytostatic, GSH level rose after treatment with its combination with both AC and aminoguanidine.
Collapse
Affiliation(s)
- Inga Kwiecień
- Medical Biochemistry Department, Collegium Medium, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
43
|
Diesel B, Kulhanek-Heinze S, Höltje M, Brandt B, Höltje HD, Vollmar AM, Kiemer AK. Alpha-lipoic acid as a directly binding activator of the insulin receptor: protection from hepatocyte apoptosis. Biochemistry 2007; 46:2146-55. [PMID: 17274632 DOI: 10.1021/bi602547m] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIM Alpha-lipoic acid has cytoprotective potential which has previously been explained by its antioxidant properties. The aim of this study was to assess LA-induced-specific cytoprotective signalling pathways in hepatocytes. METHODS Apoptosis of rat hepatocytes was induced by actinomycinD/TNF-alpha. Caspase-3-like activity was determined by a fluorometric; LDH by an enzymatic assay; and phosphorylation of the insulin receptor, Akt, and Bad by Western blot (after immunoprecipitation). Protein kinase and insulin receptor activities were measured by in vitro phosphorylation. Computer modeling studies were performed by using the program GRID. RESULTS Alpha-lipoic acid decreased actinomycinD/TNF-alpha-induced apoptosis, as did the antioxidants Trolox and N-acetylcysteine. The activation of PI3-kinase/Akt involving phosphorlyation of Bad markedly contributed to the cytoprotective action of alpha-lipoic acid. Alpha-lipoic acid but not other antioxidants protected against actinomycinD/TNF-alpha-induced apoptosis via phosphorylation of the insulin receptor. Computer modeling studies revealed a direct binding site for alpha-lipoic acid at the tyrosine kinase domain of the insulin receptor, suggesting a stabilizing function in loop A that is involved in ATP binding. Treatment of immunoprecipitated insulin receptor with LA induced substrate phosphorylation. CONCLUSIONS Alpha-lipoic acid mediates its antiapoptotic action via activation of the insulin receptor/PI3-kinase/Akt pathway. We show for the first time a direct binding site for alpha-lipoic acid at the insulin receptor tyrosine kinase domain, which might make alpha-lipoic acid a model substance for the development of insulin mimetics.
Collapse
Affiliation(s)
- Britta Diesel
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Nguyen LN, Furuya MH, Wolfraim LA, Nguyen AP, Holdren MS, Campbell JS, Knight B, Yeoh GCT, Fausto N, Parks WT. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. Hepatology 2007; 45:31-41. [PMID: 17187411 DOI: 10.1002/hep.21466] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Oval cells are hepatocytic precursors that proliferate in late-stage cirrhosis and that give rise to a subset of human hepatocellular carcinomas. Although liver regeneration typically occurs through replication of existing hepatocytes, oval cells proliferate only when hepatocyte proliferation is inhibited. Transforming growth factor-beta (TGF-beta) is a key inhibitory cytokine for hepatocytes, both in vitro and in vivo. Because TGF-beta levels are elevated in chronic liver injury when oval cells arise, we hypothesized that oval cells may be less responsive to the growth inhibitory effects of this cytokine. To examine TGF-beta signaling in vivo in oval cells, we analyzed livers of rats fed a choline-deficient, ethionine-supplemented (CDE) diet for phospho-Smad2. Phospho-Smad2 was detected in more than 80% of hepatocytes, but staining was substantially reduced in oval cells. Ki67 staining, in contrast, was significantly more common in oval cells than hepatocytes. To understand the inverse relationship between TGF-beta signaling and proliferation in oval cells and hepatocytes, we examined TGF-beta signaling in vitro. TGF-beta caused marked growth inhibition in primary hepatocytes and the AML12 hepatocyte cell line. Two oval cell lines, LE/2 and LE/6, were less responsive. The greater sensitivity of the hepatocytes to TGF-beta-induced growth inhibition may result from the absence of Smad6 in these cells. CONCLUSION Our results indicate that oval cells, both in vivo and in vitro, are less sensitive to TGF-beta-induced growth inhibition than hepatocytes. These findings further suggest an underlying mechanism for the proliferation of oval cells in an environment inhibitory to hepatocytic proliferation.
Collapse
Affiliation(s)
- Lananh N Nguyen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Simbula G, Columbano A, Ledda-Columbano GM, Sanna L, Deidda M, Diana A, Pibiri M. Increased ROS generation and p53 activation in α-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 2006; 12:113-23. [PMID: 17136495 DOI: 10.1007/s10495-006-0487-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alpha-lipoic acid (alpha-LA) is an antioxidant used for the treatment of a variety of diseases, including liver cirrhosis, heavy metal poisoining, and diabetic polyneuropathy. In addition to its protective effect against oxidative stress, alpha-LA induces apoptosis in different cancer cells types. However, whether alpha-LA acid induces apoptosis of hepatoma cells is unknown. Herein, we investigated whether alpha-LA induces apoptosis in two different hepatoma cell lines FaO and HepG2. The results showed that alpha-LA inhibits the growth of both cell lines as indicated by the reduction in cell number, the reduced expression of cyclin A and the increased levels of the cyclin/CDKs inhibitors, p27(Kip1) and p21(Cip1). Cell cycle arrest was associated with cell loss, and DNA laddering indicative of apoptosis. Apoptosis was preceded by increased generation of reactive oxygen species, and associated with p53 activation, increased expression of Bax, release of cytochrome c from mitochondria, caspases activation, decreased levels of survivin, induction of pro-apoptotic signaling (i.e JNK) and inhibition of anti-apoptotic signaling (i.e. PKB/Akt) pathways. In conclusion, this study provides evidence that alpha-LA induces apoptosis in hepatoma cells, describes a possible sequence of molecular events underlying its lethal effect, and suggests that it may prove useful in liver cancer therapy.
Collapse
Affiliation(s)
- G Simbula
- Department of Toxicology, Oncology and Molecular Pathology Unit, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Ueno S, Campbell J, Fausto N. Reactive oxygen species derived from NADPH oxidase system is not essential for liver regeneration after partial hepatectomy. J Surg Res 2006; 136:260-5. [PMID: 17046793 DOI: 10.1016/j.jss.2006.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/09/2006] [Accepted: 05/26/2006] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is suggestive evidence that reactive oxygen species may play a role in the initiation of liver regeneration via a kupffer cell-mediated mechanism involving TNFa and NF-kappa B. In mammalian cells, a major source of reactive oxygen species derives from the membrane-bound NADPH oxidase system (no protein de novo synthesis is required) and it is known that the low levels of oxidants produced through NADPH oxidase play a role in liver cell proliferation because of peroxisome proliferators. METHODS We used knockout mice lacking Cybb: subunit of NADPH oxidase to determine whether signaling at the start of liver regeneration after partial hepatectomy (PH) involves reactive oxygen species produced through NADPH oxidase and to analyze in more detail the abnormalities caused by lack of its component, which is required for the initiation of liver regeneration. RESULTS Lack of Cybb had little effect on NF-kappa B and STAT3 binding, and no effect in TNFa and interleukin-6 production after PH. Cybb KO mice had normal liver structure and similar levels of hepatocyte DNA replication as those of wild type mice. CONCLUSIONS We conclude that NADPH oxidase is not necessary for liver regeneration after PH. It is likely that there is a potential pathway not including NADPH oxidase to activate NF-kappa B and STAT3 binding for the initiation of liver regeneration after PH.
Collapse
Affiliation(s)
- Shinichi Ueno
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA.
| | | | | |
Collapse
|
47
|
Jejurikar SS, Henkelman EA, Cederna PS, Marcelo CL, Urbanchek MG, Kuzon WM. Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Exp Gerontol 2006; 41:828-36. [PMID: 16942852 DOI: 10.1016/j.exger.2006.06.053] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/23/2022]
Abstract
The mechanisms causing the impaired regenerative response to injury observed in skeletal muscle of old animals are unknown. Satellite cells, stem cell descendants within adult skeletal muscle, are the primary source of regenerating muscle fibers. Apoptosis may be a mechanism responsible for the depletion of satellite cells in old animals. This work tested the hypothesis that aging increases the susceptibility of satellite cells to apoptosis. Satellite cells were cultured from the extensor digitorum longus muscles of young (3-month-old), adult (9-month-old), and old (31-month-old) Brown Norway rats. Satellite cells were treated for 24h with the pro-apoptotic agents TNF-alpha (20 ng/mL) and Actinomycin D (250 ng/mL). Immunostaining for activated caspases and terminal deoxynucleotydil transferase-mediated dutp nick-end labeling (TUNEL) was performed to identify apoptotic satellite cells. Quantity of the anti-apoptotic protein bcl-2 was determined by Western blot analysis. Satellite cells from old animals demonstrated significantly higher percentages of cells with activated caspases and TUNEL-positive cells, and significantly lower amounts of bcl-2 compared to young and adult animals. These data support the hypothesis that aging increases satellite cell susceptibility to apoptosis. In old muscle, apoptosis may play a causative role in the depletion of satellite cells, impairing the regenerative response to injury.
Collapse
Affiliation(s)
- Sameer S Jejurikar
- Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol 2006; 72:1090-101. [PMID: 16934229 DOI: 10.1016/j.bcp.2006.07.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 06/29/2006] [Accepted: 07/08/2006] [Indexed: 02/07/2023]
Abstract
Hepatocyte cell death is a universal feature of inflammatory liver diseases. The observation that mice deficient in the activation of nuclear factor-kappaB (NF-kappaB) are not viable because of excessive hepatocyte apoptosis induced by tumor necrosis factor (TNF) made it crystal-clear that NF-kappaB plays a central role in protecting hepatocytes against TNF-induced cell death. Also during TNF-mediated liver injury, NF-kappaB was shown to have an essential anti-apoptotic effect, underscoring the therapeutic importance of understanding its underlying molecular mechanisms. For a long time, the ability of NF-kappaB to induce the expression of a variety of anti-apoptotic proteins was thought to be solely responsible for its cytoprotective effects. However, during the past few years it has become clear that NF-kappaB-mediated inhibition of cell death also involves attenuating TNF-induced activation of c-Jun activating kinase (JNK). Whereas transient activation of JNK upon TNF treatment is associated with cellular survival, prolonged JNK activation contributes to cell death. Several studies have shown that NF-kappaB activation inhibits the sustained phase of TNF-induced JNK activation and thus protects cells against TNF cytotoxicity. In this review, we will discuss the various mechanisms by which NF-kappaB activation blunts TNF-induced JNK activation, including the induction of JNK inhibitory proteins and controlling the levels of reactive oxygen species (ROS). Moreover, because the cytoprotective effects of NF-kappaB activation are particularly important in liver physiology, we will put each of these JNK-inhibitory mechanisms into a 'hepatic perspective' by discussing their role in various mouse models of TNF-mediated liver injury.
Collapse
Affiliation(s)
- Andy Wullaert
- Unit for Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | |
Collapse
|
49
|
Polakos NK, Cornejo JC, Murray DA, Wright KO, Treanor JJ, Crispe IN, Topham DJ, Pierce RH. Kupffer cell-dependent hepatitis occurs during influenza infection. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1169-78; quiz 1404-5. [PMID: 16565492 PMCID: PMC1606556 DOI: 10.2353/ajpath.2006.050875] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Respiratory infections, including influenza in humans, are often accompanied by a hepatitis that is usually mild and self-limiting. The mechanism of this kind of liver damage is not well understood. In the present study, we show that influenza-associated hepatitis occurs due to the formation of inflammatory foci that include apoptotic hepatocytes, antigen-specific CD8(+) T cells, and Kupffer cells. Serum aminotransaminase levels were elevated, and both the histological and serum enzyme markers of hepatitis were increased in secondary influenza infection, consistent with a primary role for antigen-specific T cells in the pathogenesis. No virus could be detected in the liver, making this a pure example of "collateral damage" of the liver. Notably, removal of the Kupffer cells prevented the hepatitis. Such hepatic collateral damage may be a general consequence of expanding CD8(+) T-cell populations during many extrahepatic viral infections, yielding important implications for liver pathobiology.
Collapse
Affiliation(s)
- Noelle K Polakos
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave., Box 626, Rochester, NY 14642-8609, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hansen LK, Wilhelm J, Fassett JT. Regulation of hepatocyte cell cycle progression and differentiation by type I collagen structure. Curr Top Dev Biol 2006; 72:205-36. [PMID: 16564336 DOI: 10.1016/s0070-2153(05)72004-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cell behavior is strongly influenced by the extracellular matrix (ECM) to which cells adhere. Both chemical determinants within ECM molecules and mechanical properties of the ECM network regulate cellular response, including proliferation, differentiation, and apoptosis. Type I collagen is the most abundant ECM protein in the body with a complex structure that can be altered in vivo by proteolysis, cross-linking, and other processes. Because of collagen's complex and dynamic nature, it is important to define the changes in cell response to different collagen structures and its underlying mechanisms. This chapter reviews current knowledge of potential mechanisms by which type I collagen affects cell behavior, and it presents data that elucidate specific intracellular signaling pathways by which changes in type I collagen structure differentially regulate hepatocyte cell cycle progression and differentiation. A network of polymerized fibrillar type I collagen (collagen gel) induces a highly differentiated but growth-arrested phenotype in primary hepatocytes, whereas a film of monomeric collagen adsorbed to a rigid dish promotes cell cycle progression and dedifferentiation. Studies presented here demonstrate that protein kinase A (PKA) activity is significantly elevated in hepatocytes on type I collagen gel relative to collagen film, and inhibition of this elevated PKA activity can promote hepatocyte cell cycle progression on collagen gel. Additional studies are presented that examine changes in hepatocyte cell cycle progression and differentiation in response to increased rigidity of polymerized collagen gel by fiber cross-linking. Potential mechanisms underlying these cellular responses and their implications are discussed.
Collapse
Affiliation(s)
- Linda K Hansen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|