1
|
Varshini MS, Krishnamurthy PT, Reddy RA, Wadhwani A, Chandrashekar VM. Insights into the Emerging Therapeutic Targets of Triple-negative Breast Cancer. Curr Cancer Drug Targets 2025; 25:3-25. [PMID: 38385495 DOI: 10.2174/0115680096280750240123054936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Triple-negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, is characterized by the non-appearance of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Clinically, TNBC is marked by its low survival rate, poor therapeutic outcomes, high aggressiveness, and lack of targeted therapies. Over the past few decades, many clinical trials have been ongoing for targeted therapies in TNBC. Although some classes, such as Poly (ADP Ribose) Polymerase (PARP) inhibitors and immunotherapies, have shown positive therapeutic outcomes, however, clinical effects are not much satisfiable. Moreover, the development of drug resistance is the major pattern observed in many targeted monotherapies. The heterogeneity of TNBC might be the cause for limited clinical benefits. Hence,, there is a need for the potential identification of new therapeutic targets to address the above limitations. In this context, some novel targets that can address the above-mentioned concerns are emerging in the era of TNBC therapy, which include Hypoxia Inducible Factor (HIF-1α), Matrix Metalloproteinase 9 (MMP-9), Tumour Necrosis Factor-α (TNF-α), β-Adrenergic Receptor (β-AR), Voltage Gated Sodium Channels (VGSCs), and Cell Cycle Regulators. Currently, we summarize the ongoing clinical trials and discuss the novel therapeutic targets in the management of TNBC.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | | | - Ramakamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
- Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas, 73304, Mauritius
| | - V M Chandrashekar
- Department of Pharmacology, HSK College of Pharmacy, Bagalkot, 587101, Karnataka, India
| |
Collapse
|
2
|
Shi S, Ma HY, Sang YZ, Ju YB, Wang XG, Zhang ZG. CD147 expression as a clinicopathological and prognostic indicator in breast cancer: a meta-analysis and bioinformatics analysis. BMC Cancer 2024; 24:1429. [PMID: 39567919 PMCID: PMC11577919 DOI: 10.1186/s12885-024-13202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND CD147 belongs to the immunoglobulin superfamily, also known as Basigin (BSG), and is a highly glycosylated single transmembrane glycoprotein present in various tissues. Meta and bioinformatic analyses were used to explore the correlation between CD147 expression and the clinicopathological characteristics prognosis of breast cancer. METHOD Literature related to breast cancer was retrieved through PubMed and CNKI databases, and a meta-analysis was conducted using Review Manager 5.2 software. RESULTS The meta-analysis revealed that all articles included data on 522 patients with breast cancer and 492 normal tissues. CD147 expression in breast cancer tissue was higher compared to that in normal tissue([8.92-139.52]; p < 0.00001 I2 = 80%) and negatively correlated with LM, clinical stage, histological grade, and ER positive expression. Bioinformatic analysis revealed that the expression of CD147 in breast cancer tissue was higher than that in normal tissue, and its high expression was closely related to the clinicopathological characteristics of patients, such as LM, histological grading, and clinical staging. According to the TIMER database, CD147 expression was closely related to immune cell infiltration in breast cancer. CONCLUSION These results indicated that high CD147 expression might be closely linked to the occurrence as well as the development of breast cancer, and can function as a good indicator of prognosis in the future, providing new methods and ideas for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Pathology, Cangzhou People's Hospital, 7 Qingchi Avenue, Cangzhou City, 061000, China
| | - Hong-Yan Ma
- Department of Pathology, Cangzhou People's Hospital, 7 Qingchi Avenue, Cangzhou City, 061000, China
| | - Yin-Zhou Sang
- Department of Pathology, Cangzhou People's Hospital, 7 Qingchi Avenue, Cangzhou City, 061000, China
| | - Ying-Bo Ju
- Department of Pathology, Cangzhou People's Hospital, 7 Qingchi Avenue, Cangzhou City, 061000, China
| | - Xing-Guang Wang
- Department of Pathology, Cangzhou People's Hospital, 7 Qingchi Avenue, Cangzhou City, 061000, China
| | - Zhi-Gang Zhang
- Department of Pathology, Cangzhou People's Hospital, 7 Qingchi Avenue, Cangzhou City, 061000, China.
| |
Collapse
|
3
|
Hao B, Beningo KA. Regulation of Traction Force through the Direct Binding of Basigin and Calpain 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531406. [PMID: 36945510 PMCID: PMC10028868 DOI: 10.1101/2023.03.06.531406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Traction force and mechanosensing (the ability to sense mechanical attributes of the environment) are two important factors used by a cell to modify behavior during migration. Previously it was determined that the calpain small subunit, calpain 4, regulates the production of traction force independent of its proteolytic holoenzyme. A proteolytic enzyme is formed by calpain4 binding to either of its catalytic partners, calpain 1 and 2. To further understand how calpain 4 regulates traction force, we used two-hybrid analysis to identify more components of the traction pathway. We discovered that basigin, an integral membrane protein and a documented matrix-metalloprotease (MMP) inducer binds to calpain 4 in two-hybrid and pull-down assays. Traction force was deficient when basigin was silenced in MEF cells, and defective in substrate adhesion strength. Consistent with Capn4 -/- MEF cells, the cells deficient in basigin responded to localized stimuli. Together these results implicate basigin in the pathway in which calpain 4 regulates traction force independent of the catalytic large subunits.
Collapse
|
4
|
Choi JW, Lee Y, Kim H, Cho HY, Min SK, Kim YS. Coexpression of MCT1 and MCT4 in ALK-positive Anaplastic Large Cell Lymphoma: Diagnostic and Therapeutic Implications. Am J Surg Pathol 2022; 46:241-248. [PMID: 34619707 DOI: 10.1097/pas.0000000000001820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In solid tumors, glycolytic cancer or stromal cells export lactates through monocarboxylate transporter (MCT) 4, while oxidative cancer or stromal cells take up lactates as metabolic fuels or signaling molecules through MCT1. CD147 acts as a chaperone of MCT1 or MCT4. Unlike solid tumors, malignant lymphomas have a peculiar tumor microenvironment. To investigate the metabolic phenotype of malignant lymphoma associated with lactate transport, we analyzed immunohistochemical expressions of MCT1, MCT4, and CD147 in 247 cases of various malignant lymphomas. Surprisingly, both MCT1 and MCT4 were diffusely expressed on tumor cell membranes in all cases (11/11, 100%) of anaplastic lymphoma kinase (ALK) (+) anaplastic large cell lymphoma (ALCL). In contrast, only MCT1 was diffusely expressed in tumor cells of ALK(-) ALCL, as well as in B-cell, natural killer/T-cell, T-cell, and classic Hodgkin lymphomas. In these lymphomas, MCT4 expression was mostly localized to adjacent stromal cells. The pattern of diffuse membranous MCT1 and partial MCT4 expressions in tumor cells was observed in 1 case each of peripheral T-cell lymphoma (1/15, 6.7%) and multiple myeloma (1/34, 2.9%). CD147 was diffusely expressed in all types of lymphoma tumor and/or stromal cells. In conclusion, ALK(+) ALCL has a unique metabolism showing high coexpression of MCT1 and MCT4 in tumor cells. Because only ALK(+) ALCL overexpresses MCT4, immunostaining for MCT4 together with ALK is very useful for differential diagnosis from ALK(-) ALCL or peripheral T-cell lymphoma. Moreover, dual targeting against MCT1 and MCT4 would be an appropriate therapeutic approach for ALK(+) ALCL.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase/analysis
- Anaplastic Lymphoma Kinase/genetics
- Basigin/analysis
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Clinical Decision-Making
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Lymphoma, Large-Cell, Anaplastic/enzymology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, Large-Cell, Anaplastic/therapy
- Monocarboxylic Acid Transporters/analysis
- Monocarboxylic Acid Transporters/genetics
- Muscle Proteins/analysis
- Muscle Proteins/genetics
- Predictive Value of Tests
- Prognosis
- Republic of Korea
- Symporters/analysis
Collapse
Affiliation(s)
- Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, Ansan
| | - Youngseok Lee
- Department of Pathology, Korea University Anam Hospital, Seoul
| | - Hyunchul Kim
- Department of Pathology, Cha University Ilsan Medical Center, Goyang
| | - Hyun Yee Cho
- Department of Pathology, Korea University Anam Hospital, Seoul
| | - Soo Kee Min
- Department of Pathology, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan
| |
Collapse
|
5
|
Forder A, Hsing CY, Trejo Vazquez J, Garnis C. Emerging Role of Extracellular Vesicles and Cellular Communication in Metastasis. Cells 2021; 10:cells10123429. [PMID: 34943937 PMCID: PMC8700460 DOI: 10.3390/cells10123429] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Communication between cancer cells and the surrounding stromal cells of the tumor microenvironment (TME) plays a key role in promoting metastasis, which is the major cause of cancer death. Small membrane-bound particles called extracellular vesicles (EVs) are released from both cancer and stromal cells and have a key role in mediating this communication through transport of cargo such as various RNA species (mRNA, miRNA, lncRNA), proteins, and lipids. Tumor-secreted EVs have been observed to induce a pro-tumorigenic phenotype in non-malignant cells of the stroma, including fibroblasts, endothelial cells, and local immune cells. These cancer-associated cells then drive metastasis by mechanisms such as increasing the invasiveness of cancer cells, facilitating angiogenesis, and promoting the formation of the pre-metastatic niche. This review will cover the role of EV-mediated signaling in the TME during metastasis and highlight the therapeutic potential of targeting these pathways to develop biomarkers and novel treatment strategies.
Collapse
Affiliation(s)
- Aisling Forder
- Department of Integrative Oncology, British Cancer Research Center, Vancouver, BC V5Z 1L3, Canada; (A.F.); (C.-Y.H.); (J.T.V.)
| | - Chi-Yun Hsing
- Department of Integrative Oncology, British Cancer Research Center, Vancouver, BC V5Z 1L3, Canada; (A.F.); (C.-Y.H.); (J.T.V.)
| | - Jessica Trejo Vazquez
- Department of Integrative Oncology, British Cancer Research Center, Vancouver, BC V5Z 1L3, Canada; (A.F.); (C.-Y.H.); (J.T.V.)
| | - Cathie Garnis
- Department of Integrative Oncology, British Cancer Research Center, Vancouver, BC V5Z 1L3, Canada; (A.F.); (C.-Y.H.); (J.T.V.)
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
6
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
7
|
Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, Chen H. The Role of Cyclophilins in Inflammatory Bowel Disease and Colorectal Cancer. Int J Biol Sci 2021; 17:2548-2560. [PMID: 34326693 PMCID: PMC8315013 DOI: 10.7150/ijbs.58671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such as promoting intracellular protein folding and participating in the pathological processes of inflammation and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are closely associated, IBD has always been considered as one of the main risks of CRC. However, the role of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, were briefly summarized, so as to provide modest reference for clinical researches and treatments in future.
Collapse
Affiliation(s)
- Lifang Liang
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Rongxiao Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Ying Xie
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Huaqing Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wen Rui
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| |
Collapse
|
8
|
Zhang T, Nie Y, Gu J, Cai K, Chen X, Li H, Wang J. Identification of Mitochondrial-Related Prognostic Biomarkers Associated With Primary Bile Acid Biosynthesis and Tumor Microenvironment of Hepatocellular Carcinoma. Front Oncol 2021; 11:587479. [PMID: 33868990 PMCID: PMC8047479 DOI: 10.3389/fonc.2021.587479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of tumor-associated deaths worldwide. Despite great progress in early diagnosis and multidisciplinary tumor management, the long-term prognosis of HCC remains poor. Currently, metabolic reprogramming during tumor development is widely observed to support rapid growth and proliferation of cancer cells, and several metabolic targets that could be used as cancer biomarkers have been identified. The liver and mitochondria are the two centers of human metabolism at the whole organism and cellular levels, respectively. Thus, identification of prognostic biomarkers based on mitochondrial-related genes (Mito-RGs)—the coding-genes of proteins located in the mitochondria—that reflect metabolic changes associated with HCC could lead to better interventions for HCC patients. In the present study, we used HCC data from The Cancer Genome Atlas (TCGA) database to construct a classifier containing 10 Mito-RGs (ACOT7, ADPRHL2, ATAD3A, BSG, FAM72A, PDK3, PDSS1, RAD51C, TOMM34, and TRMU) for predicting the prognosis of HCC by using 10-fold Least Absolute Shrinkage and Selection Operation (LASSO) cross-validation Cox regression. Based on the risk score calculated by the classifier, the samples were divided into high- and low-risk groups. Gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), t-distributed stochastic neighbor embedding (t-SNE), and consensus clusterPlus algorithms were used to identify metabolic pathways that were significantly different between the high- and low-risk groups. We further investigated the relationship between metabolic status and infiltration of immune cells into HCC tumor samples by using the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm combined with the Tumor Immune Estimation Resource (TIMER) database. Our results showed that the classifier based on Mito-RGs could act as an independent biomarker for predicting survival of HCC patients. Repression of primary bile acid biosynthesis plays a vital role in the development and poor prognosis of HCC, which provides a potential approach to treatment. Our study revealed cross-talk between bile acid and infiltration of tumors by immune cells, which may provide novel insight into immunotherapy of HCC. Furthermore, our research may provide a novel method for HCC metabolic therapy based on modulation of mitochondrial function.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Gu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Clinico-Pathological Importance of miR-146a in Lung Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020274. [PMID: 33578944 PMCID: PMC7916675 DOI: 10.3390/diagnostics11020274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is a well-known malignant tumor of the respiratory tract, which has caused a significant level of damage to human health in the 21st century. Micro-RNAs (miRNAs) are tiny, non-coding RNA stem-loop structures with a length of roughly 20–25 nucleotides that function as powerful modulators of mRNA and protein products of a gene. miRNAs may modulate many biological processes involving growth, differentiation, proliferation, and cell death and play a key role in the pathogenesis of various types of malignancies. Several accumulating pieces of evidence have proven that miRNA, especially miR-146a, are crucial modulators of innate immune response sequences. A novel and exciting cancer research field has involved miRNA for the detection and suppression of cancer. However, the actual mechanism which is adopted by these miRNA is still unclear. miRNAs have been used as a cancer-associated biomarker in several studies, suggesting their altered expression in various cancers compared to the normal cells. The amount of expression of miRNA can also be used to determine the stage of the disease, aiding in early detection. In breast, pancreatic, and hepatocellular carcinoma, and gastric cancer, cancer cell proliferation and metastasis has been suppressed by miR-146a. Changes in miR-146a expression levels have biomarker importance and possess a high potential as a therapeutic target in lung cancer. It retards epithelial-mesenchymal transition and promotes the therapeutic action of anticancer agents in lung cancer. Studies have also suggested that miR-146a affects gene expression through different signaling pathways viz. TNF-α, NF-κB and MEK-1/2, and JNK-1/2. Further research is required for understanding the molecular mechanisms of miR-146a in lung cancer. The potential role of miR-146a as a diagnostic marker of lung cancer must also be analyzed. This review summarizes the tumor-suppressing, anti-inflammatory, and antichemoresistive nature of miR-146a in lung cancer.
Collapse
|
10
|
Liebscher S, Mathea S, Aumüller T, Pech A, Bordusa F. Trypsiligase-Catalyzed Labeling of Proteins on Living Cells. Chembiochem 2021; 22:1201-1204. [PMID: 33174659 PMCID: PMC8048679 DOI: 10.1002/cbic.202000718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site‐directed linkage of small‐sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg‐His added to the proteins’ native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.
Collapse
Affiliation(s)
- Sandra Liebscher
- Institute of Biochemistry/Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Sebastian Mathea
- Institute of Biochemistry/Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Tobias Aumüller
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120, Halle, Germany
| | - Andreas Pech
- Institute of Biochemistry/Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Frank Bordusa
- Institute of Biochemistry/Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| |
Collapse
|
11
|
Jeong J, Iwakiri Y. Lymphatic Dysfunction as a Novel Therapeutic Target in Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2020; 11:663-664. [PMID: 33220266 PMCID: PMC7846486 DOI: 10.1016/j.jcmgh.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/10/2022]
Affiliation(s)
- Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
12
|
Liu N, Qi M, Li K, Zeng W, Li J, Yin M, Liu H, Chen X, Zhang J, Peng C. CD147 regulates melanoma metastasis via the NFAT1-MMP-9 pathway. Pigment Cell Melanoma Res 2020; 33:731-743. [PMID: 32339381 DOI: 10.1111/pcmr.12886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Although accumulating evidence had revealed that NFAT1 has oncogenic characteristics, the role of this molecule in melanoma cells remains unclear. Previous studies proved that CD147 plays a crucial function in melanoma cell metastasis and invasion through matrix metalloproteinase 9 (MMP-9) expression; however, the details of how CD147 regulates MMP-9 expression remain elusive. In this study, we demonstrated that CD147 and NFAT1 are overexpressed in the tissues of patients with primary and metastatic melanoma, which has shown a positive correlation. Further, we observed that CD147 regulates NFAT1 activation through the [Ca2+ ]i-calcineurin pathway. Knockdown of NFAT1 significantly suppresses melanoma metastasis, and we demonstrated that CD147 affects melanoma metastasis in an NFAT1-dependent manner. Moreover, we verified that NFAT1 directly binds to MMP-9 promoter. Inhibition of CD147 expression significantly abrogates MMP-9 promoter luciferase gene reporter activity as well as NFAT1 association with MMP-9 promoter. Taken together, this study demonstrated that CD147 affects MMP-9 expression through regulating NFAT1 activity and provided a novel mechanism by which NFAT1 contributes to melanoma metastasis through the regulation of MMP-9.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Min Qi
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Keke Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Weiqi Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Jiaoduan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Mingzhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - JiangLin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| |
Collapse
|
13
|
Landras A, Reger de Moura C, Jouenne F, Lebbe C, Menashi S, Mourah S. CD147 Is a Promising Target of Tumor Progression and a Prognostic Biomarker. Cancers (Basel) 2019; 11:cancers11111803. [PMID: 31744072 PMCID: PMC6896083 DOI: 10.3390/cancers11111803] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Microenvironment plays a crucial role in tumor development and progression. Cancer cells modulate the tumor microenvironment, which also contribute to resistance to therapy. Identifying biomarkers involved in tumorigenesis and cancer progression represents a great challenge for cancer diagnosis and therapeutic strategy development. CD147 is a glycoprotein involved in the regulation of the tumor microenvironment and cancer progression by several mechanisms—in particular, by the control of glycolysis and also by its well-known ability to induce proteinases leading to matrix degradation, tumor cell invasion, metastasis and angiogenesis. Accumulating evidence has demonstrated the role of CD147 expression in tumor progression and prognosis, suggesting it as a relevant tumor biomarker for cancer diagnosis and prognosis, as well as validating its potential as a promising therapeutic target in cancers.
Collapse
Affiliation(s)
- Alexandra Landras
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
| | - Coralie Reger de Moura
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Fanelie Jouenne
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Celeste Lebbe
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Dermatology Department and Centre d’Investigation Clinique (CIC), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Suzanne Menashi
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Samia Mourah
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
- Correspondence: ; Tel.: +33-1-42-49-48-85
| |
Collapse
|
14
|
Lai TM, Kuo PJ, Lin CY, Chin YT, Lin HL, Chiu HC, Fu MMJ, Fu E. CD147 self-regulates matrix metalloproteinase-2 release in gingival fibroblasts after coculturing with U937 monocytic cells. J Periodontol 2019; 91:651-660. [PMID: 31557319 DOI: 10.1002/jper.19-0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cluster of differentiation 147 (CD147) is a multifunctional glycoprotein that functions as an inducer of matrix metalloproteinase (MMP) expression in fibroblasts. Synergistically enhanced MMP-2 expression was recently observed in the coculture of human gingival fibroblasts (HGFs) and U937 human monocytic cells; however, the responsible mechanisms have not yet been fully established. The aim of this study was to evaluate the release of soluble CD147 in HGFs after coculturing with U937 cells and its functional effect on the enhancement of MMP-2 expression in HGFs. METHODS Enzyme-linked immunosorbent assay was used to determine the amount of CD147 protein in media, whereas real-time polymerase chain reaction was performed to evaluate the mRNA levels of CD147 and MMP-2 in HGFs and U937 cells. The enzyme activities of MMP-2 released from cells were examined by zymography. Transwell coculturing and conditioned media treatments were selected to rule out the effect of direct contact of HGFs and U937 cells. RESULTS The protein and mRNA expression of CD147 in HGFs were enhanced after transwell coculturing with U937 cells and exposure to U937-conditioned medium. MMP-2 enzyme activities in HGFs were also significantly increased by the coculturing methods. Administration of exogenous CD147 enhanced MMP-2 expression in HGFs, whereas treatment with cyclosporine-A, which inhibited CD147 expression, reduced U937-enhanced MMP-2 expression in HGFs. CONCLUSIONS CD147 can interact with fibroblasts to stimulate the expression of MMPs associated with periodontal extracellular matrix degradation. This study has demonstrated that CD147 released from fibroblasts might play a role in monocyte-enhanced MMP-2 expression in HGFs.
Collapse
Affiliation(s)
- Tat-Ming Lai
- Dental Department, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Teeth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Lun Lin
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Martin M J Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Earl Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan.,Department of Dentistry, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| |
Collapse
|
15
|
Li CJ, Chu PY, Yiang GT, Wu MY. The Molecular Mechanism of Epithelial-Mesenchymal Transition for Breast Carcinogenesis. Biomolecules 2019; 9:biom9090476. [PMID: 31514467 PMCID: PMC6770718 DOI: 10.3390/biom9090476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway plays multiple regulatory roles in the tumorigenesis and development of cancer. TGF-β can inhibit the growth and proliferation of epithelial cells and induce apoptosis, thereby playing a role in inhibiting breast cancer. Therefore, the loss of response in epithelial cells that leads to the inhibition of cell proliferation due to TGF-β is a landmark event in tumorigenesis. As tumors progress, TGF-β can promote tumor cell invasion, metastasis, and drug resistance. At present, the above-mentioned role of TGF-β is related to the interaction of multiple signaling pathways in the cell, which can attenuate or abolish the inhibition of proliferation and apoptosis-promoting effects of TGF-β and enhance its promotion of tumor progression. This article focuses on the molecular mechanisms through which TGF-β interacts with multiple intracellular signaling pathways in tumor progression and the effects of these interactions on tumorigenesis.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
16
|
Wang C, Xu C, Niu R, Hu G, Gu Z, Zhuang Z. MiR-890 inhibits proliferation and invasion and induces apoptosis in triple-negative breast cancer cells by targeting CD147. BMC Cancer 2019; 19:577. [PMID: 31196010 PMCID: PMC6567604 DOI: 10.1186/s12885-019-5796-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/05/2019] [Indexed: 12/03/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a type of breast cancer with a high degree of malignancy. Because of the remarkable biological characteristics of high invasion, metastasis and recurrence, TNBC is often accompanied by a poor prognosis. As a molecular characteristic of TNBC, high expression of CD147 has been confirmed by a large number of studies. However, the mechanism of CD147 expression regulation in TNBC remains elusive. In this study, we investigated the roles of miR-890 in inhibiting CD147. Methods Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) was used to detect CD147 mRNA and miR-890 level, and western blotting was used to detect CD147 protein. Bioinformatics screening and 3′-Untranslated Region (3′-UTR) luciferase assays were used to analyze the microRNAs (miRNA) binding site. Cell proliferation, apoptosis and invasion were assessed by using CCK-8, flow cytometry and transwell assays. Results The upregulation of miR-890 inhibited cell proliferation and invasion, induced apoptosis in MDA-MB-231 and HCC-70 TNBC cells by negatively regulating its target gene, CD147, and the upregulation of CD147 rescued the inhibitory effects of miR-890. miR-890 targeted CD147 by binding to its 3′-UTR. Further results showed that the upregulation of miR-890 also inhibited the expression of MMPs, the downstream genes of CD147, and promoted the cleavage of Caspase-3. The CD147 recovery experiment was further confirmed by the activity changes in the downstream MMPs of CD147. In addition, it was confirmed that the effect of CD147 in promoting TNBC cell proliferation and invasion, inhibiting apoptosis was related to the change in caspase-3 activity. Conclusion The downregulation of miR-890 is the potential cause of high CD147 expression in TNBC, which can promote the malignant transformation of TNBC.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Breast surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.,Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai, 200020, China
| | - Cheng Xu
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Ruijie Niu
- Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai, 200020, China
| | - Guangfu Hu
- Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai, 200020, China
| | - Zhangyuan Gu
- Department of Breast surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Zhigang Zhuang
- Department of Breast surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| |
Collapse
|
17
|
Toole BP. The CD147-HYALURONAN Axis in Cancer. Anat Rec (Hoboken) 2019; 303:1573-1583. [PMID: 31090215 DOI: 10.1002/ar.24147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
CD147 (basigin; EMMPRIN), hyaluronan, and hyaluronan receptors (e.g., CD44) are intimately involved in several phenomena that underlie malignancy. A major avenue whereby they influence tumor progression is most likely their role in the characteristics of cancer stem cells (CSCs), subpopulations of tumor cells that exhibit chemoresistance, invasiveness, and potent tumorigenicity. Both CD147 and hyaluronan have been strongly implicated in chemoresistance and invasiveness, and may be drivers of CSC characteristics, since current evidence indicates that both are involved in epithelial-mesenchymal transition, a crucial process in the acquisition of CSC properties. Hyaluronan is a prominent constituent of the tumor microenvironment whose interactions with cell surface receptors influence several signaling pathways that lead to chemoresistance and invasiveness. CD147 is an integral plasma membrane glycoprotein of the Ig superfamily and cofactor in assembly and activity of monocarboxylate transporters (MCTs). CD147 stimulates hyaluronan synthesis and interaction of hyaluronan with its receptors, in particular CD44 and LYVE-1, which in turn result in activation of multiprotein complexes containing members of the membrane-type matrix metalloproteinase, receptor tyrosine kinase, ABC drug transporter, or MCT families within lipid raft domains. Multivalent hyaluronan-receptor interactions are essential for formation or stabilization of these lipid raft complexes and for downstream signaling pathways or transporter activities. We conclude that stimulation of hyaluronan-receptor interactions by CD147 and the consequent activities of these complexes may be critical to the properties of CSCs and their role in malignancy. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryan P Toole
- Department of Regenerative Medicine & Cell Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Guindolet D, Gabison EE. Role of CD147 (EMMPRIN/Basigin) in Tissue Remodeling. Anat Rec (Hoboken) 2019; 303:1584-1589. [DOI: 10.1002/ar.24089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Damien Guindolet
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| | - Eric E. Gabison
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| |
Collapse
|
19
|
Updegraff BL, Zhou X, Guo Y, Padanad MS, Chen PH, Yang C, Sudderth J, Rodriguez-Tirado C, Girard L, Minna JD, Mishra P, DeBerardinis RJ, O'Donnell KA. Transmembrane Protease TMPRSS11B Promotes Lung Cancer Growth by Enhancing Lactate Export and Glycolytic Metabolism. Cell Rep 2018; 25:2223-2233.e6. [PMID: 30463017 PMCID: PMC6338450 DOI: 10.1016/j.celrep.2018.10.100] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
Pathways underlying metabolic reprogramming in cancer remain incompletely understood. We identify the transmembrane serine protease TMPRSS11B as a gene that promotes transformation of immortalized human bronchial epithelial cells (HBECs). TMPRSS11B is upregulated in human lung squamous cell carcinomas (LSCCs), and high expression is associated with poor survival of non-small cell lung cancer patients. TMPRSS11B inhibition in human LSCCs reduces transformation and tumor growth. Given that TMPRSS11B harbors an extracellular (EC) protease domain, we hypothesized that catalysis of a membrane-bound substrate modulates tumor progression. Interrogation of a set of soluble receptors revealed that TMPRSS11B promotes solubilization of Basigin, an obligate chaperone of the lactate monocarboxylate transporter MCT4. Basigin release mediated by TMPRSS11B enhances lactate export and glycolytic metabolism, thereby promoting tumorigenesis. These findings establish an oncogenic role for TMPRSS11B and provide support for the development of therapies that target this enzyme at the surface of cancer cells.
Collapse
Affiliation(s)
- Barrett L Updegraff
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Xiaorong Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Department of Immunology, Nantong University School of Medicine, Nantong 226001, China
| | - Yabin Guo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mahesh S Padanad
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Pei-Hsuan Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica Sudderth
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carla Rodriguez-Tirado
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Luc Girard
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - John D Minna
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - Prashant Mishra
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn A O'Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
20
|
Sugyo A, Tsuji AB, Sudo H, Koizumi M, Ukai Y, Kurosawa G, Kurosawa Y, Saga T, Higashi T. Efficacy Evaluation of Combination Treatment Using Gemcitabine and Radioimmunotherapy with 90Y-Labeled Fully Human Anti-CD147 Monoclonal Antibody 059-053 in a BxPC-3 Xenograft Mouse Model of Refractory Pancreatic Cancer. Int J Mol Sci 2018; 19:ijms19102979. [PMID: 30274301 PMCID: PMC6213240 DOI: 10.3390/ijms19102979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
The poor prognosis of pancreatic cancer requires the development of more effective therapy. CD147 expresses in pancreatic cancer with high incidence and has a crucial role in invasion and metastasis. We developed a fully human monoclonal antibody (059-053) with high affinity for CD147. Here we evaluated the efficacy of combined treatment using radioimmunotherapy (RIT) with 90Y-labeled 059-053 and gemcitabine in a BxPC-3 xenograft mouse model. Expression of CD147 and matrix metalloproteinase-2 (MMP2) in BxPC-3 tumors was evaluated. In vitro and in vivo properties of 059-053 were evaluated using 111In-labeled 059-053 and a pancreatic cancer model BxPC-3. Tumor volume and body weight were periodically measured in mice receiving gemcitabine, RIT, and both RIT and gemcitabine (one cycle and two cycles). High expression of CD147 and MMP2 was observed in BxPC-3 tumors and suppressed by 059-053 injection. Radiolabeled 059-053 bound specifically to BxPC-3 cells and accumulated highly in BxPC-3 tumors but low in major organs. Combined treatment using RIT with gemcitabine (one cycle) significantly suppressed tumor growth and prolonged survival with tolerable toxicity. The two-cycle regimen had the highest anti-tumor effect, but was not tolerable. Combined treatment with 90Y-labeled 059-053 and gemcitabine is a promising therapeutic option for pancreatic cancer.
Collapse
Affiliation(s)
- Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Mitsuru Koizumi
- Department of Nuclear Medicine, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | - Yoshinori Ukai
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo 153-0041, Japan.
| | - Gene Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Tsuneo Saga
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Diagnostic Radiology, Kyoto University Hospital, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
21
|
Qiao S, Liu C, Xu W, AZhaTi W, Li C, Wang Z. Up-regulated expression of CD147 gene in malignant bone tumor and the possible induction mechanism during osteoclast formation. ACTA ACUST UNITED AC 2018; 51:e6948. [PMID: 30043854 PMCID: PMC6065812 DOI: 10.1590/1414-431x20186948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 01/17/2023]
Abstract
It is increasingly evident that the microenvironment of bone can influence cancer phenotype in many ways that favor growth in bone. CD147, a transmembrane protein of the immunoglobulin (Ig) superfamily, was identified independently in different species and has many designations across different species. However, expression levels of CD147 mRNA in bone cancer have not been described. In this study, we have used real-time fluorescence quantification (RT-PCR) to demonstrate CD147 expression in malignant bone cancer and benign bone tumor tissues. The results suggested that the expression of CD147 gene was significantly up-regulated in malignant bone cancer. Moreover, we found that over-expressed RANKL progressively enhanced osteoclast formation up to 48 h, which suggested that RANKL could promote the formation of osteoclast, indicating that both CD147 and RANKL play important roles in the formation of osteoclasts. Furthermore, the expressions of four osteoclast specific expression genes, including TRACP, MMP-2, MMP-9 and c-Src, were analyzed using RT-PCR. The results indicated that four osteoclast-specific expression genes were detectable in all osteoclast with different treatments. However, the highest expression level of these four osteoclast-specific expression genes appears in the CD147+ RANKL group and the lowest expression level of these four osteoclast-specific expression genes appears with si-RANKL treatment. Characterization of the role of CD147 in the development of tumors should lead to a better understanding of the changes occurring at the molecular level during the development and progression of primary human bone cancer.
Collapse
Affiliation(s)
- Suchi Qiao
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Chang Liu
- Department of Orthopedics, Fuzhou General Hospital, Fuzhou, China
| | - Weijie Xu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - WuBuLi AZhaTi
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Abstract
Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.
Collapse
Affiliation(s)
- Aaron Dolor
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| | - Francis C. Szoka
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| |
Collapse
|
23
|
Muhsin-Sharafaldine MR, McLellan AD. Tumor-Derived Apoptotic Vesicles: With Death They Do Part. Front Immunol 2018; 9:957. [PMID: 29780392 PMCID: PMC5952256 DOI: 10.3389/fimmu.2018.00957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor cells release lipid particles known as extracellular vesicles (EV) that contribute to cancer metastasis, to the immune response, and to thrombosis. When tumors are exposed to radiation or chemotherapy, apoptotic vesicles (ApoVs) are released in abundance as the plasma membrane delaminates from the cytoskeleton. Recent studies have suggested that ApoVs are distinct from the EVs released from living cells, such as exosomes or microvesicles. Depending on their treatment conditions, tumor-released ApoV have been suggested to either enhance or suppress anti-cancer immunity. In addition, tumor-derived ApoV possess procoagulant activity that could increase the thrombotic state in cancer patients undergoing chemotherapy or radiotherapy. Since ApoVs are one of the least appreciated type of EVs, we focus in this review on the distinctive characterization of tumor ApoVs and their proposed mechanistic effects on cancer immunity, coagulation, and metastasis.
Collapse
Affiliation(s)
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Downregulation of monocytic differentiation via modulation of CD147 by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. PLoS One 2017; 12:e0189701. [PMID: 29253870 PMCID: PMC5734787 DOI: 10.1371/journal.pone.0189701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
CD147 is an activation induced glycoprotein that promotes the secretion and activation of matrix metalloproteinases (MMPs) and is upregulated during the differentiation of macrophages. Interestingly, some of the molecular functions of CD147 rely on its glycosylation status: the highly glycosylated forms of CD147 induce MMPs whereas the lowly glycosylated forms inhibit MMP activation. Statins are hydroxy-methylglutaryl coenzyme A reductase inhibitors that block the synthesis of mevalonate, thereby inhibiting all mevalonate-dependent pathways, including isoprenylation, N-glycosylation and cholesterol synthesis. In this study, we investigated the role of statins in the inhibition of macrophage differentiation and the associated process of MMP secretion through modulation of CD147. We observed that differentiation of the human monocytic cell line THP-1 to a macrophage phenotype led to upregulation of CD147 and CD14 and that this effect was inhibited by statins. At the molecular level, statins altered CD147 expression, structure and function by inhibiting isoprenylation and N-glycosylation. In addition, statins induced a shift of CD147 from its highly glycosylated form to its lowly glycosylated form. This shift in N-glycosylation status was accompanied by a decrease in the production and functional activity of MMP-2 and MMP-9. In conclusion, these findings describe a novel molecular mechanism of immune regulation by statins, making them interesting candidates for autoimmune disease therapy.
Collapse
|
25
|
Qin H, Rasul A, Li X, Masood M, Yang G, Wang N, Wei W, He X, Watanabe N, Li J, Li X. CD147-induced cell proliferation is associated with Smad4 signal inhibition. Exp Cell Res 2017; 358:279-289. [DOI: 10.1016/j.yexcr.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/01/2017] [Indexed: 01/01/2023]
|
26
|
Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N, Lee RP, Lendermon JB, Bheemreddy R, Zhang Q, Brennan RC, Johnson D, Steinle JJ, Wilson MW, Morales-Tirado VM. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 2017; 17:434. [PMID: 28633655 PMCID: PMC5477686 DOI: 10.1186/s12885-017-3418-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/09/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Retinoblastoma (Rb) is the most common primary intraocular tumor in children. Local treatment of the intraocular disease is usually effective if diagnosed early; however advanced Rb can metastasize through routes that involve invasion of the choroid, sclera and optic nerve or more broadly via the ocular vasculature. Metastatic Rb patients have very high mortality rates. While current therapy for Rb is directed toward blocking tumor cell division and tumor growth, there are no specific treatments targeted to block Rb metastasis. Two such targets are matrix metalloproteinases-2 and -9 (MMP-2, -9), which degrade extracellular matrix as a prerequisite for cellular invasion and have been shown to be involved in other types of cancer metastasis. Cancer Clinical Trials with an anti-MMP-9 therapeutic antibody were recently initiated, prompting us to investigate the role of MMP-2, -9 in Rb metastasis. METHODS We compare MMP-2, -9 activity in two well-studied Rb cell lines: Y79, which exhibits high metastatic potential and Weri-1, which has low metastatic potential. The effects of inhibitors of MMP-2 (ARP100) and MMP-9 (AG-L-66085) on migration, angiogenesis, and production of immunomodulatory cytokines were determined in both cell lines using qPCR, and ELISA. Cellular migration and potential for invasion were evaluated by the classic wound-healing assay and a Boyden Chamber assay. RESULTS Our results showed that both inhibitors had differential effects on the two cell lines, significantly reducing migration in the metastatic Y79 cell line and greatly affecting the viability of Weri-1 cells. The MMP-9 inhibitor (MMP9I) AG-L-66085, diminished the Y79 angiogenic response. In Weri-1 cells, VEGF was significantly reduced and cell viability was decreased by both MMP-2 and MMP-9 inhibitors. Furthermore, inhibition of MMP-2 significantly reduced secretion of TGF-β1 in both Rb models. CONCLUSIONS Collectively, our data indicates MMP-2 and MMP-9 drive metastatic pathways, including migration, viability and secretion of angiogenic factors in Rb cells. These two subtypes of matrix metalloproteinases represent new potential candidates for targeted anti-metastatic therapy for Rb.
Collapse
Affiliation(s)
- Anderson H. Webb
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Bradley T. Gao
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Zachary K. Goldsmith
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Andrew S. Irvine
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Nabil Saleh
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Ryan P. Lee
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Justin B. Lendermon
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Rajini Bheemreddy
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Qiuhua Zhang
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Rachel C. Brennan
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Dianna Johnson
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
| | - Jena J. Steinle
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI USA
| | - Matthew W. Wilson
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Vanessa M. Morales-Tirado
- Department of Ophthalmology, Hamilton Eye Institute, the University of Tennessee Health Science Center, 930 Madison Ave, Room 756, Memphis, TN 38163 USA
- Department of Microbiology, Immunology and Biochemistry, the University of Tennessee Health Science Center, Memphis, TN USA
| |
Collapse
|
27
|
Ni T, Chen M, Yang K, Shao J, Fu Y, Zhou W. Association of CD147 genetic polymorphisms with carotid atherosclerotic plaques in a Han Chinese population with cerebral infarction. Thromb Res 2017; 156:29-35. [PMID: 28582638 DOI: 10.1016/j.thromres.2017.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Given the important role of CD147 in the development of atherosclerosis, we speculated that CD147 genetic polymorphisms might influence the formation of carotid atherosclerotic plaques. The study was to investigate the association between CD147 gene polymorphisms and susceptibility to carotid atherosclerotic plaques in individuals with cerebral infarction (CI). METHODS Eight SNPs in the regulatory and coding regions of the CD147 gene were examined using polymerase chain reaction-ligase detection reaction (PCR-LDR) in DNA samples from 732 Chinese patients with CI, divided into a carotid plaque group (n=475) and a non-carotid plaque group (n=257). RESULTS Significant differences were found in the genotypes and allele frequencies of the rs4919862 SNP between the carotid plaque and non-carotid plaque groups of CI patients (P<0.05), while the frequencies of the C allele and the CC genotype in the non-carotid plaque group were significantly lower than those in the carotid plaque group, and the frequencies of the T allele in the non-carotid plaque group were significantly higher than those in the carotid plaque group (P<0.05). In addition, there was strong linkage disequilibrium among the rs4919862, rs8637 and rs8259 sites. In a haplotype analysis, the occurrence rate of the haplotype GATGCAGC was 2.095 times higher in the carotid plaque group than in the non-carotid plaque group (P<0.05). CONCLUSION These results showed that the rs4919862 SNP of CD147 was closely associated with carotid atherosclerotic plaques formation. Thus, polymorphisms of the CD147 gene may be related to the tendency for carotid atherosclerotic plaques.
Collapse
Affiliation(s)
- Tongtian Ni
- Department of Emergency, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Min Chen
- Department of Emergency, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Kang Yang
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jianwei Shao
- Department of Emergency, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yi Fu
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Weijun Zhou
- Department of Emergency, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
28
|
Panich T, Tragoolpua K, Pata S, Tayapiwatana C, Intasai N. Downregulation of Extracellular Matrix Metalloproteinase Inducer by scFv-M6-1B9 Intrabody Suppresses Cervical Cancer Invasion Through Inhibition of Urokinase-Type Plasminogen Activator. Cancer Biother Radiopharm 2017; 32:1-8. [DOI: 10.1089/cbr.2016.2126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Tipattaraporn Panich
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Supansa Pata
- Biomedical Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Biomedical Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nutjeera Intasai
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
29
|
Yang J, Wang R, Li H, Lv Q, Meng W, Yang X. Lentivirus mediated RNA interference of EMMPRIN (CD147) gene inhibits the proliferation, matrigel invasion and tumor formation of breast cancer cells. Cancer Biomark 2017; 17:237-47. [PMID: 27434292 DOI: 10.3233/cbm-160636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), a glycoprotein enriched on the plasma membrane of tumor cells, promotes proliferation, invasion, metastasis, and survival of malignant tumor cells. In this study, we sought to examine the expression of EMMPRIN in breast tumors, and to identify the potential roles of EMMPRIN on breast cancer cells. METHODS EMMPRIN expression in breast cancer tissues was assessed by immunohistochemistry. We used a lentivirus vector-based RNA interference (RNAi) approach expressing short hairpin RNA (shRNA) to knockdown EMMPRIN gene in breast cancer cell lines MDA-MB-231 and MCF-7. In vitro, Cell proliferative, invasive potential were determined by Cell Counting Kit (CCK-8), cell cycle analysis and matrigel invasion assay, respectively. In vivo, tumorigenicity was monitored by inoculating tumor cells into breast fat pad of female nude mice. RESULTS EMMPRIN was over-expressed in breast tumors and breast cancer cell lines. Down-regulation of EMMPRIN by lentivirus vector-based RNAi led to decreased cell proliferative, decreased matrigel invasion in vitro, and attenuated tumor formation in vivo. CONCLUSION High expression of EMMPRIN plays a crucial role in breast cancer cell proliferation, matrigel invasion and tumor formation.
Collapse
Affiliation(s)
- Jing Yang
- Department of Thyroid and Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Wang
- Department of Breast Surgery, the Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou, China
| | - Hongjiang Li
- Department of Thyroid and Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Lv
- Department of Thyroid and Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqin Yang
- Department of Thyroid and Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Kuo PJ, Lin HL, Lin CY, Chin YT, Tu HP, Lai TM, Chiu HC, Fu E. Crosstalk Between Human Monocytic U937 Cells and Gingival Fibroblasts in Coculturally Enhanced Matrix Metalloproteinase-2 Expression. J Periodontol 2016; 87:1228-37. [PMID: 27294432 DOI: 10.1902/jop.2016.140653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Po-Jan Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Hsiao-Lun Lin
- Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Chi-Yu Lin
- Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Tang Chin
- Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
- Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Hsiao-Pei Tu
- Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Tat-Ming Lai
- Department of Periodontology, Cardinal Tien Hospital, New Taipei City, Taiwan, Republic of China
| | - Hsien-Chung Chiu
- Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Earl Fu
- Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
31
|
E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proc Natl Acad Sci U S A 2016; 113:11004-9. [PMID: 27621431 DOI: 10.1073/pnas.1602751113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The multifunctional protein E4 transcription factor 1 (E4F1) is an essential regulator of epidermal stem cell (ESC) maintenance. Here, we found that E4F1 transcriptionally regulates a metabolic program involved in pyruvate metabolism that is required to maintain skin homeostasis. E4F1 deficiency in basal keratinocytes resulted in deregulated expression of dihydrolipoamide acetyltransferase (Dlat), a gene encoding the E2 subunit of the mitochondrial pyruvate dehydrogenase (PDH) complex. Accordingly, E4f1 knock-out (KO) keratinocytes exhibited impaired PDH activity and a redirection of the glycolytic flux toward lactate production. The metabolic reprogramming of E4f1 KO keratinocytes associated with remodeling of their microenvironment and alterations of the basement membrane, led to ESC mislocalization and exhaustion of the ESC pool. ShRNA-mediated depletion of Dlat in primary keratinocytes recapitulated defects observed upon E4f1 inactivation, including increased lactate secretion, enhanced activity of extracellular matrix remodeling enzymes, and impaired clonogenic potential. Altogether, our data reveal a central role for Dlat in the metabolic program regulated by E4F1 in basal keratinocytes and illustrate the importance of PDH activity in skin homeostasis.
Collapse
|
32
|
Fisel P, Stühler V, Bedke J, Winter S, Rausch S, Hennenlotter J, Nies AT, Stenzl A, Scharpf M, Fend F, Kruck S, Schwab M, Schaeffeler E. MCT4 surpasses the prognostic relevance of the ancillary protein CD147 in clear cell renal cell carcinoma. Oncotarget 2016; 6:30615-27. [PMID: 26384346 PMCID: PMC4741556 DOI: 10.18632/oncotarget.5593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/22/2015] [Indexed: 12/02/2022] Open
Abstract
Cluster of differentiation 147 (CD147/BSG) is a transmembrane glycoprotein mediating oncogenic processes partly through its role as binding partner for monocarboxylate transporter MCT4/SLC16A3. As demonstrated for MCT4, CD147 is proposed to be associated with progression in clear cell renal cell carcinoma (ccRCC). In this study, we evaluated the prognostic relevance of CD147 in comparison to MCT4/SLC16A3 expression and DNA methylation.
Collapse
Affiliation(s)
- Pascale Fisel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Viktoria Stühler
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jens Bedke
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Reseach Center (DKFZ), Heidelberg, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Reseach Center (DKFZ), Heidelberg, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan Kruck
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Reseach Center (DKFZ), Heidelberg, Germany.,Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
33
|
Marchiq I, Albrengues J, Granja S, Gaggioli C, Pouysségur J, Simon MP. Knock out of the BASIGIN/CD147 chaperone of lactate/H+ symporters disproves its pro-tumour action via extracellular matrix metalloproteases (MMPs) induction. Oncotarget 2016; 6:24636-48. [PMID: 26284589 PMCID: PMC4694784 DOI: 10.18632/oncotarget.4323] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023] Open
Abstract
BASIGIN/CD147/EMMPRIN is a multifunctional transmembrane glycoprotein strongly expressed in tumours. BASIGIN controls tumour metabolism, particularly glycolysis by facilitating lactic acid export through the two monocarboxylate transporters MCT1 and hypoxia-inducible MCT4. However, before being recognized as a co-carrier of MCTs, BASIGIN was described as an inducer of extracellular matrix metalloproteases (MMPs). Early on, a model emerged in which, tumour cells use the extracellular domain of BASIGIN to recognize and stimulate neighbouring fibroblasts to produce MMPs. However, this model has remained hypothetical since a direct link between BASIGIN and MMPs production has not yet been clearly established. To validate the BASIGIN/MMP hypothesis, we developed BASIGIN knockouts in three human tumour cell lines derived from glioma, colon, and lung adenocarcinoma. By using co-culture experiments of either human or mouse fibroblasts and tumour cell lines we showed, contrary to what has been abundantly published, that the disruption of BASIGIN in tumour cells and in MEFs has no action on the production of MMPs. Our findings do not support the notion that the pro-tumoural action of BASIGIN is mediated via induction of MMPs. Therefore, we propose that to date, the strongest pro-tumoural action of BASIGIN is mediated through the control of fermentative glycolysis.
Collapse
Affiliation(s)
- Ibtissam Marchiq
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne, Nice, France
| | - Jean Albrengues
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, Nice, France
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus of Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Cédric Gaggioli
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, Nice, France
| | - Jacques Pouysségur
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne, Nice, France.,Centre Scientifique de Monaco (CSM), Quai Antoine Ier MC, France
| | - Marie-Pierre Simon
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
34
|
Osman NM, Osman WM. SDF-1 and MMP2 cross talk in cancer cells and tumor microenvironment in non-small cell lung cancer. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2016. [DOI: 10.1016/j.ejcdt.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Hasaneen NA, Cao J, Pulkoski-Gross A, Zucker S, Foda HD. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts. Respir Res 2016; 17:17. [PMID: 26887531 PMCID: PMC4756394 DOI: 10.1186/s12931-016-0334-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial–stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. Methods To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α–smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Results Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an EMMPRIN blocking antibody markedly inhibited TGF-β1 induced proliferation, migration, and differentiation of fibroblasts to myofibroblasts. EMMPRIN overexpression in lung fibroblasts was found to induce an increase in TOPFLASH luciferase reporter activity when compared with control fibroblasts. Conclusion These findings indicate that TGF-β1 induces the release of EMMPRIN that activates β-catenin/canonical Wnt signaling pathway. EMMPRIN overexpression induces an anti-apoptotic and pro-fibrotic phenotype in lung fibroblasts that may contribute to the persistent fibro-proliferative state seen in IPF.
Collapse
Affiliation(s)
- Nadia A Hasaneen
- Department of Medicine and Research, Veterans Administration Medical Center, Northport, USA.,Department of Medicine, Stony Brook Medicine, Stony Brook, New York, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Stony Brook University Medical Center, Stony Brook, NY, 11794-8172, USA
| | - Jian Cao
- Department of Medicine, Stony Brook Medicine, Stony Brook, New York, USA
| | | | - Stanley Zucker
- Department of Medicine and Research, Veterans Administration Medical Center, Northport, USA.,Department of Medicine, Stony Brook Medicine, Stony Brook, New York, USA
| | - Hussein D Foda
- Department of Medicine and Research, Veterans Administration Medical Center, Northport, USA. .,Department of Medicine, Stony Brook Medicine, Stony Brook, New York, USA. .,Division of Pulmonary, Critical Care and Sleep Medicine, Stony Brook University Medical Center, Stony Brook, NY, 11794-8172, USA.
| |
Collapse
|
36
|
Kim H, Samuel S, Lopez-Casas P, Grizzle W, Hidalgo M, Kovar J, Oelschlager D, Zinn K, Warram J, Buchsbaum D. SPARC-Independent Delivery of Nab-Paclitaxel without Depleting Tumor Stroma in Patient-Derived Pancreatic Cancer Xenografts. Mol Cancer Ther 2016; 15:680-8. [PMID: 26832793 DOI: 10.1158/1535-7163.mct-15-0764] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023]
Abstract
The study goal was to examine the relationship between nab-paclitaxel delivery and SPARC (secreted protein acidic and rich in cysteine) expression in pancreatic tumor xenografts and to determine the antistromal effect of nab-paclitaxel, which may affect tumor vascular perfusion. SPARC-positive and -negative mice bearing Panc02 tumor xenografts (n = 5-6/group) were injected with IRDye 800CW (IR800)-labeled nab-paclitaxel. After 24 hours, tumors were collected and stained with DL650-labeled anti-SPARC antibody, and the correlation between nab-paclitaxel and SPARC distributions was examined. Eight groups of mice bearing either Panc039 or Panc198 patient-derived xenografts (PDX; 4 groups/model, 5 animals/group) were untreated (served as control) or treated with gemcitabine (100 mg/kg body weight, i.p., twice per week), nab-paclitaxel (30 mg/kg body weight, i.v., for 5 consecutive days), and these agents in combination, respectively, for 3 weeks, and tumor volume and perfusion changes were assessed using T2-weighted MRI and dynamic contrast-enhanced (DCE) MRI, respectively. All tumors were collected and stained with Masson's Trichrome Stain, followed by a blinded comparative analysis of tumor stroma density. IR800-nab-paclitaxel was mainly distributed in tumor stromal tissue, but nab-paclitaxel and SPARC distributions were minimally correlated in either SPARC-positive or -negative animals. Nab-paclitaxel treatment neither decreased tumor stroma nor increased tumor vascular perfusion in either PDX model when compared with control groups. These data suggest that the specific tumor delivery of nab-paclitaxel is not directly related to SPARC expression, and nab-paclitaxel does not deplete tumor stroma in general. Mol Cancer Ther; 15(4); 680-8. ©2016 AACR.
Collapse
Affiliation(s)
- Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama. Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Sharon Samuel
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pedro Lopez-Casas
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Program, Spanish National Cancer Research Center, Madrid, Spain
| | - William Grizzle
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama. Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Manuel Hidalgo
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Program, Spanish National Cancer Research Center, Madrid, Spain
| | - Joy Kovar
- LI-COR Biosciences, Lincoln, Nebraska
| | - Denise Oelschlager
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama. Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason Warram
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donald Buchsbaum
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama. Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
37
|
Yong YL, Liao CG, Wei D, Chen ZN, Bian H. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells. Cell Biol Int 2016; 40:375-86. [DOI: 10.1002/cbin.10571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Yu-Le Yong
- State Key Laboratory of Cancer Biology; Department of Cell Biology; Cell Engineering Research Center; Fourth Military Medical University; Xi'an 710032 China
| | - Cheng-Gong Liao
- Department of Oncology; Urumqi General Hospital of Lanzhou Military Command of PLA; Urumqi 830000 China
| | - Ding Wei
- State Key Laboratory of Cancer Biology; Department of Cell Biology; Cell Engineering Research Center; Fourth Military Medical University; Xi'an 710032 China
| | - Zhi-Nan Chen
- State Key Laboratory of Cancer Biology; Department of Cell Biology; Cell Engineering Research Center; Fourth Military Medical University; Xi'an 710032 China
| | - Huijie Bian
- State Key Laboratory of Cancer Biology; Department of Cell Biology; Cell Engineering Research Center; Fourth Military Medical University; Xi'an 710032 China
| |
Collapse
|
38
|
de Andrade ALDL, Ferreira SJ, Ferreira SMS, Ribeiro CMB, Freitas RDA, Galvão HC. Immunoexpression of EGFR and EMMPRIN in a series of cases of head and neck squamous cell carcinoma. Pathol Res Pract 2015; 211:776-81. [PMID: 26296920 DOI: 10.1016/j.prp.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/20/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) and the extracellular matrix metalloproteinase inducer (EMMPRIN) have been identified as oncologically important targets. This study aimed to evaluate the immunoexpression of EGFR and EMMPRIN in a series of cases of head and neck squamous cell carcinoma (HNSCC). METHODS Forty-five cases of HNSCC were selected for this study and evaluated with anti-EGFR and anti-EMMPRIN antibodies. The percentage of positive cells was determined assessing to the following categories: score 1 (staining in 0-50% of cells), score 2 (staining in 51-75% of cells), and score 3 (staining in >75% of cells). Immunostaining intensity was graded according to the following parameters: score 1 (absent/weak expression) and score 2 (strong expression). RESULTS For EGFR, a predominance of high median scores was observed in cases of both histological grades of malignancy and in different clinical stages (p>0.05). For EMMPRIN, a statistically significant difference was observed between the histological grades of malignancy (p=0.030). Regarding the immunostaining intensity of EMMPRIN, it was observed a predominance of score 1 in cases with stages I/II, whereas most cases with stages III/IV presented score 2 (p=0.032). Considering the anatomical location, most cases of buccal floor presented higher median score of EMMPRIN in comparison with the other sites (p=0.015). CONCLUSIONS These findings suggest that both proteins are potential targets for cancer therapy and EMMPRIN can be used as a prognostic marker of a more aggressive biological behavior in patients with HNSCC.
Collapse
Affiliation(s)
| | - Stefânia Jeronimo Ferreira
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Roseana de Almeida Freitas
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Hébel Cavalcanti Galvão
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
39
|
Najyb O, Brissette L, Rassart E. Apolipoprotein D Internalization Is a Basigin-dependent Mechanism. J Biol Chem 2015; 290:16077-87. [PMID: 25918162 DOI: 10.1074/jbc.m115.644302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection.
Collapse
Affiliation(s)
- Ouafa Najyb
- From the Laboratoire de Biologie Moléculaire and
| | - Louise Brissette
- Laboratoire du Métabolisme des Lipoprotéines, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Quebec H3C 3P8, Canada
| | - Eric Rassart
- From the Laboratoire de Biologie Moléculaire and
| |
Collapse
|
40
|
Grass GD, Dai L, Qin Z, Parsons C, Toole BP. CD147: regulator of hyaluronan signaling in invasiveness and chemoresistance. Adv Cancer Res 2015; 123:351-73. [PMID: 25081536 DOI: 10.1016/b978-0-12-800092-2.00013-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Major determinants that influence negative outcome in cancer patients are the abilities of cancer cells to resist current therapies and to invade surrounding host tissue, consequently leading to local and metastatic dissemination. Hyaluronan (HA), a prominent constituent of the tumor microenvironment, not only provides structural support but also interacts with cell surface receptors, especially CD44, that influence cooperative signaling pathways leading to chemoresistance and invasiveness. CD147 (emmprin; basigin) is a member of the Ig superfamily that has also been strongly implicated in chemoresistance and invasiveness. CD147 both regulates HA synthesis and interacts with the HA receptors, CD44, and LYVE-1. Increased CD147 expression induces formation of multiprotein complexes containing CD44 (or LYVE-1) as well as members of the membrane-type matrix metalloproteinase, receptor tyrosine kinase, ABC drug transporter, or monocarboxylate transporter families, which become assembled in specialized lipid raft domains along with CD147 itself. In each case, multivalent HA-receptor interactions are essential for formation or stabilization of the lipid raft complexes and for downstream signaling pathways or transporter activities that are driven by these complexes. We conclude that cooperativity between HA, HA receptors, and CD147 may be a major driver of the interconnected pathways of invasiveness and chemoresistance widely critical to malignancy.
Collapse
Affiliation(s)
- G Daniel Grass
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Lu Dai
- Department of Medicine, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhiqiang Qin
- Department of Microbiology, Immunology & Parasitology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Chris Parsons
- Department of Medicine, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Microbiology, Immunology & Parasitology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Bryan P Toole
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
41
|
Kim H, Hartman YE, Zhai G, Chung TK, Korb ML, Beasley TM, Zhou T, Rosenthal EL. Dynamic contrast-enhanced MRI evaluates the early response of human head and neck tumor xenografts following anti-EMMPRIN therapy with cisplatin or irradiation. J Magn Reson Imaging 2015; 42:936-45. [PMID: 25704985 DOI: 10.1002/jmri.24871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To assess the early therapeutic effects of anti-EMMPRIN (extracellular matrix metalloprotease inducer) antibody with/without cisplatin or X-ray radiation in head and neck cancer mouse models using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS Mice bearing SCC1 (or OSC19) tumor xenografts were treated with anti-EMMPRIN antibody, radiation, cisplatin, or anti-EMMPRIN antibody plus cisplatin (or radiation) for a week (n = 4-5 per group). DCE-MRI was carried out on a 9.4T small animal MR scanner on days 0, 3, and 7, and K(trans) values were averaged in a 0.5-mm-thick peripheral tumor region. Ki67 and CD31 staining were implemented for all tumors after imaging. RESULTS The K(trans) changes of SCC1 and OSC19 tumors treated with anti-EMMPRIN antibody for 3 days were -18 ± 8% and 4 ± 7%, respectively, which were significantly lower than those of control groups (39 ± 5% and 45 ± 7%; P = 0.0025 and 0.0220, respectively). When cisplatin was added, those were -42 ± 9% and -44 ± 9%, respectively, and with radiation, -45 ± 9% and -27 ± 10%, respectively, which were also significantly lower than those of control groups (P < 0.0001 for all four comparisons). In the eight groups untreated (served as control) or treated with anti-EMMPRIN antibody with/without cisplatin or radiation, the mean K(trans) change for 3 days was significantly correlated with the mean tumor volume change for 7 days (r = 0.74, P = 0.0346), Ki67-expressing cell density (r = 0.96, P = 0.0001), and CD31 density (r = 0.84, P = 0.0084). CONCLUSION DCE-MRI might be utilized to assess the early therapeutic effects of anti-EMMPRIN antibody with/without chemotherapy or radiotherapy in head and neck cancer.
Collapse
Affiliation(s)
- Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yolanda E Hartman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guihua Zhai
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas K Chung
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa L Korb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timothy M Beasley
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tong Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eben L Rosenthal
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
42
|
CD147 and Ki-67 overexpression confers poor prognosis in squamous cell carcinoma of oral tongue: a tissue microarray study. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119:553-65. [PMID: 25747176 DOI: 10.1016/j.oooo.2014.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Squamous cell carcinoma of the oral tongue (SCCOT) exhibits high risk for recurrence and regional metastasis even after surgical resection. We assessed the clinicopathologic and prognostic significance of a group of functionally related biomarkers. STUDY DESIGN We used a tissue microarray consisting of SCCOT from 32 patients for this study. These patients were treated at the University of Texas MD Anderson Cancer Center from 1995 to 2008. Biomarker expression levels were examined by immunohistochemistry and graded semiquantitatively to determine their prognostic significance. RESULTS CD147 and Tp63 expressions were significantly associated with a higher T stage and Ki-67 labeling index, as well as a shorter overall survival (OS) rate. Expression of Tp63 associated positively with poorly differentiated histology. There was significant association of Tp63 with the expression levels of CD147 and Glut-1. Glut-1 overexpression was marginally associated with a higher T stage. There was no prognostic significance of CD44 v6 expression in SCCOT. CONCLUSION SCCOT with CD147 overexpression in combination with high Ki-67 labeling index had poor OS. CD147 and Ki-67 overexpression is associated with aggressive disease with poor prognosis in SCCOT.
Collapse
|
43
|
Fu MMJ, Fu E, Kuo PJ, Tu HP, Chin YT, Chiang CY, Chiu HC. Gelatinases and Extracellular Matrix Metalloproteinase Inducer Are Associated With Cyclosporin-A-Induced Attenuation of Periodontal Degradation in Rats. J Periodontol 2015; 86:82-90. [DOI: 10.1902/jop.2014.140366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Zhu S, Li Y, Zhang Y, Wang X, Gong L, Han X, Yao L, Lan M, Zhang W. Expression and clinical implications of HAb18G/CD147 in hepatocellular carcinoma. Hepatol Res 2015; 45:97-106. [PMID: 24593119 DOI: 10.1111/hepr.12320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/20/2022]
Abstract
AIM HAb18G/CD147 is an important factor in invasion and metastasis of hepatocellular carcinoma (HCC). However, the clinical implications of HAb18G/CD147 expression in HCC are still unclear. In this study, we clarify the clinical significance of HAb18G/CD147. We characterize the association between HAb18G/CD147 expression and presentation of fibrosis or chronic hepatitis B, as well as its effect on HCC development. METHODS The expression of HAb18G/CD147 in human hepatocarcinoma cell lines was analyzed by reverse transcription polymerase chain reaction and western blotting. Tumor tissues were obtained from HCC patients who underwent surgical resection between 2002 and 2006. All patients who had received previous therapy were excluded. HCC tissues were analyzed by immunohistochemistry using anti-HAb18G/CD147. RESULTS HAb18G/CD147 was widely expressed in Hep-G2, SMCC-7721 and BEL7402 cell lines, but not expressed in L-02, a human normal hepatic cell line. HAb18G/CD147 was mainly localized to the membrane of tumor cells in 74.0% (37/50) HCC patients. We found that higher HAb18G/CD147 expression and poor tumor differentiation were correlated with patient survival (P = 0.026 and P = 0.014, respectively). Furthermore, the distribution of HAb18G/CD147 was similar to that of hepatitis B virus (HBV) infection, but negatively related to hepatic cirrhosis. CONCLUSION HAb18G/CD147 has shown its potentials in HCC development and patient survival. Moreover, it may also cooperate with chronic HBV infection and cirrhosis during HCC development. Its functions in the two factors may be different. Therefore, HAb18G/CD147 may be a marker for poor prognosis in HCC patients and could be a useful therapeutic target for interfering with or reversing HCC progression.
Collapse
Affiliation(s)
- Shaojun Zhu
- Department of Pathology, The Helmholtz Sino-German Research Laboratory for Cancer, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li HF, Liu YQ, Shen ZJ, Gan XF, Han JJ, Liu YY, Li HG, Huang ZQ. Downregulation of MACC1 inhibits invasion, migration and proliferation, attenuates cisplatin resistance and induces apoptosis in tongue squamous cell carcinoma. Oncol Rep 2014; 33:651-60. [PMID: 25421538 DOI: 10.3892/or.2014.3612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the expression and function of metastasis-associated in colon cancer 1 (MACC1) in tongue squamous cell carcinoma (TSCC) and its relationship with the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147). Levels of MACC1 and EMMPRIN expression were analyzed in 65 paraffin‑embedded tissue specimens of TSCC and in the adjacent non-cancerous tissues using immunohistochemistry (IHC). MACC1 expression was highly associated with lymphatic metastasis and EMMPRIN expression. Overexpression of MACC1 was significantly correlated with poor overall patient survival. A small interfering RNA (siRNA) was delivered into TSCCA cells to downregulate MACC1 expression. The CCK-8 assay showed that TSCCA cell proliferation was markedly reduced and that cisplatin resistance was attenuated. The suppression of MACC1 promoted the apoptosis of the TSCCA cell line. A Transwell experiment demonstrated that the migration and invasion abilities of the TSCCA cells were extremely downregulated. An ELISA experiment and western blotting revealed that the secretion of urokinase-type plasminogen activator system (uPA) in the supernatant of the culture medium and uPA expression were significantly reduced. Experiments revealed that the secretion of metalloproteinase 2 (MMP2) in the supernatant of the culture medium and MMP2 expression were not affected. MACC1 may serve as a novel biomarker and therapeutic target for TSCC.
Collapse
Affiliation(s)
- Hai-Feng Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Ye-Qing Liu
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Zhuo-Jian Shen
- Department of Cardio-Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Xiang-Feng Gan
- Department of Cardio-Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Jing-Jing Han
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yun-Yun Liu
- Department of Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Hai-Gang Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Zhi-Quan Huang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
46
|
Sousa B, Ribeiro AS, Nobre AR, Lopes N, Martins D, Pinheiro C, Vieira AF, Albergaria A, Gerhard R, Schmitt F, Baltazar F, Paredes J. The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype. BMC Cancer 2014; 14:734. [PMID: 25269858 PMCID: PMC4190447 DOI: 10.1186/1471-2407-14-734] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/18/2014] [Indexed: 12/26/2022] Open
Abstract
Background Cancer stem cells are hypoxia-resistant and present a preponderant glycolytic metabolism. These characteristics are also found in basal-like breast carcinomas (BLBC), which show increased expression of cancer stem cell markers. Recently, we demonstrated that P-cadherin, a biomarker of BLBC and a poor prognostic factor in this disease, mediates stem-like properties and resistance to radiation therapy. Thus, the aim of the present study was to evaluate if P-cadherin expression was associated to breast cancer cell populations with an adapted phenotype to hypoxia. Methods Immunohistochemistry was performed to address the expression of P-cadherin, hypoxic, glycolytic and acid-resistance biomarkers in primary human breast carcinomas. In vitro studies were performed using basal-like breast cancer cell lines. qRT-PCR, FACS analysis, western blotting and confocal microscopy were used to assess the expression of P-cadherin after HIF-1α stabilization, achieved by CoCl2 treatment. siRNA-mediated knockdown was used to silence the expression of several targets and qRT-PCR was employed to evaluate the effects of P-cadherin on HIF-1α signaling. P-cadherin high and low breast cancer cell populations were sorted by FACS and levels of GLUT1 and CAIX were assessed by FACS and western blotting. Mammosphere forming efficiency was used to determine the stem cell activity after specific siRNA-mediated knockdown, further confirmed by western blotting. Results We demonstrated that P-cadherin overexpression was significantly associated with the expression of HIF-1α, GLUT1, CAIX, MCT1 and CD147 in human breast carcinomas. In vitro, we showed that HIF-1α stabilization was accompanied by increased membrane expression of P-cadherin and that P-cadherin silencing led to a decrease of the mRNA levels of GLUT1 and CAIX. We also found that the cell fractions harboring high levels of P-cadherin were the same exhibiting more GLUT1 and CAIX expression. Finally, we showed that P-cadherin silencing significantly decreases the mammosphere forming efficiency in the same range as the silencing of HIF-1α, CAIX or GLUT1, validating that all these markers are being expressed by the same breast cancer stem cell population. Conclusions Our results establish a link between aberrant P-cadherin expression and hypoxic, glycolytic and acid-resistant breast cancer cells, suggesting a possible role for this marker in cancer cell metabolism. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-734) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joana Paredes
- IPATIMUP- Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr Roberto Frias s/n, Porto 4200-465, Portugal.
| |
Collapse
|
47
|
shRNA-Mediated EMMPRIN Silencing Inhibits Human Leukemic Monocyte Lymphoma U937 Cell Proliferation and Increases Chemosensitivity to Adriamycin. Cell Biochem Biophys 2014; 71:827-35. [DOI: 10.1007/s12013-014-0270-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:203601. [PMID: 24991539 PMCID: PMC4058511 DOI: 10.1155/2014/203601] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 01/15/2023]
Abstract
Antibody based positron emission tomography (immuno-PET) imaging is of increasing importance to visualize and characterize tumor lesions. Additionally, it can be used to identify patients who may benefit from a particular therapy and monitor the therapy outcome. In recent years the field is focused on 89Zr, a radiometal with near ideal physical and chemical properties for immuno-PET. In this review we will discuss the production of 89Zr, the bioconjugation strategies, and applications in (pre-)clinical studies of 89Zr-based immuno-PET in oncology. To date, 89Zr-based PET imaging has been investigated in a wide variety of cancer-related targets. Moreover, clinical studies have shown the feasibility for 89Zr-based immuno-PET to predict and monitor treatment, which could be used to tailor treatment for the individual patient. Further research should be directed towards the development of standardized and robust conjugation methods and improved chelators to minimize the amount of released Zr4+ from the antibodies. Additionally, further validation of the imaging method is required. The ongoing development of new 89Zr-labeled antibodies directed against novel tumor targets is expected to expand applications of 89Zr-labeled immuno-PET to a valuable method in the medical imaging.
Collapse
|
49
|
Choi JW, Kim Y, Lee JH, Kim YS. Prognostic significance of lactate/proton symporters MCT1, MCT4, and their chaperone CD147 expressions in urothelial carcinoma of the bladder. Urology 2014; 84:245.e9-15. [PMID: 24857275 DOI: 10.1016/j.urology.2014.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/27/2014] [Accepted: 03/30/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the prognostic significance of lactate/proton monocarboxylate transporters MCT1, MCT4, and their chaperone CD147 expressions in urothelial carcinoma of the bladder (UCB). METHODS We examined the expressions of MCT1, MCT4, and CD147 proteins in a total of 360 cases of UCB by immunohistochemistry. The immunohistochemical expressions were quantified using an ImageJ-based analysis program. RESULTS MCT1, MCT4, and CD147 expressions were increased in 130 (36.1%), 168 (46.7%), and 228 (63.3%) UCB cases, respectively. Most tumor cells showed diffuse membranous staining, whereas normal urothelial cells showed negative or weak staining. High levels of MCT1 expression correlated with high World Health Organization grade (P<.001), advanced tumor node metastasis (TNM) stage (P<.001), nonpapillary growth type (P<.001), and lymphatic tumor invasion (P=.010), whereas high levels of MCT4 expression did not significantly correlate with any of these variables. High CD147 expression was associated with high World Health Organization grade (P<.001), advanced tumor node metastatis stage (P<.001), and nonpapillary growth type (P=.003). Univariate analyses revealed that high MCT1 (P<.001) and CD147 (P=.029) expressions were associated with poor overall survival and that high MCT4 expression was correlated with poor recurrence-free survival (P=.036). Multivariate analyses revealed that high MCT1 and MCT4 expressions were independent prognostic factors for poor overall survival and poor recurrence-free survival, respectively, in UCB patients. CONCLUSION Our results indicate that increased MCT1, MCT4, and CD147 expressions have prognostic implications in UCB and suggest their roles in urothelial cancer metabolism.
Collapse
Affiliation(s)
- Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Younghye Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
50
|
EMMPRIN expression in oral squamous cell carcinomas: correlation with tumor proliferation and patient survival. BIOMED RESEARCH INTERNATIONAL 2014; 2014:905680. [PMID: 24967412 PMCID: PMC4055425 DOI: 10.1155/2014/905680] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 12/13/2022]
Abstract
The aim of our study was to explore the clinicopathological and prognostic significance of extracellular matrix metalloproteinase inducer (EMMPRIN) expression in oral squamous cell carcinomas (OSCC), and its relation with the proliferative tumor status of OSCC. We examined EMMPRIN and Ki-67 proteins expression by immunohistochemistry in 74 cases with OSCC. Statistical analysis was conducted to examine their clinicopathological and prognostic significance in OSCC. EMMPRIN membrane expression was observed in all cases, with both membrane and cytoplasmic tumor expression in 61 cases (82.4%). EMMPRIN overexpression was observed in 56 cases (75.7%). Moderately or poorly differentiated tumors showed EMMPRIN overexpression more frequently than well-differentiated tumors (P = 0.002). Overexpression of EMMPRIN was correlated with high Ki-67 expression (P = 0.004). In the multivariate analysis, EMMPRIN overexpression reveals an adverse independent prognostic value for cancer-specific survival (CSS) (P = 0.034). Our results reveal that EMMPRIN protein is overexpressed in more than two-thirds of OSCC cases, especially in high proliferative and less differentiated tumors. The independent value of EMMPRIN overexpression in CSS suggests that this protein could be used as an important biological prognostic marker for patients with OSCC. Moreover, the high expression of EMMPRIN makes it a possible therapeutic target in OSCC patients.
Collapse
|