1
|
Zhou X, Zhou Z, Qin X, Cheng J, Fu Y, Wang Y, Wang J, Qin P, Zhang D. Amino Acid Metabolism Subtypes in Neuroblastoma Identifying Distinct Prognosis and Therapeutic Vulnerabilities. J Proteome Res 2024. [PMID: 39442086 DOI: 10.1021/acs.jproteome.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Although amino acid (AA) metabolism is linked to tumor progression and could serve as an attractive intervention target, its association with neuroblastoma (NB) is unknown. Based on AA metabolism-related genes, we established three NB subtypes associated with distinct prognoses and specific functions, with C1 and C2 having better outcomes. The C1 displayed enhanced metabolic activity and recruited metabolism-associated cells. The C2 exhibited an activated immune microenvironment and was more vulnerable to immunotherapy. The C3, characterized by cell cycle peculiarity, possessed a dismal prognosis and high frequency of gene mutations and was susceptible to chemotherapy. Furthermore, single-cell RNA sequencing analysis revealed that the C3-associated Scissor+ cell subpopulation was characterized by notorious functional states and orchestrated an immunosuppressive microenvironment. Additionally, we identified that ALK and BIRC5 contributed to the shorter lifespan of C3 and their corresponding inhibitors were potential interventions. In conclusion, we identified three distinct subtypes of NB, which help us foster individualized therapeutic strategies to improve the prognosis of NB.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Qin
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian Cheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongcheng Fu
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuanyuan Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jingyue Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Pan Qin
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Romiani A, Simonsson K, Pettersson D, Al-Awar A, Rassol N, Bakr H, Lind D, Umapathy G, Spetz J, Palmer R, Hallberg B, Helou K, Forssell-Aronsson E. Comparison of 177Lu-octreotate and 177Lu-octreotide for treatment in human neuroblastoma-bearing mice. Heliyon 2024; 10:e31409. [PMID: 38826727 PMCID: PMC11141386 DOI: 10.1016/j.heliyon.2024.e31409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Background Patients with high-risk neuroblastoma (NB) have a 5-year event-free survival of less than 50 %, and novel and improved treatment options are needed. Radiolabeled somatostatin analogs (SSTAs) could be a treatment option. The aims of this work were to compare the biodistribution and the therapeutic effects of 177Lu-octreotate and 177Lu-octreotide in mice bearing the human CLB-BAR NB cell line, and to evaluate their regulatory effects on apoptosis-related genes. Methods The biodistribution of 177Lu-octreotide in mice bearing CLB-BAR tumors was studied at 1, 24, and 168 h after administration, and the absorbed dose was estimated to tumor and normal tissues. Further, animals were administered different amounts of 177Lu-octreotate or 177Lu-octreotide. Tumor volume was measured over time and compared to a control group given saline. RNA was extracted from tumors, and the expression of 84 selected genes involved in apoptosis was quantified with qPCR. Results The activity concentration was generally lower in most tissues for 177Lu-octreotide compared to 177Lu-octreotate. Mean absorbed dose per administered activity to tumor after injection of 1.5 MBq and 15 MBq was 0.74 and 0.03 Gy/MBq for 177Lu-octreotide and 2.9 and 0.45 Gy/MBq for 177Lu-octreotate, respectively. 177Lu-octreotide treatment resulted in statistically significant differences compared to controls. Fractionated administration led to a higher survival fraction than after a single administration. The pro-apoptotic genes TNSFS8, TNSFS10, and TRADD were regulated after administration with 177Lu-octreotate. Treatment with 177Lu-octreotide yielded regulation of the pro-apoptotic genes CASP5 and TRADD, and of the anti-apoptotic gene IL10 as well as the apoptosis-related gene TNF. Conclusion 177Lu-octreotide gave somewhat better anti-tumor effects than 177Lu-octreotate. The similar effect observed in the treated groups with 177Lu-octreotate suggests saturation of the somatostatin receptors. Pronounced anti-tumor effects following fractionated administration merited receptor saturation as an explanation. The gene expression analyses suggest apoptosis activation through the extrinsic pathway for both radiopharmaceuticals.
Collapse
Affiliation(s)
- A. Romiani
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K. Simonsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D. Pettersson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A. Al-Awar
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - N. Rassol
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H. Bakr
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - D.E. Lind
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - G. Umapathy
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J. Spetz
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - R.H. Palmer
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - B. Hallberg
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K. Helou
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E. Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Dedoni S, Olianas MC, Onali P. Lysophosphatidic Acid Stimulates Mitogenic Activity and Signaling in Human Neuroblastoma Cells through a Crosstalk with Anaplastic Lymphoma Kinase. Biomolecules 2024; 14:631. [PMID: 38927035 PMCID: PMC11201523 DOI: 10.3390/biom14060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a well-documented pro-oncogenic factor in different cancers, but relatively little is known on its biological activity in neuroblastoma. The LPA effects and the participation of the tyrosine kinase receptor anaplastic lymphoma kinase (ALK) in LPA mitogenic signaling were studied in human neuroblastoma cell lines. We used light microscopy and [3H]-thymidine incorporation to determine cell proliferation, Western blot to study intracellular signaling, and pharmacological and molecular tools to examine the role of ALK. We found that LPA stimulated the growth of human neuroblastoma cells, as indicated by the enhanced cell number, clonogenic activity, and DNA synthesis. These effects were curtailed by the selective ALK inhibitors NPV-TAE684 and alectinib. In a panel of human neuroblastoma cell lines harboring different ALK genomic status, the ALK inhibitors suppressed LPA-induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), which are major regulators of cell proliferation. ALK depletion by siRNA treatment attenuated LPA-induced ERK1/2 activation. LPA enhanced ALK phosphorylation and potentiated ALK activation by the ALK ligand FAM150B. LPA enhanced the inhibitory phosphorylation of the tumor suppressor FoxO3a, and this response was impaired by the ALK inhibitors. These results indicate that LPA stimulates mitogenesis of human neuroblastoma cells through a crosstalk with ALK.
Collapse
Affiliation(s)
| | | | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (S.D.); (M.C.O.)
| |
Collapse
|
4
|
Chen C, Sun Z, Wang Z, Shin S, Berrios A, Mellors JW, Dimitrov DS, Li W. Identification of a Fully Human Antibody VH Domain Targeting Anaplastic Lymphoma Kinase (ALK) with Applications in ALK-Positive Solid Tumor Immunotherapy. Antibodies (Basel) 2024; 13:39. [PMID: 38804307 PMCID: PMC11130946 DOI: 10.3390/antib13020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
The anaplastic lymphoma kinase (ALK, CD247) is a potential target for antibody-based therapy. However, no antibody-based therapeutics targeting ALK have entered clinical trials, necessitating the development of novel antibodies with unique therapeutic merits. Single-domain antibodies (sdAb) bear therapeutic advantages compared to the full-length antibody including deeper tumor penetration, cost-effective production and fast washout from normal tissues. In this study, we identified a human immunoglobulin heavy chain variable domain (VH domain) (VH20) from an in-house phage library. VH20 exhibits good developability and high specificity with no off-target binding to ~6000 human membrane proteins. VH20 efficiently bound to the glycine-rich region of ALK with an EC50 of 0.4 nM and a KD of 6.54 nM. Both VH20-based bispecific T cell engager (TCE) and chimeric antigen receptor T cells (CAR Ts) exhibited potent cytolytic activity to ALK-expressing tumor cells in an ALK-dependent manner. VH20 CAR Ts specifically secreted proinflammatory cytokines including IL-2, TNFα and IFNγ after incubation with ALK-positive cells. To our knowledge, this is the first reported human single-domain antibody against ALK. Our in vitro characterization data indicate that VH20 could be a promising ALK-targeting sdAb with potential applications in ALK-expressing tumors, including neuroblastoma (NBL) and non-small cell lung cancer.
Collapse
Affiliation(s)
- Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Zehua Sun
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Seungmin Shin
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Abigail Berrios
- Department of Biological Sciences, University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA;
| | - John W. Mellors
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| |
Collapse
|
5
|
Mousa DPV, Mavrovounis G, Argyropoulos D, Stranjalis G, Kalamatianos T. Anaplastic Lymphoma Kinase (ALK) in Posterior Cranial Fossa Tumors: A Scoping Review of Diagnostic, Prognostic, and Therapeutic Perspectives. Cancers (Basel) 2024; 16:650. [PMID: 38339401 PMCID: PMC10854950 DOI: 10.3390/cancers16030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Anaplastic Lymphoma Kinase (ALK) has been implicated in several human cancers. This review aims at mapping the available literature on the involvement of ALK in non-glial tumors localized in the posterior cranial fossa and at identifying diagnostic, prognostic, and therapeutic considerations. Following the PRISMA-ScR guidelines, studies were included if they investigated ALK's role in primary CNS, non-glial tumors located in the posterior cranial fossa. A total of 210 manuscripts were selected for full-text review and 16 finally met the inclusion criteria. The review included 55 cases of primary, intracranial neoplasms with ALK genetic alterations and/or protein expression, located in the posterior fossa, comprising of medulloblastoma, anaplastic large-cell lymphoma, histiocytosis, inflammatory myofibroblastic tumors, and intracranial myxoid mesenchymal tumors. ALK pathology was investigated via immunohistochemistry or genetic analysis. Several studies provided evidence for potential diagnostic and prognostic value for ALK assessment as well as therapeutic efficacy in its targeting. The available findings on ALK in posterior fossa tumors are limited. Nevertheless, previous findings suggest that ALK assessment is of diagnostic and prognostic value in medulloblastoma (WNT-activated). Interestingly, a substantial proportion of ALK-positive/altered CNS histiocytoses thus far identified have been localized in the posterior fossa. The therapeutic potential of ALK inhibition in histiocytosis warrants further investigation.
Collapse
Affiliation(s)
| | - Georgios Mavrovounis
- Department of Neurosurgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larissa, Greece;
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Dionysios Argyropoulos
- Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Stranjalis
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Theodosis Kalamatianos
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| |
Collapse
|
6
|
Bergaggio E, Tai WT, Aroldi A, Mecca C, Landoni E, Nüesch M, Mota I, Metovic J, Molinaro L, Ma L, Alvarado D, Ambrogio C, Voena C, Blasco RB, Li T, Klein D, Irvine DJ, Papotti M, Savoldo B, Dotti G, Chiarle R. ALK inhibitors increase ALK expression and sensitize neuroblastoma cells to ALK.CAR-T cells. Cancer Cell 2023; 41:2100-2116.e10. [PMID: 38039964 PMCID: PMC10793157 DOI: 10.1016/j.ccell.2023.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/05/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Selection of the best tumor antigen is critical for the therapeutic success of chimeric antigen receptor (CAR) T cells in hematologic malignancies and solid tumors. The anaplastic lymphoma kinase (ALK) receptor is expressed by most neuroblastomas while virtually absent in most normal tissues. ALK is an oncogenic driver in neuroblastoma and ALK inhibitors show promising clinical activity. Here, we describe the development of ALK.CAR-T cells that show potent efficacy in monotherapy against neuroblastoma with high ALK expression without toxicity. For neuroblastoma with low ALK expression, combination with ALK inhibitors specifically potentiates ALK.CAR-T cells but not GD2.CAR-T cells. Mechanistically, ALK inhibitors impair tumor growth and upregulate the expression of ALK, thereby facilitating the activity of ALK.CAR-T cells against neuroblastoma. Thus, while neither ALK inhibitors nor ALK.CAR-T cells will likely be sufficient as monotherapy in neuroblastoma with low ALK density, their combination specifically enhances therapeutic efficacy.
Collapse
Affiliation(s)
- Elisa Bergaggio
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Tien Tai
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Carmen Mecca
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manuel Nüesch
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ines Mota
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jasna Metovic
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Luca Molinaro
- Department of Medical Science, University of Torino, 10126 Torino, Italy
| | - Leyuan Ma
- Koch Institute and MIT, Cambridge, MA 02139, USA
| | | | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Rafael B Blasco
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tongqing Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daryl Klein
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Mauro Papotti
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
7
|
Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Mol Metab 2023; 75:101771. [PMID: 37414143 PMCID: PMC10362370 DOI: 10.1016/j.molmet.2023.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric malignancy of incredibly complex aetiology. Oncogenic protein kinase signalling in neuroblastoma has conventionally focussed on transduction through the well-characterised PI3K/Akt and MAPK pathways, in which the latter has been implicated in treatment resistance. The discovery of the receptor tyrosine kinase ALK as a target of genetic alterations in cases of familial and sporadic neuroblastoma, was a breakthrough in the understanding of the complex genetic heterogeneity of neuroblastoma. However, despite progress in the development of small-molecule inhibitors of ALK, treatment resistance frequently arises and appears to be a feature of the disease. Moreover, since the identification of ALK, several additional protein kinases, including the PIM and Aurora kinases, have emerged not only as drivers of the disease phenotype, but also as promising druggable targets. This is particularly the case for Aurora-A, given its intimate engagement with MYCN, a driver oncogene of aggressive neuroblastoma previously considered 'undruggable.' SCOPE OF REVIEW Aided by significant advances in structural biology and a broader understanding of the mechanisms of protein kinase function and regulation, we comprehensively outline the role of protein kinase signalling, emphasising ALK, PIM and Aurora in neuroblastoma, their respective metabolic outputs, and broader implications for targeted therapies. MAJOR CONCLUSIONS Despite massively divergent regulatory mechanisms, ALK, PIM and Aurora kinases all obtain significant roles in cellular glycolytic and mitochondrial metabolism and neuroblastoma progression, and in several instances are implicated in treatment resistance. While metabolism of neuroblastoma tends to display hallmarks of the glycolytic "Warburg effect," aggressive, in particular MYCN-amplified tumours, retain functional mitochondrial metabolism, allowing for survival and proliferation under nutrient stress. Future strategies employing specific kinase inhibitors as part of the treatment regimen should consider combinatorial attempts at interfering with tumour metabolism, either through metabolic pathway inhibitors, or by dietary means, with a view to abolish metabolic flexibility that endows cancerous cells with a survival advantage.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| |
Collapse
|
8
|
Yokoi A, Nakamura Y, Hashimura M, Oguri Y, Matsumoto T, Nakagawa M, Ishibashi Y, Ito T, Ohhigata K, Harada Y, Fukagawa N, Saegusa M. Anaplastic lymphoma kinase overexpression enhances aggressive phenotypic characteristics of endometrial carcinoma. BMC Cancer 2023; 23:765. [PMID: 37592266 PMCID: PMC10436652 DOI: 10.1186/s12885-023-11144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/02/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Although anaplastic lymphoma kinase (ALK) is overexpressed in several primary solid tumor types, its role in endometrial carcinoma (Em Ca) remains unclear. METHODS We evaluated expression of ALK and its related molecules in clinical samples consisting of 168 Em Ca tissues. We also used Em Ca cell lines to evaluate the functional role of ALK. RESULTS Cytoplasmic ALK immunoreactivity in the absence of chromosomal rearrangement was positively correlated with ALK mRNA expression, and was significantly higher in Grade (G) 3 Em Ca than in G1 or G2 tumors. ALK immunoreactivity was also significantly associated with expression of cancer stem cell (CSC)-related molecules (cytoplasmic CD133, ALDH1, Sox2) and neuroendocrine markers (CD56 and synaptophysin). Although the proliferative index was significantly higher in ALK-positive Em Ca when compared to ALK- negative malignancies, there was no association between ALK expression and other clinicopathological factors in this disease. In Em Ca cell lines, full-length ALK overexpression increased proliferation, decreased susceptibility to apoptosis, enhanced cancer stem cell features, and accelerated cell mobility, whereas these phenotypes were abrogated in ALK-knockdown cells. Finally, patients with tumors harboring either wild-type ALK or high ALK mRNA expression had a poorer prognosis than those with either mutant ALK or low ALK mRNA expression. CONCLUSION Full-length ALK overexpression occurs in a subset of Em Ca, particularly in G3 tumors, and contributes to the establishment and maintenance of aggressive phenotypic characteristics through modulation of several biological processes.
Collapse
Affiliation(s)
- Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yusaku Nakamura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yu Ishibashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takashi Ito
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kensuke Ohhigata
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Youhei Harada
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Naomi Fukagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
9
|
Azab MA. Expression of Anaplastic Lymphoma Kinase (ALK) in glioma and possible clinical correlations. A retrospective institutional study. Cancer Treat Res Commun 2023; 36:100703. [PMID: 37271069 DOI: 10.1016/j.ctarc.2023.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Glioblastoma is considered the most aggressive primary brain tumor. Recurrence after treatment is a significant problem with a failed response to optimal treatment. The recurrence of GBM is linked to different cellular and molecular pathways. Nationwide, in Egypt, astrocytic tumors are the most commonly diagnosed CNS tumor. Anaplastic Lymphoma Kinase (ALK CD246) is an enzymatic protein (RTK) belonging to the insulin receptors superfamily. METHODS This is a retrospective study including sixty cases of astrocytic tumors (males = 40, mean age = 31.5), (females = 20, mean age = 37.77) obtained through collecting archived paraffin blocks of astrocytic tumor from the Pathology Department, Cairo University Faculty of Medicine during the period from January 2015 till January 2019. All cases were evaluated for ALK expression trying to find any clinical correlations with the clinical data. RESULTS Correlations were made using a scatterplot matrix correlogram. There was a significant correlation between tumor recurrence and ALK expression (r = 0.8, P < 0.01), and incidence of postoperative seizures (r = 0.8, P < 0.05), and between mean age and score tumor (r = 0.8, P < 0.05). CONCLUSION Expression of ALK was found to be abundant among high-grade gliomas and tumor recurrence rate was higher in ALK-positive patients. Further studies are needed to evaluate the potential use of ALK as a prognostic marker in cases of GBM.
Collapse
Affiliation(s)
- Mohammed A Azab
- Department of Neurosurgery, Cairo University Faculty of Medicine, Cairo, Egypt.
| |
Collapse
|
10
|
Kelm JM, Pandey DS, Malin E, Kansou H, Arora S, Kumar R, Gavande NS. PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Mol Cancer 2023; 22:62. [PMID: 36991452 PMCID: PMC10061819 DOI: 10.1186/s12943-022-01707-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 03/31/2023] Open
Abstract
Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design.
Collapse
Affiliation(s)
- Jeremy M Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Deepti S Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Evan Malin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Hussein Kansou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Wang X, Hu Y, Zou X, Wang P, Yue H, Guo M, Li Z, Gong P. Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel ALK inhibitors. Bioorg Med Chem 2022; 66:116794. [PMID: 35576654 DOI: 10.1016/j.bmc.2022.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
To overcome drug resistance caused by ALK kinase mutations especially G1202R, two series of novel 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety were designed, synthesized and evaluated for their biological activities. Among all the target compounds, B10 efficiently inhibited the proliferation of ALK-positive Karpas299 and H2228 cells both with IC50 values of 0.07 μM. In addition, B10 exhibited remarkable enzymatic inhibitory potency with IC50 values of 4.59 nM, 2.07 nM and 5.95 nM toward ALKWT, ALKL1196M and ALKG1202R, respectively. Furthermore, B10 induced apoptosis in H2228 cell and caused cell cycle arrest in G2/M phase. Ultimately, the binding modes of B10 with ALKWT and ALKG1202R were ideally established, which further confirmed the structural basis in accordance with the SARs analysis. These results indicated that B10 was a potent ALK inhibitor for ALKG1202R mutation treatment and deserved for further investigation.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yiran Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinyu Zou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Pengfei Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hao Yue
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Mingzhang Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zefei Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
12
|
Somasundaram DB, Aravindan S, Gupta N, Yu Z, Baker A, Aravindan N. ALK expression, prognostic significance, and its association with MYCN expression in MYCN non-amplified neuroblastoma. World J Pediatr 2022; 18:285-293. [PMID: 35132576 DOI: 10.1007/s12519-022-00517-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | | | | | - Zhongxin Yu
- Department of Pathology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Ashley Baker
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, BMSB 311C, Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
13
|
Shen J, Meng Y, Wang K, Gao M, Du J, Wang J, Li Z, Zuo D, Wu Y. EML4-ALK G1202R mutation induces EMT and confers resistance to ceritinib in NSCLC cells via activation of STAT3/Slug signaling. Cell Signal 2022; 92:110264. [DOI: 10.1016/j.cellsig.2022.110264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/30/2022]
|
14
|
Kang M, Lee SH, Kwon M, Byun J, Kim D, Kim C, Koo S, Kwon SP, Moon S, Jung M, Hong J, Go S, Song SY, Choi JH, Hyeon T, Oh YK, Park HH, Kim BS. Nanocomplex-Mediated In Vivo Programming to Chimeric Antigen Receptor-M1 Macrophages for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103258. [PMID: 34510559 DOI: 10.1002/adma.202103258] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) cell immunotherapy has shown impressive clinical outcomes for hematologic malignancies. However, its broader applications are challenged due to its complex ex vivo cell-manufacturing procedures and low therapeutic efficacy against solid tumors. The limited therapeutic effects are partially due to limited CAR-T cell infiltration to solid tumors and inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Here, a facile approach is presented to in vivo program macrophages, which can intrinsically penetrate solid tumors, into CAR-M1 macrophages displaying enhanced cancer-directed phagocytosis and anti-tumor activity. In vivo injected nanocomplexes of macrophage-targeting nanocarriers and CAR-interferon-γ-encoding plasmid DNA induce CAR-M1 macrophages that are capable of CAR-mediated cancer phagocytosis, anti-tumor immunomodulation, and inhibition of solid tumor growth. Together, this study describes an off-the-shelf CAR-macrophage therapy that is effective for solid tumors and avoids the complex and costly processes of ex vivo CAR-cell manufacturing.
Collapse
Affiliation(s)
- Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong Ho Lee
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Miji Kwon
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
15
|
Huang H, Gont A, Kee L, Dries R, Pfeifer K, Sharma B, Debruyne DN, Harlow M, Sengupta S, Guan J, Yeung CM, Wang W, Hallberg B, Palmer RH, Irwin MS, George RE. Extracellular domain shedding of the ALK receptor mediates neuroblastoma cell migration. Cell Rep 2021; 36:109363. [PMID: 34260934 PMCID: PMC8328392 DOI: 10.1016/j.celrep.2021.109363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Although activating mutations of the anaplastic lymphoma kinase (ALK) membrane receptor occur in ~10% of neuroblastoma (NB) tumors, the role of the wild-type (WT) receptor, which is aberrantly expressed in most non-mutated cases, is unclear. Both WT and mutant proteins undergo extracellular domain (ECD) cleavage. Here, we map the cleavage site to Asn654-Leu655 and demonstrate that cleavage inhibition of WT ALK significantly impedes NB cell migration with subsequent prolongation of survival in mouse models. Cleavage inhibition results in the downregulation of an epithelial-to-mesenchymal transition (EMT) gene signature, with decreased nuclear localization and occupancy of β-catenin at EMT gene promoters. We further show that cleavage is mediated by matrix metalloproteinase 9, whose genetic and pharmacologic inactivation inhibits cleavage and decreases NB cell migration. Together, our results indicate a pivotal role for WT ALK ECD cleavage in NB pathogenesis, which may be harnessed for therapeutic benefit. Huang et al. show that extracellular domain (ECD) cleavage of the ALK cell surface tyrosine kinase receptor mediates neuroblastoma cell migration through induction of an EMT phenotype. ECD cleavage is caused by MMP-9 whose inhibition leads to decreased cell migration.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Gont
- Department of Pediatrics and Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Lynn Kee
- Department of Pediatrics and Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ruben Dries
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bandana Sharma
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David N Debruyne
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Harlow
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Satyaki Sengupta
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caleb M Yeung
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wenchao Wang
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meredith S Irwin
- Department of Pediatrics and Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Anaplastic Lymphoma Kinase Overexpression Is Associated with Aggressive Phenotypic Characteristics of Ovarian High-Grade Serous Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1837-1850. [PMID: 34214505 DOI: 10.1016/j.ajpath.2021.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Deregulated full-length anaplastic lymphoma kinase (ALK) overexpression has been found in some primary solid tumors, but little is known about its role in ovarian high-grade serous carcinoma (HGSC). Herein, we focused on the functional roles of ALK in HGSC. Cytoplasmic ALK immunoreactivity without chromosomal rearrangement and gene mutations was significantly higher in HGSC compared with non-HGSC type ovarian carcinomas, and was significantly associated with several unfavorable clinicopathologic factors and poor prognosis. HGSC cell lines stably overexpressing ALK exhibited increased cell proliferation, enhanced cancer stem cell features, and accelerated cell mobility, whereas these phenotypes were abrogated in ALK-knockdown cells. Expression of the nervous system-associated gene, ELAVL3, and the corresponding protein (commonly known as HuC) was significantly increased in cells overexpressing ALK. There was increased expression of Sox2 and Sox3 (genes associated with the neural progenitor population) in ALK-overexpressing but not ALK-knockdown cells. Furthermore, overexpression of Sox2 or Sox3 enhanced both ALK and ELAVL3 promoter activities, suggesting the existence of ALK/Sox/HuC signaling loops. Finally, ALK overexpression was due to increased expression of neuroendocrine markers, including synaptophysin, CD56, and BCL2, in HGSC tissues. These findings suggest that overexpression of full-length ALK may influence the biological behavior of HGSC through cooperation with ELAVL3 and Sox factors, leading to establishment and maintenance of the aggressive phenotypic characteristics of HGSC.
Collapse
|
17
|
Tesena P, Kingkaw A, Vongsangnak W, Pitikarn S, Phaonakrop N, Roytrakul S, Kovitvadhi A. Preliminary Study: Proteomic Profiling Uncovers Potential Proteins for Biomonitoring Equine Melanocytic Neoplasm. Animals (Basel) 2021; 11:1913. [PMID: 34199079 PMCID: PMC8300200 DOI: 10.3390/ani11071913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/12/2023] Open
Abstract
Equine melanocytic neoplasm (EMN) is a cutaneous neoplasm and is mostly observed in aged grey horses. This preliminary study aimed to identify potential proteins to differentiate normal, mild and severe EMN from serum proteomic profiling. Serum samples were collected from 25 grey horses assigned to three groups: normal (free of EMN; n = 10), mild (n = 6) and severe EMN (n = 9). To explore the differences in proteins between groups, proteomic profiling and analysis were employed. Accordingly, 8241 annotated proteins out of 8725 total proteins were compared between normal and EMN groups and inspected based on differentially expressed proteins (DEPs). Through DEP analysis, 95 significant DEPs differed between normal and EMN groups. Among these DEPs, 41 significant proteins were categorised according to protein functions. Based on 41 significant proteins, 10 were involved in metabolism and 31 in non-metabolism. Interestingly, phospholipid phosphatase6 (PLPP6) and ATPase subunit alpha (Na+/K+-ATPase) were considered as potential proteins uniquely expressed in mild EMN and related to lipid and energy metabolism, respectively. Non-metabolism-related proteins (BRCA1, phosphorylase B kinase regulatory subunit: PHKA1, tyrosine-protein kinase receptor: ALK and rho-associated protein kinase: ROCK1) correlated to melanoma development differed among all groups. The results of our study provide a foundation for early EMN biomonitoring and prevention.
Collapse
Affiliation(s)
- Parichart Tesena
- Graduate Student in Animal Health and Biomedical Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Puttamonthon, Nakhon Pathom 73170, Thailand
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Zoology, Faculty of Sciences, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Sciences, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Surakiet Pitikarn
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Franceschi E, De Biase D, Di Nunno V, Pession A, Tosoni A, Gatto L, Tallini G, Visani M, Lodi R, Bartolini S, Brandes AA. The clinical and prognostic role of ALK in glioblastoma. Pathol Res Pract 2021; 221:153447. [PMID: 33887544 DOI: 10.1016/j.prp.2021.153447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND anaplastic lymphoma kinase (ALK) overexpression and gene alterations have been detected in several malignancies, with prognostic and therapeutic implications. However, few studies investigated the correlation between ALK altered expression and prognosis in patients with glioblastoma (GBM). METHODS We performed an evaluation of ALK overexpression and structural/quantitative chromosome alterations through immune-histochemical assay (IHC with D5F3 antibody) and fluorescent in situ hybridization (FISH) in patients with isocitrate dehydrogenase (IDH) wild type (wt) GBM. Assuming an ALK overexpression in 20 % of patients we planned a sample of 44 patients to achieve a probability of 90 % to include from 10 % to 30 % of patients with ALK alterations. RESULTS We evaluated 44 patients with IDH wt GBM, treated in our institution and dead due to GBM progression in 2017. ALK overexpression obtained by a composed score (the product of IHC intensity staining and rate of positive cells) was observed in 19 (43 %) patients. FISH analysis showed that 11 patients (25 %) had gene deletion, 2 patients (4.5 %) had monosomy and one patient (2.3 %) presented polysomy. Only one patient (2.3 %) demonstrated ALK rearrangement. There was no statistical difference in median OS between patients with ALK-positive (mOS = 18.9 months) and ALK-negative IHC (mOS = 18.0 months). CONCLUSION We identified some rare previously unreported alterations of ALK gene in patients with IDH wt GBM. In these patients, the ALK overexpression does not influences survival.
Collapse
Affiliation(s)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FaBIT) - Molecular Pathology Laboratory, University of Bologna, Bologna, Italy
| | | | - Annalisa Pession
- Department of Pharmacy and Biotechnology (FaBIT) - Molecular Pathology Laboratory, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Giovanni Tallini
- Molecular Diagnostic Unit, University of Bologna School of Medicine and Surgery, Bologna, Italy
| | - Michela Visani
- Molecular Diagnostic Unit, University of Bologna School of Medicine and Surgery, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy
| | | | | |
Collapse
|
19
|
Borenäs M, Umapathy G, Lai W, Lind DE, Witek B, Guan J, Mendoza‐Garcia P, Masudi T, Claeys A, Chuang T, El Wakil A, Arefin B, Fransson S, Koster J, Johansson M, Gaarder J, Van den Eynden J, Hallberg B, Palmer RH. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J 2021; 40:e105784. [PMID: 33411331 PMCID: PMC7849294 DOI: 10.15252/embj.2020105784] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Wei‐Yun Lai
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Barbara Witek
- Department of Molecular BiologyUmeå UniversityUmeåSweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Patricia Mendoza‐Garcia
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Tzu‐Po Chuang
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Abeer El Wakil
- Department of Molecular BiologyUmeå UniversityUmeåSweden
- Present address:
Department of Biological SciencesAlexandria UniversityAlexandriaEgypt
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Susanne Fransson
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Koster
- Department of OncogenomicsAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mathias Johansson
- Clinical GenomicsScience for life laboratoryUniversity of GothenburgGothenburgSweden
| | - Jennie Gaarder
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
20
|
NPM-ALK: A Driver of Lymphoma Pathogenesis and a Therapeutic Target. Cancers (Basel) 2021; 13:cancers13010144. [PMID: 33466277 PMCID: PMC7795840 DOI: 10.3390/cancers13010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK) is a tyrosine kinase associated with Anaplastic Large Cell lymphoma (ALCL) through oncogenic translocations mainly NPM-ALK. Chemotherapy is effective in ALK(+) ALCL patients and induces remission rates of approximately 80%. The remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. Different classes of ALK tyrosine kinase inhibitors (TKI) are available but used exclusively for EML4-ALK (+) lung cancers. The significant toxicities of most ALK inhibitors explain the delay in their use in pediatric ALCL patients. Some ALCL patients do not respond to the first generation TKI or develop an acquired resistance. Combination therapy with ALK inhibitors in ALCL is the current challenge. Abstract Initially discovered in anaplastic large cell lymphoma (ALCL), the ALK anaplastic lymphoma kinase is a tyrosine kinase which is affected in lymphomas by oncogenic translocations, mainly NPM-ALK. To date, chemotherapy remains a viable option in ALCL patients with ALK translocations as it leads to remission rates of approximately 80%. However, the remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. It is therefore crucial to identify new and better treatment options. Nowadays, different classes of ALK tyrosine kinase inhibitors (TKI) are available and used exclusively for EML4-ALK (+) lung cancers. In fact, the significant toxicities of most ALK inhibitors explain the delay in their use in ALCL patients, who are predominantly children. Moreover, some ALCL patients do not respond to Crizotinib, the first generation TKI, or develop an acquired resistance months following an initial response. Combination therapy with ALK inhibitors in ALCL is the current challenge.
Collapse
|
21
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
22
|
Kailayangiri S, Altvater B, Wiebel M, Jamitzky S, Rossig C. Overcoming Heterogeneity of Antigen Expression for Effective CAR T Cell Targeting of Cancers. Cancers (Basel) 2020; 12:E1075. [PMID: 32357417 PMCID: PMC7281243 DOI: 10.3390/cancers12051075] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) gene-modified T cells (CAR T cells) can eradicate B cell malignancies via recognition of surface-expressed B lineage antigens. Antigen escape remains a major mechanism of relapse and is a key barrier for expanding the use of CAR T cells towards solid cancers with their more diverse surface antigen repertoires. In this review we discuss strategies by which cancers become amenable to effective CAR T cell therapy despite heterogeneous phenotypes. Pharmaceutical approaches have been reported that selectively upregulate individual target antigens on the cancer cell surface to sensitize antigen-negative subclones for recognition by CARs. In addition, advanced T cell engineering strategies now enable CAR T cells to interact with more than a single antigen simultaneously. Still, the choice of adequate targets reliably and selectively expressed on the cell surface of tumor cells but not normal cells, ideally by driving tumor growth, is limited, and even dual or triple antigen targeting is unlikely to cure most solid tumors. Innovative receptor designs and combination strategies now aim to recruit bystander cells and alternative cytolytic mechanisms that broaden the activity of CAR-engineered T cells beyond CAR antigen-dependent tumor cell recognition.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, 48149 Münster, Germany
| |
Collapse
|
23
|
Abstract
Neuroblastoma (NB) is a malignant embryonal tumor of the sympathetic nervous system that is most commonly diagnosed in the abdomen, often presenting with signs and symptoms of metastatic spread. Three decades ago, high-risk NB metastatic to bone and bone marrow in children was not curable. Today, with multimodality treatment, 50% of these patients will survive, but most suffer from debilitating treatment-related complications. Novel targeted therapies to improve cure rates while minimizing toxicities are urgently needed. Recent molecular discoveries in oncology have spawned the development of an impressive array of targeted therapies for adult cancers, yet the paucity of recurrent somatic mutations or activated oncogenes in pediatric cancers poses a major challenge to the evolving paradigm of personalized medicine. Although low tumor mutational burden is a major hurdle for immune checkpoint inhibitors, an immature or impaired immune system and inhibitory tumor microenvironment can further complicate the prospects for successful immunotherapy. In this regard, despite the poor immunogenic properties of NB, the success of antibody-based immunotherapy and radioimmunotherapy directed at single targets (eg, GD2 and B7-H3) is both encouraging and surprising, given that most solid tumor antibodies that use Fc-dependent mechanisms or radioimmunotargeting have largely failed. Here, we summarize the current information on the immunologic properties of this tumor, its potential immunotherapeutic targets, and novel antibody-based strategies on the horizon.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
24
|
Javanmardi N, Fransson S, Djos A, Umapathy G, Östensson M, Milosevic J, Borenäs M, Hallberg B, Kogner P, Martinsson T, Palmer RH. Analysis of ALK, MYCN, and the ALK ligand ALKAL2 (FAM150B/AUGα) in neuroblastoma patient samples with chromosome arm 2p rearrangements. Genes Chromosomes Cancer 2020; 59:50-57. [PMID: 31340081 DOI: 10.1002/gcc.22790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023] Open
Abstract
Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.
Collapse
Affiliation(s)
- Niloufar Javanmardi
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jelena Milosevic
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Discovery of 2-aminopyridines bearing a pyridone moiety as potent ALK inhibitors to overcome the crizotinib-resistant mutants. Eur J Med Chem 2019; 183:111734. [DOI: 10.1016/j.ejmech.2019.111734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/03/2023]
|
26
|
A novel ALK inhibitor ZYY inhibits Karpas299 cell growth in vitro and in a mouse xenograft model and induces protective autophagy. Toxicol Appl Pharmacol 2019; 383:114781. [DOI: 10.1016/j.taap.2019.114781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
|
27
|
Gorczynski A, Czapiewski P, Korwat A, Budynko L, Prelowska M, Okon K, Biernat W. ALK-rearranged renal cell carcinomas in Polish population. Pathol Res Pract 2019; 215:152669. [PMID: 31677810 DOI: 10.1016/j.prp.2019.152669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase, the activation of which is considered an important event in the pathogenesis of several neoplasms and a predictive factor for the targeted therapy with ALK inhibitors. Thus far, ALK rearrangements have been identified in 22 renal cell carcinomas in both pediatric and adult patients. We evaluated the incidence of ALK rearrangement-associated RCC in adult Central European population. An immunohistochemical evaluation of 1019 kidney tumors was performed with use of three different clones of anti-ALK antibodies. None of the tested samples showed positive staining, which suggests that the incidence of ALK rearrangement-associated renal cell carcinomas is significantly lower in the Polish population, and indicates a potential association between ethnicity and occurrence of these rare neoplasms.
Collapse
Affiliation(s)
- Adam Gorczynski
- Department of Pathomorphology, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland.
| | - Piotr Czapiewski
- Department of Pathomorphology, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland.
| | - Aleksandra Korwat
- Department of Pathomorphology, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland.
| | - Lukasz Budynko
- Department of Pathomorphology, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland.
| | - Monika Prelowska
- Department of Pathomorphology, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland.
| | - Krzysztof Okon
- Department of Pathomorphology, Jagiellonian University, Grzegorzecka 16, 33-332, Krakow, Poland.
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland.
| |
Collapse
|
28
|
Nassif S, El-Zaatari ZM, Attieh M, Hijazi M, Fakhreddin N, Aridi T, Boulos F. Lack of expression of ALK and CD30 in breast carcinoma by immunohistochemistry irrespective of tumor characteristics. Medicine (Baltimore) 2019; 98:e16702. [PMID: 31393373 PMCID: PMC6709128 DOI: 10.1097/md.0000000000016702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CD30 is a member of the tumor necrosis factor family of cell surface receptors normally expressed in lymphocytes, as well as some lymphomas, but has been described in other malignancies. Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that belongs to the insulin receptor superfamily, and is normally expressed in neural cells, but has been detected in several malignancies. There is conflicting data in the literature that describes the expression of these receptors in breast cancer, and the aim of this study is to test the expression of CD30 and ALK in a cohort of Middle Eastern patients with breast carcinoma.Cases of invasive breast cancer from the archives of AUBMC were reviewed over a period of 9 years, and the blocks that were used for immunohistochemical staining for ER, PR, Her-2/neu were selected. Immunohistochemical staining for CD30 (JCM182) and ALK (5A4 and D5F3) was performed.Two hundred eighty-four cases were identified (2 cases were male), with a mean age of 55 ± 12. CD30 and ALK expression was not seen in any of the cases.Our cohort showed complete negativity to both CD30 and ALK, adding to the conflicting data available in the literature, and more studies are needed to reliably identify a trend of expression of CD30 and ALK in breast carcinoma, especially in the Middle East.
Collapse
|
29
|
Aygün Z, Batur Ş, Emre Ş, Celkan T, Özman O, Comunoglu N. Frequency of ALK and GD2 Expression in Neuroblastoma. Fetal Pediatr Pathol 2019; 38:326-334. [PMID: 30955398 DOI: 10.1080/15513815.2019.1588439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: The aim of this study was to elucidate the significance of immunohistochemical staining patterns of ALK and GD2 in peripheral neuroblastic tumors with different stages and favorable/unfavorable features. Materials and methods: 32 neuroblastomas, 7 ganglioneuroblastomas, and 1 ganglioneuroma cases were immunohistochemically stained with ALK and GD2, and the expressions were graded and correlated with differentiation, size, and favorable/unfavorable histology. Results: There was no statistically significant correlation between ALK immunopositivity and tumor differentiation or stage. Although there was no statistically significant correlation between GD2 immunopositivity and stage, the intensity and prevalence of GD2 immunostaining were statistically significantly higher in the well differentiated group and in tumors which were smaller than 10 cm. Conclusion: GD2 immunostaining levels correlated with tumor differentiation and size. ALK immunostaining was not related to tumor differentiation or stage.
Collapse
Affiliation(s)
- Zeynep Aygün
- a Kastamonu Goverment Hospital, Pathology Unit , Kastamonu , Turkey
| | - Şebnem Batur
- b Istanbul University Cerrahpaşa-Cerrahpaşa Faculty of Medicine, Pathology , Istanbul , Turkey
| | - Şenol Emre
- c Istanbul University Cerrahpaşa-Cerrahpaşa Faculty of Medicine, Pediatric Surgery , Istanbul , Turkey
| | - Tiraje Celkan
- d Istanbul University Cerrahpaşa-Cerrahpaşa Faculty of Medicine, Pediatric Hematooncology , Istanbul , Turkey
| | - Oktay Özman
- e Health Sciences University, Urology Clinic, Gaziosmanpa ş a Taksim Education and Research Hospital, Urology Clinic
| | - Nil Comunoglu
- f Istanbul University Cerrahpa ş a-Cerrahpa ş a Faculty of Medicine, Pathology , Istanbul , Turkey
| |
Collapse
|
30
|
Tian Y, Han Y, Du J, Zhang Y, Liu N, Du X, Li B. Palatine tonsillar metastasis of lung adenocarcinoma: an unusual immunohistochemical phenotype and a potential diagnostic pitfall. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2288-2292. [PMID: 31934054 PMCID: PMC6949607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 06/10/2023]
Abstract
Metastasis rarely occurs to the palatine tonsils. Herein, we present an exceedingly rare case of palatine tonsillar metastasis from poorly differentiated lung adenocarcinoma with anaplastic lymphoma kinase (ALK) mutation in a 51-year-old woman. The patient manifested clinically as pharyngalgia without obvious respiratory symptoms, with swelling tonsil histomorphologically resembling lymphoma and partially expressing the markers of epithelial and squamous cell carcinoma (CK5/6, P63, and P40). Due to the non-specific immunohistochemical expression, it is easily misdiagnosed as a primary poorly differentiated squamous cell carcinoma of the tonsil. This case highlights the importance of a comprehensive assessment of suspicious tonsillar lesions, that may be a sign of a primary malignancy elsewhere in the body.
Collapse
Affiliation(s)
- Ying Tian
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical UniversityShenyang, China
| | - Yunan Han
- Division of Public Health Sciences, Department of Surgery, Washington University School of MedicineSt. Louis, MO
- Department of Breast Surgery, First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Jiang Du
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical UniversityShenyang, China
| | - Yao Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical UniversityShenyang, China
| | - Nan Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical UniversityShenyang, China
| | - Xin Du
- Department of Pathology, Liaohua General HospitalLiaoyang, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical UniversityShenyang, China
| |
Collapse
|
31
|
Kondoh C, Horio Y, Hayashi Y, Ebi H, Hida T, Hasegawa Y, Yatabe Y. Anaplastic lymphoma kinase expression in small‐cell lung cancer. Histopathology 2019; 75:20-28. [DOI: 10.1111/his.13842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Chiaki Kondoh
- Department of Pathology and Molecular Diagnostics Aichi Cancer Centre Nagoya Japan
- Department of Respiratory Medicine Nagoya University Graduate School of Medicine Nagoya Japan
| | - Yoshitsugu Horio
- Department of Thoracic Oncology Aichi Cancer Centre Nagoya Japan
| | - Yuko Hayashi
- Division of Molecular Therapeutics Aichi Cancer Centre Research Institute Aichi Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics Aichi Cancer Centre Research Institute Aichi Japan
- Precision Medicine Centre Aichi Cancer Centre Aichi Japan
- Division of Advanced Cancer Therapeutics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Toyoaki Hida
- Department of Thoracic Oncology Aichi Cancer Centre Nagoya Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine Nagoya University Graduate School of Medicine Nagoya Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics Aichi Cancer Centre Nagoya Japan
| |
Collapse
|
32
|
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol 2019; 59:3-22. [PMID: 30943434 DOI: 10.1016/j.semcancer.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway, one of the most commonly activated signaling pathways in human cancers, plays a crucial role in the regulation of cell proliferation, differentiation, and survival. This pathway is usually activated by receptor tyrosine kinases (RTKs), whose constitutive and aberrant activation is via gain-of-function mutations, chromosomal rearrangement, gene amplification and autocrine. Blockage of PI3K pathway by targeted therapy on RTKs with tyrosine kinases inhibitors (TKIs) and monoclonal antibodies (mAbs) has achieved great progress in past decades; however, there still remain big challenges during their clinical application. In this review, we provide an overview about the most frequently encountered alterations in RTKs and focus on current therapeutic agents developed to counteract their aberrant functions, accompanied with discussions of two major challenges to the RTKs-targeted therapy in cancer - resistance and toxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
33
|
Wierdl M, Tsurkan L, Chi L, Hatfield MJ, Tollemar V, Bradley C, Chen X, Qu C, Potter PM. Targeting ALK in pediatric RMS does not induce antitumor activity in vivo. Cancer Chemother Pharmacol 2018; 82:251-263. [PMID: 29855693 PMCID: PMC6054567 DOI: 10.1007/s00280-018-3615-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The anaplastic lymphoma kinase (ALK) has been demonstrated to be a valid clinical target in diseases such as anaplastic large cell lymphoma and non-small cell lung cancer. Recent studies have indicated that ALK is overexpressed in pediatric rhabdomyosarcoma (RMS) and hence we hypothesized that this kinase may be a suitable candidate for therapeutic intervention in this tumor. METHODS We evaluated the expression of ALK in a panel of pediatric RMS cell lines and patient-derived xenografts (PDX), and sensitivity to ALK inhibitors was assessed both in vitro and in vivo. RESULTS Essentially, all RMS lines were sensitive to crizotinib, NVP-TAE684 or LDK-378 in vitro, and molecular analyses demonstrated inhibition of RMS cell proliferation following siRNA-mediated reduction of ALK expression. However, in vivo PDX studies using ALK kinase inhibitors demonstrated no antitumor activity when used as single agents or when combined with standard of care therapy (vincristine, actinomycin D and cyclophosphamide). More alarmingly, however, crizotinib actually accelerated the growth of these tumors in vivo. CONCLUSIONS While ALK appears to be a relevant target in RMS in vitro, targeting this kinase in vivo yields no therapeutic efficacy, warranting extreme caution when considering the use of these agents in pediatric RMS patients.
Collapse
Affiliation(s)
- Monika Wierdl
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Lyudmila Tsurkan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Liying Chi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - M Jason Hatfield
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Viktor Tollemar
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Cori Bradley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
| |
Collapse
|
34
|
ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers (Basel) 2018; 10:cancers10040113. [PMID: 29642598 PMCID: PMC5923368 DOI: 10.3390/cancers10040113] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma (NB) is the most common and deadly solid tumour in children. Despite the development of new treatment options for high-risk NB, over half of patients relapse and five-year survival remains at 40-50%. Therefore, novel treatment strategies aimed at providing long-term disease remission are urgently sought. ALK, encoding the anaplastic lymphoma kinase receptor, is altered by gain-of-function point mutations in around 14% of high-risk NB and represents an ideal therapeutic target given its low or absent expression in healthy tissue postnatally. Small-molecule inhibitors of Anaplastic Lymphoma Kinase (ALK) approved in ALK fusion-positive lung cancer are currently undergoing clinical assessment in patients with ALK-mutant NB. Parallel pre-clinical studies are demonstrating the efficacy of ALK inhibitors against common ALK variants in NB; however, a complex picture of therapeutic resistance is emerging. It is anticipated that long-term use of these compounds will require combinatorial targeting of pathways downstream of ALK, functionally-related 'bypass' mechanisms and concomitant oncogenic pathways.
Collapse
|
35
|
Zhang C, Han XR, Yang X, Jiang B, Liu J, Xiong Y, Jin J. Proteolysis Targeting Chimeras (PROTACs) of Anaplastic Lymphoma Kinase (ALK). Eur J Med Chem 2018; 151:304-314. [PMID: 29627725 DOI: 10.1016/j.ejmech.2018.03.071] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/27/2022]
Abstract
Anaplastic lymphoma kinase (ALK) activation has been associated with many types of human cancer. Significant efforts have been devoted to the development of ALK inhibitors to antagonize the kinase activity of ALK. Four ALK inhibitors have been approved by the FDA to date for treating patients with ALK-positive non-small cell lung cancers (NSCLC). However, drug resistance has been observed in the majority of patients treated with these inhibitors. New therapeutic strategies (e.g., compounds with novel mechanisms of action) are needed to overcome the drug resistance issue. The emerging PROTAC (Proteolysis Targeting Chimera) technology has been successfully applied to selective degradation of multiple protein targets, but not ALK. Since ALK protein levels are not important for viability in mammals, ALK PROTACs could lead to novel therapeutics with minimal toxicity. Here we report the design, synthesis and biological evaluation of novel PROTACs (degraders) of ALK. MS4077 (5) and MS4078 (6) potently decreased cellular levels of oncogenic active ALK fusion proteins in a concentration- and time-dependent manner in SU-DHL-1 lymphoma and NCI-H2228 lung cancer cells. The ALK protein degradation induced by compounds 5 and 6 was cereblon and proteasome dependent. In addition, compounds 5 and 6 potently inhibited proliferation of SU-DHL-1 cells. Furthermore, compound 6 displayed good plasma exposure in a mouse pharmacokinetic study, thus is suitable for in vivo efficacy studies. We also developed MS4748 (7) and MS4740 (8), very close analogs of 5 and 6 respectively, which are incapable to degrade the ALK fusion proteins, as negative controls. Compounds 5-8 are valuable chemical tools for investigating effects of ALK pharmacological degradation. Our study paved the way for developing the next generation of ALK PROTACs.
Collapse
Affiliation(s)
- Chengwei Zhang
- Center for Chemical Biology and Drug Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States
| | - Xiao-Ran Han
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Pudong, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Pudong, Shanghai, 201210, China
| | - Jing Liu
- Center for Chemical Biology and Drug Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States.
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States.
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States.
| |
Collapse
|
36
|
A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment. Cell Death Differ 2018. [PMID: 29515255 PMCID: PMC6261943 DOI: 10.1038/s41418-018-0080-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here, we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3–6 µM PCI-34051 or 10 µM 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05 µM (ALK-amplified) to 0.8 µM (wildtype ALK). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort (n = 88) and the German Neuroblastoma Trial cohort (n = 649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.
Collapse
|
37
|
Sharma GG, Mota I, Mologni L, Patrucco E, Gambacorti-Passerini C, Chiarle R. Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes. Cancers (Basel) 2018; 10:E62. [PMID: 29495603 PMCID: PMC5876637 DOI: 10.3390/cancers10030062] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical benefit observed in targeting ALK in NSCLC is almost universally limited by the emergence of drug resistance with a median of occurrence of approximately 10 months after the initiation of therapy. Thus, to overcome crizotinib resistance, second/third-generation ALK inhibitors have been developed and received, or are close to receiving, FDA approval. However, even when treated with these new inhibitors tumors became resistant, both in vitro and in clinical settings. The elucidation of the diverse mechanisms through which resistance to ALK TKI emerges, has informed the design of novel therapeutic strategies to improve patients disease outcome. This review summarizes the currently available knowledge regarding ALK physiologic function/structure and neoplastic transforming role, as well as an update on ALK inhibitors and resistance mechanisms along with possible therapeutic strategies that may overcome the development of resistance.
Collapse
Affiliation(s)
- Geeta Geeta Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
| | - Ines Mota
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
- Galkem Srl, Monza 20900, Italy.
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
- Galkem Srl, Monza 20900, Italy.
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza 20900, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T, Ciardiello F, Morgillo F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer 2018; 17:30. [PMID: 29455642 PMCID: PMC5817803 DOI: 10.1186/s12943-018-0776-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) gene activation is involved in the carcinogenesis process of several human cancers such as anaplastic large cell lymphoma, lung cancer, inflammatory myofibroblastic tumors and neuroblastoma, as a consequence of fusion with other oncogenes (NPM, EML4, TIM, etc) or gene amplification, mutation or protein overexpression. ALK is a transmembrane tyrosine kinase receptor that, upon ligand binding to its extracellular domain, undergoes dimerization and subsequent autophosphorylation of the intracellular kinase domain. When activated in cancer it represents a target for specific inhibitors, such as crizotinib, ceritinib, alectinib etc. which use has demonstrated significant effectiveness in ALK-positive patients, in particular ALK-positive non- small cell lung cancer. Several mechanisms of resistance to these inhibitors have been described and new strategies are underway to overcome the limitations of current ALK inhibitors.
Collapse
Affiliation(s)
- Carminia Maria Della Corte
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Giuseppe Viscardi
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Raimondo Di Liello
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Morena Fasano
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Erika Martinelli
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
39
|
Amin AD, Li L, Rajan SS, Gokhale V, Groysman MJ, Pongtornpipat P, Tapia EO, Wang M, Schatz JH. TKI sensitivity patterns of novel kinase-domain mutations suggest therapeutic opportunities for patients with resistant ALK+ tumors. Oncotarget 2018; 7:23715-29. [PMID: 27009859 PMCID: PMC5029658 DOI: 10.18632/oncotarget.8173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 03/02/2016] [Indexed: 01/08/2023] Open
Abstract
The anaplastic lymphoma kinase (ALK) protein drives tumorigenesis in subsets of several tumors through chromosomal rearrangements that express and activate its C-terminal kinase domain. In addition, germline predisposition alleles and acquired mutations are found in the full-length protein in the pediatric tumor neuroblastoma. ALK-specific tyrosine kinase inhibitors (TKIs) have become important new drugs for ALK-driven lung cancer, but acquired resistance via multiple mechanisms including kinase-domain mutations eventually develops, limiting median progression-free survival to less than a year. Here we assess the impact of several kinase-domain mutations that arose during TKI resistance selections of ALK+ anaplastic large-cell lymphoma (ALCL) cell lines. These include novel variants with respect to ALK-fusion cancers, R1192P and T1151M, and with respect to ALCL, F1174L and I1171S. We assess the effects of these mutations on the activity of six clinical inhibitors in independent systems engineered to depend on either the ALCL fusion kinase NPM-ALK or the lung-cancer fusion kinase EML4-ALK. Our results inform treatment strategies with a likelihood of bypassing mutations when detected in resistant patient samples and highlight differences between the effects of particular mutations on the two ALK fusions.
Collapse
Affiliation(s)
- Amit Dipak Amin
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lingxiao Li
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Soumya S Rajan
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vijay Gokhale
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew J Groysman
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | | | - Edgar O Tapia
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Mengdie Wang
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Jonathan H Schatz
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
40
|
Frentzel J, Sorrentino D, Giuriato S. Targeting Autophagy in ALK-Associated Cancers. Cancers (Basel) 2017; 9:E161. [PMID: 29186933 PMCID: PMC5742809 DOI: 10.3390/cancers9120161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process, which is used by the cells for cytoplasmic quality control. This process is induced following different kinds of stresses e.g., metabolic, environmental, or therapeutic, and acts, in this framework, as a cell survival mechanism. However, under certain circumstances, autophagy has been associated with cell death. This duality has been extensively reported in solid and hematological cancers, and has been observed during both tumor development and cancer therapy. As autophagy plays a critical role at the crossroads between cell survival and cell death, its involvement and therapeutic modulation (either activation or inhibition) are currently intensively studied in cancer biology, to improve treatments and patient outcomes. Over the last few years, studies have demonstrated the occurrence of autophagy in different Anaplastic Lymphoma Kinase (ALK)-associated cancers, notably ALK-positive anaplastic large cell lymphoma (ALCL), non-small cell lung carcinoma (NSCLC), Neuroblastoma (NB), and Rhabdomyosarcoma (RMS). In this review, we will first briefly describe the autophagic process and how it can lead to opposite outcomes in anti-cancer therapies, and we will then focus on what is currently known regarding autophagy in ALK-associated cancers.
Collapse
Affiliation(s)
- Julie Frentzel
- Merck Serono S.A., Route de Fenil 25, Z.I. B, 1804 Corsier-sur-Vevey, Switzerland.
| | - Domenico Sorrentino
- Inserm, UMR1037, CNRS, ERL5294, Université Toulouse III-Paul Sabatier, CRCT, F-31000 Toulouse, France.
| | - Sylvie Giuriato
- Inserm, UMR1037, CNRS, ERL5294, Université Toulouse III-Paul Sabatier, CRCT, F-31000 Toulouse, France.
- European Research Initiative on ALK-related malignancies (ERIA).
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138.
| |
Collapse
|
41
|
Hassan T, Badr M, Safy UE, Hesham M, Sherief L, Beshir M, Fathy M, Malky MA, Zakaria M. Target Therapy in Neuroblastoma. NEUROBLASTOMA - CURRENT STATE AND RECENT UPDATES 2017. [DOI: 10.5772/intechopen.70328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
42
|
Chiba R, Akiya M, Hashimura M, Oguri Y, Inukai M, Hara A, Saegusa M. ALK signaling cascade confers multiple advantages to glioblastoma cells through neovascularization and cell proliferation. PLoS One 2017; 12:e0183516. [PMID: 28837676 PMCID: PMC5570309 DOI: 10.1371/journal.pone.0183516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK), which is a receptor tyrosine kinase, is essentially and transiently expressed in the developing nervous system. Here we examined the functional role of the ALK gene in glioblastomas (GBMs). In clinical samples of GBMs, high ALK expression without gene rearrangements or mutations was frequently observed in perivascular lesions, in contrast to the relatively low expression in the perinecrotic areas, which was positively correlated with N-myc and phosphorylated (p) Stat3 scores and Ki-67 labeling indices. ALK immunoreactivity was also found to be associated with neovascular features including vascular co-option and vascular mimicry. In astrocytoma cell lines, cells stably overexpressing full-length ALK showed an increase in expression of pStat3 and pAkt proteins, as well as hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) mRNAs, in contrast to cells with knockdown of endogenous ALK which showed decreased expression of these molecules. Transfection of the constitutively active form of Stat3 induced an increase in HIF-1α promoter activity, and the overexpression of HIF-1α in turn resulted in enhancement of VEGF-A promoter activity. In addition, cells with overexpression or knockdown of ALK also showed a tendency toward increased and decreased proliferation, respectively, through changes in expression of pAkt and pStat3. Finally, ALK promoter was significantly activated by transfection of Sox4 and N-myc, which are known to contribute to neuronal properties. These findings therefore suggest that N-myc/Sox4-mediated ALK signaling cascades containing Stat3, Akt, HIF-1α, and VEGF-A confer multiple advantages to tumor growth through alterations in neovascularization and cell proliferation in GBMs.
Collapse
Affiliation(s)
- Risako Chiba
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Masashi Akiya
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Madoka Inukai
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Atsuko Hara
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
43
|
ALK-positive Large B-cell Lymphoma: A Clinicopathologic Study of 26 Cases With Review of Additional 108 Cases in the Literature. Am J Surg Pathol 2017; 41:25-38. [PMID: 27740969 DOI: 10.1097/pas.0000000000000753] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK LBCL) is a rare, aggressive subtype of diffuse large B-cell lymphoma with characteristic ALK rearrangements. Diagnosis of ALK LBCL can be challenging because of its rarity, unique morphologic characteristics, and unusual immunophenotypic features, which significantly overlap with other hematologic and nonhematologic neoplasms. The purpose of this study is to further explore the clinicopathologic features of ALK LBCL to ensure the awareness and accurate diagnosis of this entity. We retrospectively reviewed the data from 26 cases in our institutions and additional 108 cases from the literature. ALK LBCL typically occurred in the lymph nodes of young and middle-aged, immunocompetent patients. The medium age was 35 years with a male to female ratio of 3.5:1. Vast majority of cases showed immunoblastic and/or plasmablastic morphology. All cases expressed ALK protein with a cytoplasmic granular pattern in most of them. Common B-cell markers (CD20, CD79a, and PAX5) were typically negative, but the tumor cells mostly expressed 2 B-cell transcriptional factors, BOB1 and OCT2. The 5-year overall survival (OS) was 34%, and the median survival was 1.83 years. In patients with stage III/IV disease, the 5-year OS was only 8%. Moreover, patients below 35 years of age had a significantly better OS than those aged 35 years or above.
Collapse
|
44
|
De Mariano M, Stigliani S, Moretti S, Parodi F, Croce M, Bernardi C, Pagano A, Tonini GP, Ferrini S, Longo L. A genome-wide microRNA profiling indicates miR-424-5p and miR-503-5p as regulators of ALK expression in neuroblastoma. Oncotarget 2017; 8:56518-56532. [PMID: 28915608 PMCID: PMC5593579 DOI: 10.18632/oncotarget.17033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
The discovery of missense mutations of ALK gene identified this receptor tyrosine kinase as a therapeutic target in neuroblastoma (NB). Moreover, a high level of ALK protein has been associated with metastatic NB cases and with a worse prognosis, suggesting that also ALK overexpression is involved in NB tumorigenesis. Since miRNAs play key roles in the regulation of gene expression we aimed at identifying those miRNAs that can regulate ALK in NB. We therefore analyzed the genome-wide expression profile of miRNAs in two sample sets of 16 NB cell lines and 22 NB samples by using miRNA microarrays. Both sample sets were then divided into two subgroups showing high (ALK+) or low/absent (ALK-) expression of ALK. Results showed a down-regulation of 30 and 23 miRNAs (p-value <0.05) in the ALK+ group in NB cell lines and samples, respectively. Validation analysis indicated that miR-424-5p and miR-503-5p, belonging to the same cluster, were differentially expressed in both NB cell lines and tumor samples. Although only miR-424-5p showed a direct binding to ALK 3′-UTR, both miRNAs led to a remarkable decreasing of ALK protein as well as to the inhibition of cell viability in ALK+ NB cell lines. In conclusion, our data indicate that both miR-424-5p and miR-503-5p are involved in regulating ALK expression in NB, either by directly targeting ALK receptor or indirectly, and may thus serve as potential therapeutic tools in ALK dependent NBs.
Collapse
Affiliation(s)
- Marilena De Mariano
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Sara Stigliani
- UOS Fisiopatologia della Riproduzione Umana, Dipartimento di Chirurgia Generale, Specialistica ed Oncologica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Stefano Moretti
- Université Paris-Dauphine, PSL Research University, CNRS, Department UMR [7243], LAMSADE, Paris, France
| | - Federica Parodi
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Michela Croce
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Cinzia Bernardi
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Aldo Pagano
- Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, Padua, Italy
| | - Silvano Ferrini
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Luca Longo
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
45
|
Inoue H, Hashimura M, Akiya M, Chiba R, Saegusa M. Functional role of ALK-related signal cascades on modulation of epithelial-mesenchymal transition and apoptosis in uterine carcinosarcoma. Mol Cancer 2017; 16:37. [PMID: 28193280 PMCID: PMC5307825 DOI: 10.1186/s12943-017-0609-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK), which is a receptor tyrosine kinase, is essentially and transiently expressed in the developing nervous system. Recently, the deregulated expression of full-length ALK has been observed in some primary solid tumors, but little is known about its involvement in the tumorigenesis of uterine carcinosarcomas (UCSs). Here we examined the functional role of the ALK gene in UCSs. METHODS Regulation and function of the ALK gene were assessed using two endometrial carcinoma cell lines. Expression of ALK and its related molecules were also investigated using clinical samples of UCSs. RESULTS In cell lines, ALK promoter activity was significantly increased by transfection of Sox11 and N-myc, which are known to contribute to neuronal properties. Cells stably overexpressing full-length ALK showed an enhancement of EMT properties mediated by TGF-β1 and HGF, along with an increase in phosphorylated (p) Akt and nuclear p65. Overexpression of p65 also led to transactivation of Twist1 gene, known as an EMT inducer. Finally, treatment of the stable ALK-overexpressing cells with doxorubicin resulted in inhibition of apoptosis with progressive increase in the expression ratio of both pAkt and bcl2 relative to total Akt and bax, respectively. In clinical samples, strong cytoplasmic ALK immunoreactivity and mRNA signals without rearrangement or amplification of the ALK locus were frequently observed in UCSs, particularly in the sarcomatous components. Further, ALK IHC score was found to be positively correlated with Sox11, N-myc, Twist1, and bcl2 scores. CONCLUSION ALK-related signal cascades containing Akt, NF-κB, Twist1, and bcl2 may participate in initial signaling for divergent sarcomatous differentiation driven from carcinomatous components in UCSs through induction of the EMT process and inhibition of apoptotic features.
Collapse
Affiliation(s)
- H Inoue
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374 Kanagawa Japan
| | - M Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374 Kanagawa Japan
| | - M Akiya
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374 Kanagawa Japan
| | - R Chiba
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374 Kanagawa Japan
| | - M Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374 Kanagawa Japan
| |
Collapse
|
46
|
|
47
|
Zhao Z, Verma V, Zhang M. Anaplastic lymphoma kinase: Role in cancer and therapy perspective. Cancer Biol Ther 2016; 16:1691-701. [PMID: 26529396 DOI: 10.1080/15384047.2015.1095407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is correlated with oncogenesis in different types of cancers, such as anaplastic large cell lymphoma, lung cancer, neuroblastoma, and even breast cancer, by abnormal fusion of ALK or non-fusion ALK activation. ALK is a receptor tyrosine kinase, with a single transmembrane domain, that plays an important role in development. Upon ligand binding to the extracellular domain, the receptor undergoes dimerization and subsequent autophosphorylation of the intracellular kinase domain. In recent years, ALK inhibitors have been developed for cancer treatment. These inhibitors target ALK activity and show effectiveness in ALK-positive non-small cell lung cancer. However, acquired treatment resistance makes the future of this therapy unclear; new strategies are underway to overcome the limitations of current ALK inhibitors.
Collapse
Affiliation(s)
- Zhihong Zhao
- a Munroe-Meyer Institute; University of Nebraska Medical Center ; Omaha , NE , USA
| | - Vivek Verma
- b Department of Radiation Oncology ; University of Nebraska Medical Center ; Omaha , NE , USA
| | - Mutian Zhang
- b Department of Radiation Oncology ; University of Nebraska Medical Center ; Omaha , NE , USA
| |
Collapse
|
48
|
Damm-Welk C, Siddiqi F, Fischer M, Hero B, Narayanan V, Camidge DR, Harris M, Burke A, Lehrnbecher T, Pulford K, Oschlies I, Siebert R, Turner S, Woessmann W. Anti-ALK Antibodies in Patients with ALK-Positive Malignancies Not Expressing NPM-ALK. J Cancer 2016; 7:1383-7. [PMID: 27471553 PMCID: PMC4964121 DOI: 10.7150/jca.15238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/01/2016] [Indexed: 11/05/2022] Open
Abstract
Patients with Nucleophosmin (NPM)- Anaplastic Lymphoma Kinase (ALK) fusion positive Anaplastic Large Cell Lymphoma produce autoantibodies against ALK indicative of an immune response against epitopes of the chimeric fusion protein. We asked whether ALK-expression in other malignancies induces specific antibodies. Antibodies against ALK were detected in sera of one of 50 analysed ALK-expressing neuroblastoma patients, 13 of 21 ALK positive non-small cell lung carcinoma (NSCLC) patients, 13 of 22 ALK translocation-positive, but NPM-ALK-negative lymphoma patients and one of one ALK-positive rhabdomyosarcoma patient, but not in 20 healthy adults. These data suggest that boosting a pre-existent anti-ALK immune response may be more feasible for patients with ALK-positive NSCLC, lymphomas and rhabdomyosarcomas than for tumours expressing wild-type ALK.
Collapse
Affiliation(s)
- Christine Damm-Welk
- 1. NHL-BFM Study Centre and Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Faraz Siddiqi
- 2. Department of Pathology, University of Cambridge, Cambridge UK
| | - Matthias Fischer
- 3. Department of Paediatric Haematology and Oncology University of Cologne, Germany; 4. Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Germany; 5. Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Barbara Hero
- 3. Department of Paediatric Haematology and Oncology University of Cologne, Germany
| | | | | | - Michael Harris
- 2. Department of Pathology, University of Cambridge, Cambridge UK
| | - Amos Burke
- 7. Department of Paediatric Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Thomas Lehrnbecher
- 8. Department of Paediatric Haematology and Oncology, Goethe University, Frankfurt, Germany
| | - Karen Pulford
- 9. Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | - Ilske Oschlies
- 10. Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Reiner Siebert
- 11. Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig Holstein, Campus Kiel, Kiel Germany
| | - Suzanne Turner
- 2. Department of Pathology, University of Cambridge, Cambridge UK
| | - Wilhelm Woessmann
- 1. NHL-BFM Study Centre and Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
49
|
Mossé YP. Anaplastic Lymphoma Kinase as a Cancer Target in Pediatric Malignancies. Clin Cancer Res 2016; 22:546-52. [PMID: 26503946 PMCID: PMC4738092 DOI: 10.1158/1078-0432.ccr-14-1100] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/27/2015] [Indexed: 11/16/2022]
Abstract
In this era of more rational therapies, substantial efforts are being made to identify optimal targets. The discovery of translocations involving the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase in a subset of non-small cell lung cancers has become a paradigm for precision medicine. Notably, ALK was initially discovered as the fusion gene in anaplastic large cell non-Hodgkin lymphoma, a disease predominantly of childhood. The discovery of activating kinase domain mutations of the full-length ALK receptor as the major cause of hereditary neuroblastoma, and that somatically acquired mutations and amplification events often drive the malignant process in a subset of sporadic tumors, has established ALK as a tractable molecular target across histologically diverse tumors in which ALK is a critical mediator of oncogenesis. We are now uncovering the reexpression of this developmentally regulated protein in a broader subset of pediatric cancers, providing therapeutic targeting opportunities for diseases with shared molecular etiology. This review focuses on the role of ALK in pediatric malignancies, alongside the prospects and challenges associated with the development of effective ALK-inhibition strategies.
Collapse
Affiliation(s)
- Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
50
|
Regairaz M, Munier F, Sartelet H, Castaing M, Marty V, Renauleaud C, Doux C, Delbé J, Courty J, Fabre M, Ohta S, Vielh P, Michiels S, Valteau-Couanet D, Vassal G. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:435-45. [PMID: 26687816 DOI: 10.1016/j.ajpath.2015.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/28/2015] [Accepted: 10/20/2015] [Indexed: 11/30/2022]
Abstract
Activating mutations of anaplastic lymphoma kinase (ALK) have been identified as important players in neuroblastoma development. Our goal was to evaluate the significance of overall ALK activation in neuroblastoma. Expression of phosphorylated ALK, ALK, and its putative ligands, pleiotrophin and midkine, was screened in 289 neuroblastomas and 56 paired normal tissues. ALK was expressed in 99% of tumors and phosphorylated in 48% of cases. Pleiotrophin and midkine were expressed in 58% and 79% of tumors, respectively. ALK activation was significantly higher in tumors than in paired normal tissues, together with ALK and midkine expression. ALK activation was largely independent of mutations and correlated with midkine expression in tumors. ALK activation in tumors was associated with favorable features, including a younger age at diagnosis, hyperdiploidy, and detection by mass screening. Antitumor activity of the ALK inhibitor TAE684 was evaluated in wild-type or mutated ALK neuroblastoma cell lines and xenografts. TAE684 was cytotoxic in vitro in all cell lines, especially those harboring an ALK mutation. TAE684 efficiently inhibited ALK phosphorylation in vivo in both F1174I and R1275Q xenografts but demonstrated antitumor activity only against the R1275Q xenograft. In conclusion, ALK activation occurs frequently during neuroblastoma oncogenesis, mainly through mutation-independent mechanisms. However, ALK activation is not associated with a poor outcome and is not always a driver of cell proliferation and/or survival in neuroblastoma.
Collapse
Affiliation(s)
- Marie Regairaz
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France.
| | - Fabienne Munier
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France
| | - Hervé Sartelet
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France; Sainte Justine University Hospital Center, University of Montréal, Montréal, Québec, Canada
| | - Marine Castaing
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | - Virginie Marty
- Histocytopathology Unit, Laboratory of Translational Research, Gustave Roussy, Villejuif, France
| | - Céline Renauleaud
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France
| | - Camille Doux
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France
| | - Jean Delbé
- Research on Cell Growth, Tissue Repair and Regeneration (CRRET), Centre National de la Recherche Scientifique, University Paris-Est Créteil, Créteil, France
| | - José Courty
- Research on Cell Growth, Tissue Repair and Regeneration (CRRET), Centre National de la Recherche Scientifique, University Paris-Est Créteil, Créteil, France
| | - Monique Fabre
- Department of Pathology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Shigeru Ohta
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Philippe Vielh
- Histocytopathology Unit, Laboratory of Translational Research, Gustave Roussy, Villejuif, France; Department of Pathology and Biobank, Gustave Roussy, Villejuif, France
| | - Stefan Michiels
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | | | - Gilles Vassal
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France.
| |
Collapse
|