1
|
Haynes T, Gilbert MR, Breen K, Yang C. Pathways to hypermutation in high-grade gliomas: Mechanisms, syndromes, and opportunities for immunotherapy. Neurooncol Adv 2024; 6:vdae105. [PMID: 39022645 PMCID: PMC11252568 DOI: 10.1093/noajnl/vdae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Despite rapid advances in the field of immunotherapy, including the success of immune checkpoint inhibition in treating multiple cancer types, clinical response in high-grade gliomas (HGGs) has been disappointing. This has been in part attributed to the low tumor mutational burden (TMB) of the majority of HGGs. Hypermutation is a recently characterized glioma signature that occurs in a small subset of cases, which may open an avenue to immunotherapy. The substantially elevated TMB of these tumors most commonly results from alterations in the DNA mismatch repair pathway in the setting of extensive exposure to temozolomide or, less frequently, from inherited cancer predisposition syndromes. In this review, we discuss the genetics and etiology of hypermutation in HGGs, with an emphasis on the resulting genomic signatures, and the state and future directions of immuno-oncology research in these patient populations.
Collapse
Affiliation(s)
- Tuesday Haynes
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Kevin Breen
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| |
Collapse
|
2
|
Fang C, Zhang Z, Han Y, Xu H, Zhu Z, Du Y, Hou P, Yuan L, Shao A, Zhang A, Lou M. URB2 as an important marker for glioma prognosis and immunotherapy. Front Pharmacol 2023; 14:1113182. [PMID: 37033651 PMCID: PMC10080038 DOI: 10.3389/fphar.2023.1113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Glioma is the most common primary brain tumor and primary malignant tumor of the brain in clinical practice. Conventional treatment has not significantly altered the prognosis of patients with glioma. As research into immunotherapy continues, glioma immunotherapy has shown great potential. Methods: The clinical data were acquired from the Chinese Glioma Genome Atlas (CGGA) database and validated by the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) dataset, Clinical Proteomic Tumor Analysis Consortium (CPTAP) database, and Western blot (WB) analysis. By Cox regression analyses, we examined the association between different variables and overall survival (OS) and its potential as an independent prognostic factor. By constructing a nomogram that incorporates both clinicopathological variables and the expression of URB2, we provide a model for the prediction of prognosis. Moreover, we explored the relationship between immunity and URB2 and elucidated its underlying mechanism of action. Results: Our study shows that URB2 likely plays an oncogenic role in glioma and confirms that URB2 is a prognostic independent risk factor for glioma. Furthermore, we revealed a close relationship between immunity and URB2, which suggests a new approach for the immunotherapy of glioma. Conclusion: URB2 can be used for prognosis prediction and immunotherapy of glioma.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongquan Han
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pinpin Hou
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Omura T, Takahashi M, Ohno M, Miyakita Y, Yanagisawa S, Tamura Y, Kikuchi M, Kawauchi D, Nakano T, Hosoya T, Igaki H, Satomi K, Yoshida A, Sunami K, Hirata M, Shimoi T, Sudo K, Okuma HS, Yonemori K, Suzuki H, Ichimura K, Narita Y. Clinical Application of Comprehensive Genomic Profiling Tests for Diffuse Gliomas. Cancers (Basel) 2022; 14:2454. [PMID: 35626060 PMCID: PMC9139713 DOI: 10.3390/cancers14102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Next-generation sequencing-based comprehensive genomic profiling test (CGPT) enables clinicians and patients to access promising molecularly targeted therapeutic agents. Approximately 10% of patients who undergo CGPT receive an appropriate agent. However, its coverage of glioma patients is seldom reported. The aim of this study was to reveal the comprehensive results of CGPT in glioma patients in our institution, especially the clinical actionability. We analyzed the genomic aberrations, tumor mutation burden scores, and microsatellite instability status. The Molecular Tumor Board (MTB) individually recommended a therapeutic agent and suggested further confirmation of germline mutations after considering the results. The results of 65/104 patients with glioma who underwent CGPTs were reviewed by MTB. Among them, 12 (18.5%) could access at least one therapeutic agent, and 5 (7.7%) were suspected of germline mutations. A total of 49 patients with IDH-wildtype glioblastoma showed frequent genomic aberrations in the following genes: TERT promoter (67%), CDKN2A (57%), CDKN2B (51%), MTAP (41%), TP53 (35%), EGFR (31%), PTEN (31%), NF1 (18%), BRAF (12%), PDGFRA (12%), CDK4 (10%), and PIK3CA (10%). Since glioma patients currently have very limited standard treatment options and a high recurrence rate, CGPT might be a facilitative tool for glioma patients in terms of clinical actionability and diagnostic value.
Collapse
Affiliation(s)
- Takaki Omura
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Yukie Tamura
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Miyu Kikuchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Daisuke Kawauchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Tomoyuki Nakano
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Tomohiro Hosoya
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan;
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo 1818611, Japan;
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 1040045, Japan;
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 1040045, Japan;
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo 1040045, Japan;
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo 1040045, Japan;
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.S.); (K.S.); (H.S.O.); (K.Y.)
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.S.); (K.S.); (H.S.O.); (K.Y.)
| | - Hitomi S. Okuma
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.S.); (K.S.); (H.S.O.); (K.Y.)
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.S.); (K.S.); (H.S.O.); (K.Y.)
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo 1040045, Japan;
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Tokyo 1138421, Japan;
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan; (T.O.); (M.T.); (M.O.); (Y.M.); (S.Y.); (Y.T.); (M.K.); (D.K.); (T.N.); (T.H.)
| |
Collapse
|
4
|
ÇAKIR E, SAYGIN İ, ERCİN ME. Investigation of the relationship between immune checkpoints and mismatch repair deficiency in recurrent and nonrecurrent glioblastoma. Turk J Med Sci 2021; 51:1800-1808. [PMID: 33600097 PMCID: PMC8569775 DOI: 10.3906/sag-2010-166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Background/aim Microsatellite instability tests and programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) in the immune checkpoint pathway are the tests that determine who will benefit from immune checkpoint inhibitor therapy. We aimed to show the expression of DNA mismatch repair proteins and PD-1/PD-L1 molecules that inhibit immune checkpoints, to explain the relationship between them, and to demonstrate their predictive role in recurrent and nonrecurrent glioblastoma. Materials and methods We analyzed 27 recurrent and 47 nonrecurrent cases at our archive. We performed immunohistochemical analysis to determine expressions of PD-1, PD-L1, and mismatch repair proteins in glioblastoma. We evaluated the relationship between these two group and compared the results with the clinicopathological features. Results The mean age of diagnosis was significantly lower in recurrent glioblastoma patients. Median survival was longer in this group. We found that PD-L1 expression was reduced in recurrent cases. Additionally, recurrent cases had a significantly higher rate of microsatellite instability. Loss of PMS2 was high in both group but was substantially higher in recurrent cases. Conclusion The presence of microsatellite instability and low PD-L1 levels, which are among the causes of treatment resistance in glioblastoma, were found to be compatible with the literature in our study, with higher rates in recurrent cases. In recurrent cases with higher mutations and where immunotherapy resistance is expected less, low PD-L1 levels thought that different combinations with other immune checkpoint inhibitors can be tried as predictive and prognostic marker in GBM patients.
Collapse
Affiliation(s)
- Emel ÇAKIR
- Department of Pathology, Faculty of Medicine, Karadeniz Technical University, TrabzonTurkey
| | - İsmail SAYGIN
- Department of Pathology, Faculty of Medicine, Karadeniz Technical University, TrabzonTurkey
| | - Mustafa Emre ERCİN
- Department of Pathology, Faculty of Medicine, Karadeniz Technical University, TrabzonTurkey
| |
Collapse
|
5
|
Ülgen E, Can Ö, Bilguvar K, Akyerli Boylu C, Kılıçturgay Yüksel Ş, Erşen Danyeli A, Sezerman OU, Yakıcıer MC, Pamir MN, Özduman K. Sequential filtering for clinically relevant variants as a method for clinical interpretation of whole exome sequencing findings in glioma. BMC Med Genomics 2021; 14:54. [PMID: 33622343 PMCID: PMC7903763 DOI: 10.1186/s12920-021-00904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the clinical setting, workflows for analyzing individual genomics data should be both comprehensive and convenient for clinical interpretation. In an effort for comprehensiveness and practicality, we attempted to create a clinical individual whole exome sequencing (WES) analysis workflow, allowing identification of genomic alterations and presentation of neurooncologically-relevant findings. METHODS The analysis workflow detects germline and somatic variants and presents: (1) germline variants, (2) somatic short variants, (3) tumor mutational burden (TMB), (4) microsatellite instability (MSI), (5) somatic copy number alterations (SCNA), (6) SCNA burden, (7) loss of heterozygosity, (8) genes with double-hit, (9) mutational signatures, and (10) pathway enrichment analyses. Using the workflow, 58 WES analyses from matched blood and tumor samples of 52 patients were analyzed: 47 primary and 11 recurrent diffuse gliomas. RESULTS The median mean read depths were 199.88 for tumor and 110.955 for normal samples. For germline variants, a median of 22 (14-33) variants per patient was reported. There was a median of 6 (0-590) reported somatic short variants per tumor. A median of 19 (0-94) broad SCNAs and a median of 6 (0-12) gene-level SCNAs were reported per tumor. The gene with the most frequent somatic short variants was TP53 (41.38%). The most frequent chromosome-/arm-level SCNA events were chr7 amplification, chr22q loss, and chr10 loss. TMB in primary gliomas were significantly lower than in recurrent tumors (p = 0.002). MSI incidence was low (6.9%). CONCLUSIONS We demonstrate that WES can be practically and efficiently utilized for clinical analysis of individual brain tumors. The results display that NOTATES produces clinically relevant results in a concise but exhaustive manner.
Collapse
Affiliation(s)
- Ege Ülgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Özge Can
- Department of Medical Engineering, Faculty of Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Kaya Bilguvar
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
- Yale Center for Genome Analysis, West Haven, CT, USA
| | - Cemaliye Akyerli Boylu
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Şirin Kılıçturgay Yüksel
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayça Erşen Danyeli
- Department of Pathology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - O Uğur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - M Cengiz Yakıcıer
- Department of Molecular Biology, School of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University Istanbul, Istanbul, Turkey
| | - M Necmettin Pamir
- Department of Neurosurgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Altunizade Mahallesi, Yurtcan Sok. No:1, Üsküdar, Istanbul, 34662, Turkey
| | - Koray Özduman
- Department of Neurosurgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Altunizade Mahallesi, Yurtcan Sok. No:1, Üsküdar, Istanbul, 34662, Turkey.
| |
Collapse
|
6
|
Khasraw M, Reardon DA, Weller M, Sampson JH. PD-1 Inhibitors: Do they have a Future in the Treatment of Glioblastoma? Clin Cancer Res 2020; 26:5287-5296. [PMID: 32527943 PMCID: PMC7682636 DOI: 10.1158/1078-0432.ccr-20-1135] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (WHO grade IV glioma) is the most common malignant primary brain tumor in adults. Survival has remained largely static for decades, despite significant efforts to develop new effective therapies. Immunotherapy and especially immune checkpoint inhibitors and programmed cell death (PD)-1/PD-L1 inhibitors have transformed the landscape of cancer treatment and improved patient survival in a number of different cancer types. With the exception of few select cases (e.g., patients with Lynch syndrome) the neuro-oncology community is still awaiting evidence that PD-1 blockade can lead to meaningful clinical benefit in glioblastoma. This lack of progress in the field is likely to be due to multiple reasons, including inherent challenges in brain tumor drug development, the blood-brain barrier, the unique immune environment in the brain, the impact of corticosteroids, as well as inter- and intratumoral heterogeneity. Here we critically review the clinical literature, address the unique aspects of glioma immunobiology and potential immunobiological barriers to progress, and contextualize new approaches to increase the efficacy of PD-1/PD-L1 inhibitors in glioblastoma that may identify gaps and testable relevant hypotheses for future basic and clinical research and to provide a novel perspective to further stimulate preclinical and clinical research to ultimately help patients with glioma, including glioblastoma, which is arguably one of the greatest areas of unmet need in cancer. Moving forward, we need to build on our existing knowledge by conducting further fundamental glioma immunobiology research in parallel with innovative and methodologically sound clinical trials.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zürich, Switzerland
| | - John H Sampson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
7
|
Almuhaisen G, Alhalaseh Y, Mansour R, Abu-Shanab A, Al-Ghnimat S, Al-Hussaini M. Frequency of mismatch repair protein deficiency and PD-L1 in high-grade gliomas in adolescents and young adults (AYA). Brain Tumor Pathol 2020; 38:14-22. [PMID: 32897465 DOI: 10.1007/s10014-020-00379-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Central nervous system tumors in adolescents and young adults (AYA) are rarely reported in the literature. The association with cancer predisposition syndrome is not established. Programmed death ligand 1 (PD-L1) can predict the potential response of patients to immunotherapy. A link between mismatch repair protein deficiency (MMRP-D) and response to immunotherapy is established. P53 is reported to be positive in MMRD-D cases. We aim to investigate the frequency of MMRP-D in AYA with high-grade glioma and any potential association with PD-L1. A total of 96 cases were tested including 49 (51.0%) cases of glioblastoma. Six cases (6.25%) were MMRP-D, 17 (17.7%) were PD-L1 positive, mostly in grade IV tumors (8.7% in grade III compared to 26% in grade IV, p value = 0.027), and 69 (71.9%) were P3 positive. None of the MMRP-D cases expressed PD-L1. P53-positive cases were mostly MMRP proficient (n = 67; 74.4%, p value 0.051). Fourteen cases (28.7%) were positive for both PD-L1 and P53, while p53-positive grade IV tumors were mostly associated with negative PD-L1 (n = 29, 58%, p value = 0.043). MMRP deficiency does not appear to be prevalent in high-grade glioma in AYA. Expression of PD-L1 in a quarter of cases might suggest a role for immunotherapy in high-grade glioma.
Collapse
Affiliation(s)
| | - Yazan Alhalaseh
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Razan Mansour
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Amer Abu-Shanab
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Sura Al-Ghnimat
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, 202 Queen Rania Al-Abdullah Street, Al-Jubaiha, P.O. Box 1269, Amman, 11941, Jordan
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, 202 Queen Rania Al-Abdullah Street, Al-Jubaiha, P.O. Box 1269, Amman, 11941, Jordan.
| |
Collapse
|
8
|
Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch Repair Pathway, Genome Stability and Cancer. Front Mol Biosci 2020; 7:122. [PMID: 32671096 PMCID: PMC7332687 DOI: 10.3389/fmolb.2020.00122] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023] Open
Abstract
The acquisition of genomic instability is one of the key characteristics of the cancer cell, and microsatellite instability (MSI) is an important segment of this phenomenon. This review aims to describe the mismatch DNA repair (MMR) system whose deficiency is responsible for MSI and discuss the cellular roles of MMR genes. Malfunctioning of the MMR repair pathway increases the mutational burden of specific cancers and is often involved in its etiology, sometimes as an influential bystander and sometimes as the main driving force. Detecting the presence of MSI has for a long time been an important part of clinical diagnostics, but has still not achieved its full potential. The MSI blueprints of specific tumors are useful for precize grading, evaluation of cancer chance and prognosis and to help us understand how and why therapy-resistant cancers arise. Furthermore, evidence indicates that MSI is an important predictive biomarker for the application of immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Zhang L, Bhaskaran SP, Huang T, Dong H, Chandratre K, Wu X, Qin Z, Wang X, Cao W, Chen T, Lynch H, Wang SM. Variants of DNA mismatch repair genes derived from 33,998 Chinese individuals with and without cancer reveal their highly ethnic-specific nature. Eur J Cancer 2020; 125:12-21. [DOI: 10.1016/j.ejca.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
|
10
|
Kafka A, Bačić M, Tomas D, Žarković K, Bukovac A, Njirić N, Mrak G, Krsnik Ž, Pećina‐Šlaus N. Different behaviour of DVL1, DVL2, DVL3 in astrocytoma malignancy grades and their association to TCF1 and LEF1 upregulation. J Cell Mol Med 2019; 23:641-655. [PMID: 30468298 PMCID: PMC6307814 DOI: 10.1111/jcmm.13969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/04/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
Key regulators of the Wnt signalling, DVL1, DVL2 and DVL3, in astrocytomas of different malignancy grades were investigated. Markers for DVL1, DVL2 and DVL3 were used to detect microsatellite instability (MSI) and gross deletions (LOH), while immunohistochemistry and immunoreactivity score were used to determine the signal strengths of the three DVL proteins and transcription factors of the pathway, TCF1 and LEF1. Our findings demonstrated that MSI at all three DVL loci was constantly found across tumour grades with the highest number in grade II (P = 0.008). Collectively, LOHs were more frequent in high-grade tumours than in low grade ones. LOHs of DVL3 gene were significantly associated with grade IV tumours (P = 0.007). The results on protein expressions indicated that high-grade tumours expressed less DVL1 protein as compared with low grade ones. A significant negative correlation was established between DVL1 expression and malignancy grades (P < 0.001). The expression of DVL2 protein was found similar across grades, while DVL3 expression significantly increased with malignancy grades (P < 0.001). The signal strengths of expressed DVL1 and DVL3 were negatively correlated (P = 0.002). However, TCF1 and LEF1 were both significantly upregulated and increasing with astrocytoma grades (P = 0.001). A positive correlation was established between DVL3 and both TCF1 (P = 0.020) and LEF1 (P = 0.006) suggesting their joint involvement in malignant progression. Our findings suggest that DVL1 and DVL2 may be involved during early stages of the disease, while DVL3 may have a role in later phases and together with TCF1 and LEF1 promotes the activation of Wnt signalling.
Collapse
Affiliation(s)
- Anja Kafka
- Laboratory of Neuro‐oncologyCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of BiologySchool of MedicineUniversity of ZagrebZagrebCroatia
| | | | - Davor Tomas
- Department of PathologySchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of PathologyUniversity Hospital Center “Sisters of Charity”ZagrebCroatia
| | - Kamelija Žarković
- Department of PathologySchool of MedicineUniversity of ZagrebZagrebCroatia
- Division of PathologyUniversity Hospital Center “Zagreb”ZagrebCroatia
| | - Anja Bukovac
- Laboratory of Neuro‐oncologyCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of BiologySchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Niko Njirić
- Laboratory of Neuro‐oncologyCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of NeurosurgeryUniversity Hospital Center “Zagreb”School of MedicineUniversity of ZagrebZagrebCroatia
| | - Goran Mrak
- Department of NeurosurgeryUniversity Hospital Center “Zagreb”School of MedicineUniversity of ZagrebZagrebCroatia
| | - Željka Krsnik
- Department of NeuroscienceCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Nives Pećina‐Šlaus
- Laboratory of Neuro‐oncologyCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of BiologySchool of MedicineUniversity of ZagrebZagrebCroatia
| |
Collapse
|
11
|
Zhang X, Chen S, Yu J, Zhang Y, Lv M, Zhu M. Analysis of human MutS homolog 2 missense mutations in patients with colorectal cancer. Oncol Lett 2018; 15:6275-6282. [PMID: 29731845 PMCID: PMC5920917 DOI: 10.3892/ol.2018.8161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/02/2018] [Indexed: 11/18/2022] Open
Abstract
Germline mutations of DNA mismatch repair gene human MutS homolog 2 (hMSH2) are associated with hereditary nonpolyposis colorectal cancer (HNPCC). A total of one-third of these mutations are missense mutations. Several hMSH2 missense mutations have been identified in patients in East Asia, although their function has not been evaluated. In the present study, the role of ten hMSH2 missense mutations in the pathogenesis of colorectal cancer was examined. The hMSH2/hMSH6 protein interaction system was established using yeast two-hybrid screening. Next, the missense mutations were analyzed for their ability to affect the protein interaction of hMSH2 with its partner hMSH6. Additionally, the Sorting Intolerant from Tolerant tool was applied to predict the effects of different amino acid substitutions. The results demonstrated that certain hMSH2 mutations (L173R and C199R) caused a significant functional change in the human hMutSα complex and were identified to be pathological mutations. The Y408C, D603Y, P696L and S703Y mutations partially affected interaction and partly affected the function of hMSH2. The remaining four variants, T8M, I169V, A370T and Q419K, may be non-functional polymorphisms or could affect protein function through other molecular mechanisms. The present study evaluated the functional consequences of previously unknown missense mutations in hMSH2, and may contribute to improved clinical diagnosis and mutation screening of HNPCC.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Senqing Chen
- Department of Molecular Biology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Jun Yu
- Department of Molecular Biology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yuanying Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Min Lv
- Department of Molecular Biology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Ming Zhu
- Department of Molecular Biology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Malignant gliomas result in disproportionately high morbidity and mortality compared with other primary tumors, and progression of disease is inevitable. Novel therapies to improve outcomes are needed and immune checkpoint inhibitors hold significant promise. RECENT FINDINGS A limited body of preclinical evidence suggests that checkpoint inhibitors may be effective treatment for gliomas. Biomarkers to identify characteristics of gliomas responsive to these therapies will be essential. These may include mismatch repair deficiency and high mutational load that might be germline, somatic, or acquired after therapy. Evidence on the use of immune checkpoint inhibitors in gliomas is evolving. Clinical trials are underway and results are eagerly awaited. Understanding the role of immune checkpoint inhibitors in combination with other treatment modalities for gliomas is crucial to the improvement of outcomes. The design and conduct of future clinical trials need to account for increasingly complex treatment options.
Collapse
|
13
|
Pećina-Šlaus N, Kafka A, Bukovac A, Vladušić T, Tomas D, Hrašćan R. Genetic changes of MLH1 and MSH2 genes could explain constant findings on microsatellite instability in intracranial meningioma. Tumour Biol 2017; 39:1010428317705791. [PMID: 28705114 DOI: 10.1177/1010428317705791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Postreplicative mismatch repair safeguards the stability of our genome. The defects in its functioning will give rise to microsatellite instability. In this study, 50 meningiomas were investigated for microsatellite instability. Two major mismatch repair genes, MLH1 and MSH2, were analyzed using microsatellite markers D1S1611 and BAT26 amplified by polymerase chain reaction and visualized by gel electrophoresis on high-resolution gels. Furthermore, genes DVL3 (D3S1262), AXIN1 (D16S3399), and CDH1 (D16S752) were also investigated for microsatellite instability. Our study revealed constant presence of microsatellite instability in meningioma patients when compared to their autologous blood DNA. Altogether 38% of meningiomas showed microsatellite instability at one microsatellite locus, 16% on two, and 13.3% on three loci. The percent of detected microsatellite instability for MSH2 gene was 14%, and for MLH1, it was 26%, for DVL3 22.9%, for AXIN1 17.8%, and for CDH1 8.3%. Since markers also allowed for the detection of loss of heterozygosity, gross deletions of MLH1 gene were found in 24% of meningiomas. Genetic changes between MLH1 and MSH2 were significantly positively correlated (p = 0.032). We also noted a positive correlation between genetic changes of MSH2 and DVL3 genes (p = 0.034). No significant associations were observed when MLH1 or MSH2 was tested against specific histopathological meningioma subtype or World Health Organization grade. However, genetic changes in DVL3 were strongly associated with anaplastic histology of meningioma (χ2 = 9.14; p = 0.01). Our study contributes to better understanding of the genetic profile of human intracranial meningiomas and suggests that meningiomas harbor defective cellular DNA mismatch repair mechanisms.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Bukovac
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Vladušić
- 3 Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Davor Tomas
- 4 Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,5 University Hospital "Sisters of Charity," Zagreb, Croatia
| | - Reno Hrašćan
- 3 Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
14
|
Abstract
: More than 1.6 million new cases of cancer will be diagnosed in the U.S. in 2016, resulting in more than 500,000 deaths. Although chemotherapy has been the mainstay of treatment in advanced cancers, immunotherapy development, particularly with PD-1 inhibitors, has changed the face of treatment for a number of tumor types. One example is the subset of tumors characterized by mismatch repair deficiency and microsatellite instability that are highly sensitive to PD-1 blockade. Hereditary forms of cancer have been noted for more than a century, but the molecular changes underlying mismatch repair-deficient tumors and subsequent microsatellite unstable tumors was not known until the early 1990s. In this review article, we discuss the history and pathophysiology of mismatch repair, the process of testing for mismatch repair deficiency and microsatellite instability, and the role of immunotherapy in this subset of cancers. IMPLICATIONS FOR PRACTICE Mismatch repair deficiency has contributed to our understanding of carcinogenesis for the past 2 decades and now identifies a subgroup of traditionally chemotherapy-insensitive solid tumors as sensitive to PD-1 blockade. This article seeks to educate oncologists regarding the nature of mismatch repair deficiency, its impact in multiple tumor types, and its implications for predicting the responsiveness of solid tumors to immune checkpoint blockade.
Collapse
|
15
|
Lee V, Murphy A, Le DT, Diaz LA. Mismatch Repair Deficiency and Response to Immune Checkpoint Blockade. Oncologist 2016; 21:1200-1211. [PMID: 27412392 DOI: 10.1634/theoncologist.2016-0046] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
: More than 1.6 million new cases of cancer will be diagnosed in the U.S. in 2016, resulting in more than 500,000 deaths. Although chemotherapy has been the mainstay of treatment in advanced cancers, immunotherapy development, particularly with PD-1 inhibitors, has changed the face of treatment for a number of tumor types. One example is the subset of tumors characterized by mismatch repair deficiency and microsatellite instability that are highly sensitive to PD-1 blockade. Hereditary forms of cancer have been noted for more than a century, but the molecular changes underlying mismatch repair-deficient tumors and subsequent microsatellite unstable tumors was not known until the early 1990s. In this review article, we discuss the history and pathophysiology of mismatch repair, the process of testing for mismatch repair deficiency and microsatellite instability, and the role of immunotherapy in this subset of cancers. IMPLICATIONS FOR PRACTICE Mismatch repair deficiency has contributed to our understanding of carcinogenesis for the past 2 decades and now identifies a subgroup of traditionally chemotherapy-insensitive solid tumors as sensitive to PD-1 blockade. This article seeks to educate oncologists regarding the nature of mismatch repair deficiency, its impact in multiple tumor types, and its implications for predicting the responsiveness of solid tumors to immune checkpoint blockade.
Collapse
Affiliation(s)
- Valerie Lee
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Adrian Murphy
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Dung T Le
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Luis A Diaz
- The Swim Across America Laboratory, Baltimore, Maryland, USA the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Therkildsen C, Ladelund S, Rambech E, Persson A, Petersen A, Nilbert M. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome. Eur J Neurol 2015; 22:717-24. [PMID: 25648859 DOI: 10.1111/ene.12647] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Brain tumors represent a rare and relatively uncharacterized tumor type in Lynch syndrome. METHODS The national Danish Hereditary Nonpolyposis Colorectal Cancer Register was utilized to estimate the cumulative life-time risk for brain tumors in Lynch syndrome, and the mismatch repair (MMR) status in all tumors available was evaluated. RESULTS Primary brain tumors developed in 41/288 families at a median age of 41.5 (range 2-73) years. Biallelic MMR gene mutations were linked to brain tumor development in childhood. The risk of brain tumors was significantly higher (2.5%) in MSH2 gene mutation carriers compared to patients with mutations in MLH1 or MSH6. Glioblastomas predominated (56%), followed by astrocytomas (22%) and oligodendrogliomas (9%). MMR status was assessed in 10 tumors, eight of which showed MMR defects. None of these tumors showed immunohistochemical staining suggestive of the IDH1 R132H mutation. CONCLUSION In Lynch syndrome brain tumors occurred in 14% of the families with significantly higher risks for individuals with MSH2 gene mutations and development of childhood brain tumors in individuals with constitutional MMR defects.
Collapse
Affiliation(s)
- C Therkildsen
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark; Division of Oncology and Pathology, Institute of Clinical Sciences, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Zhu M, Chen HM, Wang YP. Missense mutations of MLH1 and MSH2 genes detected in patients with gastrointestinal cancer are associated with exonic splicing enhancers and silencers. Oncol Lett 2013; 5:1710-1718. [PMID: 23760103 PMCID: PMC3678577 DOI: 10.3892/ol.2013.1243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/18/2013] [Indexed: 01/11/2023] Open
Abstract
The MLH1 and MSH2 genes in DNA mismatch repair are important in the pathogenesis of gastrointestinal cancer. Recent studies of normal and alternative splicing suggest that the deleterious effects of missense mutations may in fact be splicing-related when they are located in exonic splicing enhancers (ESEs) or exonic splicing silencers (ESSs). In this study, we used ESE-finder and FAS-ESS software to analyze the potential ESE/ESS motifs of the 114 missense mutations detected in the two genes in East Asian gastrointestinal cancer patients. In addition, we used the SIFT tool to functionally analyze these mutations. The amount of the ESE losses (68) was 51.1% higher than the ESE gains (45) of all the mutations. However, the amount of the ESS gains (27) was 107.7% higher than the ESS losses (13). In total, 56 (49.1%) mutations possessed a potential exonic splicing regulator (ESR) error. Eighty-one mutations (71.1%) were predicted to be deleterious with a lower tolerance index as detected by the Sorting Intolerant from Tolerant (SIFT) tool. Among these, 38 (33.3%) mutations were predicted to be functionally deleterious and possess one potential ESR error, while 18 (15.8%) mutations were predicted to be functionally deleterious and exhibit two potential ESR errors. These may be more likely to affect exon splicing. Our results indicated that there is a strong correlation between missense mutations in MLH1 and MSH2 genes detected in East Asian gastrointestinal cancer patients and ESR motifs. In order to correctly understand the molecular nature of mutations, splicing patterns should be compared between wild-type and mutant samples.
Collapse
Affiliation(s)
- Ming Zhu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093; ; Department of Molecular Biology, Jiangsu Institute of Cancer Research, Nanjing 210009, P.R. China
| | | | | |
Collapse
|
18
|
Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M, Schackert G, Kreth FW, Pietsch T, Löffler M, Weller M, Reifenberger G, Tonn JC. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer 2011; 129:659-70. [PMID: 21425258 DOI: 10.1002/ijc.26083] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care.
Collapse
Affiliation(s)
- Jörg Felsberg
- Department of Neuropathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Viana-Pereira M, Lee A, Popov S, Bax DA, Al-Sarraj S, Bridges LR, Stávale JN, Hargrave D, Jones C, Reis RM. Microsatellite instability in pediatric high grade glioma is associated with genomic profile and differential target gene inactivation. PLoS One 2011; 6:e20588. [PMID: 21637783 PMCID: PMC3102740 DOI: 10.1371/journal.pone.0020588] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/06/2011] [Indexed: 12/14/2022] Open
Abstract
High grade gliomas (HGG) are one of the leading causes of cancer-related deaths in children, and there is increasing evidence that pediatric HGG may harbor distinct molecular characteristics compared to adult tumors. We have sought to clarify the role of microsatellite instability (MSI) in pediatric versus adult HGG. MSI status was determined in 144 patients (71 pediatric and 73 adults) using a well established panel of five quasimonomorphic mononucleotide repeat markers. Expression of MLH1, MSH2, MSH6 and PMS2 was determined by immunohistochemistry, MLH1 was assessed for mutations by direct sequencing and promoter methylation using MS-PCR. DNA copy number profiles were derived using array CGH, and mutations in eighteen MSI target genes studied by multiplex PCR and genotyping. MSI was found in 14/71 (19.7%) pediatric cases, significantly more than observed in adults (5/73, 6.8%; p = 0.02, Chi-square test). MLH1 expression was downregulated in 10/13 cases, however no mutations or promoter methylation were found. MSH6 was absent in one pediatric MSI-High tumor, consistent with an inherited mismatch repair deficiency associated with germline MSH6 mutation. MSI was classed as Type A, and associated with a remarkably stable genomic profile. Of the eighteen classic MSI target genes, we identified mutations only in MSH6 and DNAPKcs and described a polymorphism in MRE11 without apparent functional consequences in DNA double strand break detection and repair. This study thus provides evidence for a potential novel molecular pathway in a proportion of gliomas associated with the presence of MSI.
Collapse
Affiliation(s)
- Marta Viana-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- Section of Paediatric Oncology, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Alicia Lee
- Section of Paediatric Oncology, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Sergey Popov
- Section of Paediatric Oncology, Institute of Cancer Research, Sutton, Surrey, United Kingdom
- Paediatric Oncology, Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Dorine A. Bax
- Section of Paediatric Oncology, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, Kings College Hospital, London, United Kingdom
| | | | - João N. Stávale
- Department of Pathology, Federal University of São Paulo, São Paulo, Brazil
| | - Darren Hargrave
- Paediatric Oncology, Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Chris Jones
- Section of Paediatric Oncology, Institute of Cancer Research, Sutton, Surrey, United Kingdom
- Paediatric Oncology, Royal Marsden Hospital, Sutton, Surrey, United Kingdom
- * E-mail: (RMR); (CJ)
| | - Rui M. Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- * E-mail: (RMR); (CJ)
| |
Collapse
|
20
|
De Salvo M, Maresca G, D'agnano I, Marchese R, Stigliano A, Gagliassi R, Brunetti E, Raza GH, De Paula U, Bucci B. Temozolomide induced c-Myc-mediated apoptosis via Akt signalling in MGMT expressing glioblastoma cells. Int J Radiat Biol 2011; 87:518-33. [PMID: 21405945 DOI: 10.3109/09553002.2011.556173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE We investigated the molecular mechanisms underlying the cytotoxic effect of Temozolomide (TMZ) in both O(6)-methylguanine-DNA methyl transferase (MGMT) depleted as well as undepleted glioblastoma cell lines. Since TMZ is used in clinics in combination with radiotherapy, we also studied the effects of TMZ in combination with ionising radiation (IR). METHODS Cell colony-forming ability was measured using a clonogenic assay. Cell cycle analysis and apoptosis were evaluated by Flow Cytometry (FCM). Proteins involved in cell cycle control were detected by Western blot and co-immunoprecipitation assays. RESULTS Our data showed that TMZ, independent of MGMT expression, inhibited glioblastoma cell growth via an irreversible G(2) block in MGMT depleted cells or the induction of apoptosis in MGMT normal expressing cells. When TMZ was administered in combination with IR, apoptosis was greater than observed with either agent separately. This TMZ-induced apoptosis in the MGMT expressing cells occurred through Akt/Glycogen-Synthase-Kinase-3ß (GSK3ß) signalling and was mediated by Myelocytomatosis (c-Myc) oncoprotein. Indeed, TMZ phosphorylated/activated Akt led to phosphorylation/inactivation of GSK3ß which resulted in the stabilisation of c-Myc protein and subsequent modulation of the c-Myc target genes involved in the apoptotic processes. CONCLUSION C-Myc expression could be considered a good indicator of TMZ effectiveness.
Collapse
Affiliation(s)
- Maria De Salvo
- Centro Ricerca S. Pietro, Fatebenefratelli Hospital, Via Cassia 600, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pollack IF, Hamilton RL, Sobol RW, Nikiforova MN, Nikiforov YE, Lyons-Weiler MA, LaFramboise WA, Burger PC, Brat DJ, Rosenblum MK, Gilles FH, Yates AJ, Zhou T, Cohen KJ, Finlay JL, Jakacki RI. Mismatch repair deficiency is an uncommon mechanism of alkylator resistance in pediatric malignant gliomas: a report from the Children's Oncology Group. Pediatr Blood Cancer 2010; 55:1066-71. [PMID: 20589656 PMCID: PMC3036982 DOI: 10.1002/pbc.22634] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 04/16/2010] [Indexed: 11/11/2022]
Abstract
BACKGROUND Alkylating agents are commonly used in the treatment of childhood malignant gliomas. Overexpression of O(6)-methylguanine-DNA methyltransferase (MGMT) constitutes an important mechanism for resistance to such agents, and MGMT status has been associated with outcome in several recent trials. Deficiency in mismatch repair (MMR) function has been implicated in preclinical studies as an additional potential mechanism of resistance to methylating agents, such as temozolomide, independent of tumor MGMT status. However, the frequency of this abnormality as a clinical resistance mechanism in childhood malignant gliomas has not been well characterized. METHODS To address this issue, we examined the frequency of microsatellite instability (MSI), a marker of defective MMR, in a series of 68 tumors, derived from newly diagnosed patients treated on the Children's Cancer Group 945 study, and the Children's Oncology Group ACNS0126 and 0423 studies. MSI was assessed using a panel of six microsatellite markers, including BAT-25, BAT-26, CAT-25, D2S123, D5S346, and D17S250. MGMT immunoreactivity was assessed in parallel to allow comparison of the relative incidence of MGMT overexpression and MSI. RESULTS Only three tumors had high-level MSI involving three or more markers; the remainder had no MSI at any of the loci examined. These children did not have unusual features in terms of their outcome. In contrast to the infrequency of MSI, 25 tumors (37%) exhibited MGMT overexpression as assessed by immunohistochemistry. None of the tumors with MSI exhibited overexpression of MGMT. CONCLUSION MMR deficiency is an infrequent contributor to initial alkylator resistance in children with malignant gliomas.
Collapse
Affiliation(s)
- Ian F. Pollack
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Correspondence to: Ian F. Pollack, Department of Neurosurgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224.
| | - Ronald L. Hamilton
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert W. Sobol
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marina N. Nikiforova
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuri E. Nikiforov
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maureen A. Lyons-Weiler
- Clinical Genomics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - William A. LaFramboise
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Clinical Genomics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Peter C. Burger
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Daniel J. Brat
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Marc K. Rosenblum
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Floyd H. Gilles
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, California
| | - Allan J. Yates
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Tianni Zhou
- Children's Oncology Group, Arcadia, California
| | - Kenneth J. Cohen
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan L. Finlay
- Department of Pediatrics, Childrens Hospital Los Angeles, Los Angeles, California
| | - Regina I. Jakacki
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
22
|
Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, Bouffet E, Hawkins C. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 2010; 28:1337-44. [PMID: 20142589 DOI: 10.1200/jco.2009.25.5463] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) is one of the most devastating of pediatric malignancies and one for which no effective therapy exists. A major contributor to the failure of therapeutic trials is the assumption that biologic properties of brainstem tumors in children are identical to cerebral high-grade gliomas of adults. A better understanding of the biology of DIPG itself is needed in order to develop agents targeted more specifically to these children's disease. Herein, we address this lack of knowledge by performing the first high-resolution single nucleotide polymorphism (SNP) -based DNA microarray analysis of a series of DIPGs. PATIENTS AND METHODS Eleven samples (nine postmortem and two pretreatment surgical samples), the largest series thus far examined, were hybridized to SNP arrays (250 k or 6.0). The study was approved by the research ethics board at our institution. All array findings were validated using quantitative polymerase chain reaction, fluorescence in situ hybridization, immunohistochemistry, and/or microsatellite analysis. RESULTS Analysis of DIPG copy number alterations showed recurrent changes distinct from those of pediatric supratentorial high-grade astrocytomas. Thirty-six percent of DIPGs had gains in platelet-derived growth factor receptor alpha (PDGFRA; 4 to 18 copies) and all showed PDGFR-alpha expression. Low-level gains in poly (ADP-ribose) polymerase (PARP) -1 were identified in three cases. Pathway analysis revealed genes with loss of heterozygosity were enriched for DNA repair pathways. CONCLUSION To our knowledge, our data provides the first, comprehensive high-resolution genomic analysis of pediatric DIPG. Our findings of recurrent involvement of the PDGFR pathway as well as defects in DNA repair pathways coupled with gain of PARP-1 highlight two potential, biologically based, therapeutic targets directed specifically at this devastating disease.
Collapse
Affiliation(s)
- Maryam Zarghooni
- Division of Pathology andHaematology, The Labatt Brain Tumor Research Centre, The Hospital for Sick Children,Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Radivoyevitch T. Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data. Biol Direct 2009; 4:50. [PMID: 20003203 PMCID: PMC2799446 DOI: 10.1186/1745-6150-4-50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/09/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Ribonucleotide reductase is the main control point of dNTP production. It has two subunits, R1, and R2 or p53R2. R1 has 5 possible catalytic site states (empty or filled with 1 of 4 NDPs), 5 possible s-site states (empty or filled with ATP, dATP, dTTP or dGTP), 3 possible a-site states (empty or filled with ATP or dATP), perhaps two possible h-site states (empty or filled with ATP), and all of this is folded into an R1 monomer-dimer-tetramer-hexamer equilibrium where R1 j-mers can be bound by variable numbers of R2 or p53R2 dimers. Trillions of RNR complexes are possible as a result. The problem is to determine which are needed in models to explain available data. This problem is intractable for 10 reactants, but it can be solved for 2 and is here for R1 and ATP. RESULTS Thousands of ATP-induced R1 hexamerization models with up to three (s, a and h) ATP binding sites per R1 subunit were automatically generated via hypotheses that complete dissociation constants are infinite and/or that binary dissociation constants are equal. To limit the model space size, it was assumed that s-sites are always filled in oligomers and never filled in monomers, and to interpret model terms it was assumed that a-sites fill before h-sites. The models were fitted to published dynamic light scattering data. As the lowest Akaike Information Criterion (AIC) of the 3-parameter models was greater than the lowest of the 2-parameter models, only models with up to 3 parameters were fitted. Models with sums of squared errors less than twice the minimum were then partitioned into two groups: those that contained no occupied h-site terms (508 models) and those that contained at least one (1580 models). Normalized AIC densities of these two groups of models differed significantly in favor of models that did not include an h-site term (Kolmogorov-Smirnov p < 1 x 10(-15)); consistent with this, 28 of the top 30 models (ranked by AICs) did not include an h-site term and 28/30 > 508/2088 with p < 2 x 10(-15). Finally, 99 of the 2088 models did not have any terms with ATP/R1 ratios >1.5, but of the top 30, there were 14 such models (14/30 > 99/2088 with p < 3 x 10(-16)), i.e. the existence of R1 hexamers with >3 a-sites occupied by ATP is also not supported by this dataset. CONCLUSION The analysis presented suggests that three a-sites may not be occupied by ATP in R1 hexamers under the conditions of the data analyzed. If a-sites fill before h-sites, this implies that the dataset analyzed can be explained without the existence of an h-site.
Collapse
Affiliation(s)
- Tomas Radivoyevitch
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
24
|
Abstract
In gliomas, germline gene alterations play a significant role during malignant transformation of progenitor glial cells, at least for families with occurrence of multiple cancers or with specific hereditary cancer syndromes. Scientific evidence during the last few years has revealed several constitutive genetic abnormalities that may influence glioma formation. These germline abnormalities are manifested as either gene polymorphisms or hemizygous mutations of key regulatory genes that are involved either in DNA repair or in apoptosis. Such changes, among others, include hemizygous alterations of the neurofibromatosis 1 (NF1) and p53 genes that are involved in apoptotic pathways, and alterations in multiple DNA repair genes such as mismatch repair (MMR) genes, x-ray cross-complementary genes (XRCC), and O6-methylguanine-DNA methyltransferase (MGMT) genes. Subsequent cellular changes include somatic mutations in cell cycle regulatory genes and genes involved in angiogenesis and invasion, leading eventually to tumor formation in various stages. Future molecular diagnosis may identify new genomic regions that could harbor genes important for glioma predisposition and aid in the early diagnosis of these patients and genetic counseling of their families.
Collapse
Affiliation(s)
- Athanassios P Kyritsis
- University Hospital of Ioannina, Neurosurgical Research Institute, University of Ioannina School of Medicine, University Campus, Ioannina 45110, Greece.
| | | | | | | |
Collapse
|
25
|
Giunti L, Cetica V, Ricci U, Giglio S, Sardi I, Paglierani M, Andreucci E, Sanzo M, Forni M, Buccoliero AM, Genitori L, Genuardi M. Type A microsatellite instability in pediatric gliomas as an indicator of Turcot syndrome. Eur J Hum Genet 2009; 17:919-27. [PMID: 19156169 DOI: 10.1038/ejhg.2008.271] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Microsatellite instability (MSI) is present in hereditary conditions due to mismatch repair (MMR) gene mutations. Following MSI analysis, tumor samples are classified into MSS (stable), MSI-L (low instability), and MSI-H (high instability) based on the fraction of unstable loci. Another MSI-based classification takes into account the size difference between mutant alleles in tumor DNA compared to wild-type alleles; two types of MSI, A and B, are recognized using this approach, type A being characterized by smaller, more subtle allelic shifts compared to type B. Biallelic mutations of MMR genes are associated with pediatric cancers, including glial tumors, in Turcot syndrome type 1 (TS1). However, most TS1-associated gliomas so far analyzed did not display MSI. We investigated the frequency of MSI in a series of 34 pediatric gliomas of different grade using a panel of five mononucleotide quasimonomorphic markers. Subtle qualitative changes were observed for the majority of markers in two glioblastomas (5.9% of the total series and 33.3% of glioblastomas). In both cases, family histories were compatible with TS1, and mutations of the PMS2 and MLH1 genes were identified. In one family, the MSI patterns were compared between the glioblastoma and a colon cancer from an affected relative, showing a clear qualitative difference, with the former displaying type A and the latter type B instability, respectively. These results were confirmed using additional microsatellite markers, indicating that knowledge of the association between TS1-related glial tumors and subtle type A MSI is important for full ascertainment of TS1 patients and appropriate counselling.
Collapse
Affiliation(s)
- Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet 2008; 124:105-22. [PMID: 18709565 DOI: 10.1007/s00439-008-0542-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Heterozygous mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause the dominant adult cancer syndrome termed Lynch syndrome or hereditary non-polyposis colorectal cancer. During the past 10 years, some 35 reports have delineated the phenotype of patients with biallelic inheritance of mutations in one of these MMR genes. The patients suffer from a condition that is characterised by the development of childhood cancers, mainly haematological malignancies and/or brain tumours, as well as early-onset colorectal cancers. Almost all patients also show signs reminiscent of neurofibromatosis type 1, mainly café au lait spots. Alluding to the underlying mechanism, this condition may be termed as "constitutional mismatch repair-deficiency (CMMR-D) syndrome". To give an overview of the current knowledge and its implications of this recessively inherited cancer syndrome we summarise here the genetic, clinical and pathological findings of the so far 78 reported patients of 46 families suffering from this syndrome.
Collapse
|
27
|
Feitsma H, Kuiper RV, Korving J, Nijman IJ, Cuppen E. Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors. Cancer Res 2008; 68:5059-66. [PMID: 18593904 DOI: 10.1158/0008-5472.can-08-0019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defective mismatch repair (MMR) in humans causes hereditary nonpolyposis colorectal cancer. This genetic predisposition to colon cancer is linked to heterozygous familial mutations, and loss-of-heterozygosity is necessary for tumor development. In contrast, the rare cases with biallelic MMR mutations are juvenile patients with brain tumors, skin neurofibromas, and café-au-lait spots, resembling the neurofibromatosis syndrome. Many of them also display lymphomas and leukemias, which phenotypically resembles the frequent lymphoma development in mouse MMR knockouts. Here, we describe the identification and characterization of novel knockout mutants of the three major MMR genes, mlh1, msh2, and msh6, in zebrafish and show that they develop tumors at low frequencies. Predominantly, neurofibromas/malignant peripheral nerve sheath tumors were observed; however, a range of other tumor types was also observed. Our findings indicate that zebrafish mimic distinct features of the human disease and are complementary to mouse models.
Collapse
Affiliation(s)
- Harma Feitsma
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
28
|
Farrell CJ, Plotkin SR. Genetic Causes of Brain Tumors: Neurofibromatosis, Tuberous Sclerosis, von Hippel-Lindau, and Other Syndromes. Neurol Clin 2007; 25:925-46, viii. [DOI: 10.1016/j.ncl.2007.07.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Zakrzewska M, Szybka M, Zakrzewski K, Biernat W, Kordek R, Rieske P, Golanska E, Zawlik I, Piaskowski S, Liberski PP. Diverse molecular pattern in a bihemispheric glioblastoma (butterfly glioma) in a 16-year-old boy. ACTA ACUST UNITED AC 2007; 177:125-30. [PMID: 17854667 DOI: 10.1016/j.cancergencyto.2007.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/18/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
Glioblastoma multiforme (GBM), the most common malignant brain tumor of adults, is relatively rare in children. In a GBM affecting a 16-year-old boy, the tumor spread across the corpus callosum (butterfly glioma). This type of bilateral hemispheric growth has previously been thought to result from spread along the white matter tracts. Two samples obtained from opposite sides of the same tumor were analyzed comprehensively for loss of heterozygosity (LOH) and microsatellite instability (MSI). Amplification of EGFR and MDM2 was studied by means of multiplex polymerase chain reaction. Exons 5, 6, 7, and 8 of TP53 were screened for mutations by sequencing. In neither specimen were molecular alterations found in the EGFR, MDM2, or TP53 genes. The specimen obtained from the right hemisphere exhibited a high level of MSI and LOH in chromosome arms 5q, 9p, and 13q. The specimen from the left hemisphere exhibited LOH in chromosome arms 3p, 5q, 9p, 9q, 10p, 10q, and 13q. Here we propose four plausible hypothetical scenarios underlying the tumorigenesis of this GBM.
Collapse
Affiliation(s)
- Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gammie AE, Erdeniz N, Beaver J, Devlin B, Nanji A, Rose MD. Functional characterization of pathogenic human MSH2 missense mutations in Saccharomyces cerevisiae. Genetics 2007; 177:707-21. [PMID: 17720936 PMCID: PMC2034637 DOI: 10.1534/genetics.107.071084] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with defects in DNA mismatch repair. Mutations in either hMSH2 or hMLH1 underlie the majority of HNPCC cases. Approximately 25% of annotated hMSH2 disease alleles are missense mutations, resulting in a single change out of 934 amino acids. We engineered 54 missense mutations in the cognate positions in yeast MSH2 and tested for function. Of the human alleles, 55% conferred strong defects, 8% displayed intermediate defects, and 38% showed no defects in mismatch repair assays. Fifty percent of the defective alleles resulted in decreased steady-state levels of the variant Msh2 protein, and 49% of the Msh2 variants lost crucial protein-protein interactions. Finally, nine positions are predicted to influence the mismatch recognition complex ATPase activity. In summary, the missense mutations leading to loss of mismatch repair defined important structure-function relationships and the molecular analysis revealed the nature of the deficiency for Msh2 variants expressed in the tumors. Of medical relevance are 15 human alleles annotated as pathogenic in public databases that conferred no obvious defects in mismatch repair assays. This analysis underscores the importance of functional characterization of missense alleles to ensure that they are the causative factor for disease.
Collapse
Affiliation(s)
- Alison E Gammie
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Poley JW, Wagner A, Hoogmans MMCP, Menko FH, Tops C, Kros JM, Reddingius RE, Meijers-Heijboer H, Kuipers EJ, Dinjens WNM. Biallelic germline mutations of mismatch-repair genes: a possible cause for multiple pediatric malignancies. Cancer 2007; 109:2349-56. [PMID: 17440981 DOI: 10.1002/cncr.22697] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Heterozygous defects in mismatch-repair (MMR) genes cause hereditary nonpolyposis colorectal cancer (HNPCC). In this syndrome, tumors typically arise from age 25 years onward. Case reports have shown that homozygosity or compound heterozygosity for MMR gene mutations can cause multiple tumors in childhood, sometimes combined with neurofibromatosis type I (NF1)-like features. Therefore, the authors studied the role of homozygosity or compound heterozygosity (CZ) for MMR gene defects in children with multiple primary tumors. METHODS A database that contained all pediatric oncology patients who were seen between 1982 and 2003 at the author's institution was queried to identify patients aged <16 years with more than 1 tumor for whom tissue of at least 1 tumor was available. On isolated DNA, microsatellite instability (MSI) and immunohistochemistry of MMR proteins were assessed. RESULTS In total, 15 patients with more than 1 tumor were identified. Abnormal test results were obtained in 2 of them, including 1 patient who was diagnosed at age 4 years with a glioblastoma (MSI-stable; no human mutL homolog 1 [MLH1] or postmeiotic segregation increased, Saccharomyces cerevisiae 2 [PMS2] expression) and a Wilms tumor (high MSI; no MLH1 or PMS2 expression). Apart from >6 cafe-au-lait spots, he had no other signs of NF1. The patient had CZ identified for a pathogenic MLH1 mutation (593delAG frameshift) and an unclassified MLH1 variant (Met35Asn). There was strong evidence that this unclassified variant was a pathogenic mutation. The second patient was diagnosed with a non-Hodgkin lymphoma (no tissue available) and an anaplastic oligodendroglioma (low MSI; no MSH6 expression) at age 4 years and 6 years, respectively. His brother had died of a medulloblastoma at age 6 years (low MSI, no MSH6 expression). Both boys had cafe-au-lait spots. Further genetic testing was not possible. CONCLUSIONS Carriage of biallelic MMR gene defects can be associated with multiple malignancies in childhood that may differ from the standard spectrum of HNPCC tumor types. In 15 pediatric patients with multiple malignancies, the authors identified 1 clear case and 1 possible case of biallelic MMR gene defect. Recognition of the inherited nature of the tumors in these patients is important for counseling these patients and their families.
Collapse
Affiliation(s)
- Jan-Werner Poley
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eckert A, Kloor M, Giersch A, Ahmadi R, Herold‐Mende C, Hampl JA, Heppner FL, Zoubaa S, Holinski‐Feder E, Pietsch T, Wiestler OD, Von Knebel Doeberitz M, Roth W, Gebert J. Microsatellite instability in pediatric and adult high-grade gliomas. Brain Pathol 2007; 17:146-50. [PMID: 17388945 PMCID: PMC8095570 DOI: 10.1111/j.1750-3639.2007.00049.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
About 15% of sporadic gastrointestinal and endometrial tumors show the microsatellite instability (MSI) phenotype because of loss of DNA mismatch repair (MMR) function. The incidence of MSI in tumors of the central nervous system still remains controversial. Previous studies reported a particular high frequency of MSI (approximately 25%) in young patients suffering from high-grade gliomas. Based on these data and the fact that in different tumor entities MMR deficiency defines a subgroup of tumors with distinct pathogenesis and particular clinicopathological features that may have impact on prognosis and therapy, we screened 624 gliomas from 71 young and 553 adult patients for MMR deficiency by MSI analysis using three highly sensitive diagnostic markers. Alterations of MMR protein expression was examined by immunohistochemistry. A malignant glioma from an adult patient displayed MSI and concomitant loss of nuclear MSH2 and MSH6 protein expression (0.16%; 1/619). No evidence for MSI or loss of MMR protein expression was observed in 71 gliomas from young patients (0%; 0/71) including 41 high-grade astrocytic tumors. Overall, we observed a much lower incidence of MSI among high-grade pediatric gliomas than initially reported and suggest that MMR deficiency does not play a major role in the pathogenesis of glial neoplasms.
Collapse
Affiliation(s)
- Anika Eckert
- Department of Applied Tumor Biology
- Department of Molecular Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | | | | | | | | | | | - Frank L. Heppner
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Saida Zoubaa
- Institute of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elke Holinski‐Feder
- Institute of Human Genetics, University Hospital LMU Munich, Munich, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Otmar D. Wiestler
- Department of Molecular Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | | | - Wilfried Roth
- Department of Molecular Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | | |
Collapse
|
33
|
Sheng JQ, Chan TL, Chan YW, Huang JS, Chen JG, Zhang MZ, Guo XL, Mu H, Chan AS, Li SR, Yuen ST, Leung SY. Microsatellite instability and novel mismatch repair gene mutations in northern Chinese population with hereditary non-polyposis colorectal cancer. ACTA ACUST UNITED AC 2007; 7:197-205. [PMID: 17054581 DOI: 10.1111/j.1443-9573.2006.00269.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is the most common cause of hereditary colorectal cancer with an early age of onset. Microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found in the majority of HNPCC families and provide an opportunity for genetic diagnosis and prophylactic screening. The MMR gene mutation spectrum may vary across different populations and be influenced by founder mutations that prevail in specific ethnic groups. China is a big and ancient nation with enormous genetic diversity, which is especially notable between the northern and southern Chinese populations. A MMR gene mutation database for the southern Chinese population based in Hong Kong has been previously established. This study compares the MMR gene mutation spectrum and the MSI of HNPCC between the northern and southern Chinese populations. METHODS Twenty-five HNPCC families from northern China were systematically analyzed. The MSI analysis was performed using five loci in the USA National Cancer Institute (NCI) panel (D2S123, D5S346, BAT-25, BAT-26 and BAT-40) by PCR from the tumor and normal tissue. MSH2, MSH6 and MLH1 were performed using immunohistochemical staining. Two founder mutations of MSH2 and MLH1 were examined by PCR base analyses using primers flanking the two deletion sites (c.1452_1455delAATG in MSH2 and 1.8 kb deletion involving exon 11 of MLH1). RESULTS Of the 25 families collected, 19 met Bethesda guideline (BG) 1 and six met BG3. Twenty-two (15.7%) were extra-colonic cancers with gastric cancer (in seven patients) being the most common cancer type. Of the 25 tumors analyzed, 21 (84%) were high level microsatellite instability (MSI-H) and four (16%) were microsatellite stable (MSS). Eighteen (86%) of the 21 MSI-H tumors showed loss of either the MLH1 or the MSH2 protein. Three MSI-H tumors and all four MSS tumors showed no loss of expression of the three MMR proteins. Out of the 21 patients with MSI-H tumors, 12 (57%) showed pathogenic germline mutations in either MLH1 (n = 8) or MSH2 (n = 4). Overall, three novel mutations (in patients H22, H17 and H29) have been identified. One of them, c.503_4insA, caused a frameshift mutation in the MLH1 gene. The other two were found in the MSH2 gene, including a frameshift (c.899_890insAT) and a splice junction (IVS7-1G-->A, SA of Exon 8) mutation. CONCLUSIONS The results suggest a distinctly different mutation spectrum of MMR genes between northern and southern Chinese populations and call for a systematic, nationwide study to facilitate the design of a MMR gene mutation detection strategy tailored for individual populations in China.
Collapse
Affiliation(s)
- Jian Qiu Sheng
- Hereditary non-polyposis colorectal cancer (HNPCC) group, Beijing Army General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hussein MR, El-Ghorori RMH, El-Rahman YGA. Alterations of p53, BCL-2, and hMSH2 protein expression in the normal brain tissues, gliosis, and gliomas. Int J Exp Pathol 2006; 87:297-306. [PMID: 16875495 PMCID: PMC2517375 DOI: 10.1111/j.1365-2613.2006.00482.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Tumorigenesis involves alterations in the tumor suppressor genes (p53), protooncogenes (BCL-2), and housekeeping genes (human MutS homologue-2 (hMSH2). We hypothesized that development of gliomas is associated with alterations of p53, BCL-2, and hMSH2 protein expression. To test our hypothesis and to examine these issues, we immunostained 60 specimens entailing normal brain tissues, gliosis, and gliomas (Grade I, II, III, IV) for p53, BCL-2, and hMSH2 protein expression. As compared with the normal brain and gliosis, examination of the average weighted scores in gliomas (Grade I, II, III, IV, respectively) showed significant up-regulation of: (i) p53 protein (0.0 +/- 0.0; 0.0 +/- 0.0; 0.9 +/- 0.5; 1.6 +/- 0.8; 1.7 +/- 0.5; and 4.1 +/- 0.8, P < 0.0001) (ii) hMSH2 (1.3 +/- 0.3; 1.5 +/- 0.7; 1.9 +/- 1.1; 2.2 +/- 0.5; 4.1 +/- 1.5; and 4.7 +/- 1.1, P < 0.0006), and (iii) BCL-2 (0.8 +/- 0.5; 1.9 +/- 0.5; 1.9 +/- 0.6; 2.0 +/- 0.6; 4.4 +/- 1.2; and 4.6 +/- 0.8, P < 0.001). The expression values (p53, BCL-2, and hMSH2) were statistically significantly higher (P < 0.05) in astrocytomas (Grade III) than in other gliomas. There was an insignificant negative correlation between p53 and BCL-2 (r = -0.07, P > 0.05) and between p53 and hMSH2 (r = -0.08, P > 0.05) protein expression. Alterations of the p53, BCL-2, and hMSH2 proteins occur during the development of these tumors.
Collapse
Affiliation(s)
- Mahmoud R Hussein
- Faculty of Medicine, Assuit University Hospitals, Assuit University, Assuit, Egypt.
| | | | | |
Collapse
|
35
|
Abstract
Intensive research efforts during the last several decades have increased our understanding of carcinogenesis, and have identified a genetic basis for the multi-step process of cancer development. Tumors grow through a process of clonal expansion driven by mutation. Several forms of molecular alteration have been described in human cancers, and these can be generally classified as chromosomal abnormalities and nucleotide sequence abnormalities. Most cancer cells display a phenotype characterized by genomic hypermutability, suggesting that genomic instability may precede the acquisition of transforming mutations in critical target genes. Reduced to its essence, cancer is a disease of abnormal gene expression, and these genetic abnormalities contribute to cancer pathogenesis through inactivation of negative mediators of cell proliferation (including tumor suppressor genes) and activation of positive mediators of cell proliferation (including proto-oncogenes). In several human tumor systems, specific genetic alterations have been shown to correlate with well-defined histopathological stages of tumor development and progression. Although the significance of mutations to the etiological mechanisms of tumor development has been debated, a causal role for such genetic lesions is now commonly accepted for most human cancers. Thus, genetic lesions represent an integral part of the processes of neoplastic transformation, tumorigenesis, and tumor progression, and as such represent potentially valuable markers for cancer detection and staging.
Collapse
Affiliation(s)
- William B Coleman
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill NC, 27599, USA.
| | | |
Collapse
|
36
|
Hu CK, McCall S, Madden J, Huang H, Clough R, Jirtle RL, Anscher MS. Loss of heterozygosity of M6P/IGF2R gene is an early event in the development of prostate cancer. Prostate Cancer Prostatic Dis 2005; 9:62-7. [PMID: 16304558 DOI: 10.1038/sj.pcan.4500842] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The genetic events leading to initiation and/or progression of prostate cancer are not well characterized. The gene coding for the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) has recently been identified as a tumor suppressor in several types of cancer. The purpose of the present study is to determine whether the M6P/IGF2R gene is inactivated in human prostate cancer, and if so, whether this is an early or late transformational event. METHODS In total, 43 patients with prostate cancer treated by radical prostatectomy, with archival material available for analysis, were assessed for loss of heterozygosity (LOH) in the M6P/IGF2R gene using six different gene-specific nucleotide polymorphisms. Regions of tumor, normal prostate and premalignant high-grade prostate intraepithelial neoplasia (PIN) were identified and cells were excised by laser capture microdissection (LCM). DNA segments were amplified using polymerase chain reaction (PCR). RESULTS The M6P/IGF2R gene was polymorphic in 83.7% (36/43) of patients, and 41.7% (15/36) of these informative patients had LOH in the tumor tissue. In 11/15 patients with LOH in malignant tissue, high-grade PIN could be identified, and 63.6% (7/11) also had LOH in this premalignant tissue. CONCLUSIONS This study is the first to find that the M6P/IGF2R gene is inactivated in prostate cancer. LOH in premalignant tissue as well suggests that mutation in the M6P/IGF2R gene is an early event in the development of prostate cancer, supporting the conclusion that it functions as a tumor suppressor gene in this disease.
Collapse
Affiliation(s)
- C K Hu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Xie D, Zeng YX, Wang HJ, Tai LS, Wen JM, Tao Y, Ma NF, Hu L, Sham JST, Guan XY. Amplification and overexpression of epidermal growth factor receptor gene in glioblastomas of Chinese patients correlates with patient's age but not with tumor's clinicopathological pathway. Acta Neuropathol 2005; 110:481-9. [PMID: 16151725 DOI: 10.1007/s00401-005-1072-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/11/2005] [Accepted: 07/20/2005] [Indexed: 01/17/2023]
Abstract
It is believed that there are two distinct pathological pathways leading to the development of human glioblastomas (GBM) in Caucasian populations. Primary (de novo) GBM most often occurs in older individuals, and is characterized by the overexpression/amplification of epidermal growth factor receptor gene (EGFR), whereas secondary GBM, which progresses from a low-grade astrocytoma, often affects younger individuals and frequently contains the TP53 mutation. We and others have previously found that the age of onset of GBM in Chinese patients tends to be younger than that in Caucasian patients. To identify whether GBMs from Chinese patients share this common pattern of genetic alterations, expression levels of EGFR and TP53 and TP53 mutation were analyzed in 56 randomly selected Chinese GBMs (30 primary and 26 secondary), including 47 adult-onset and 9 pediatric GBMs. Consistent with other studies, overexpression/mutation of TP53 and aneuploid DNA content were more frequently detected in secondary GBMs of Chinese adult patients. In contrast to that observed in Caucasian patients, no significant difference was observed in the age distribution and the frequency of EGFR overexpression/amplification between primary and secondary GBMs in adult Chinese patients. Furthermore, the overexpression of EGFR was much higher in late-onset (age >45 years) GBMs (73%) than that in both early-onset (age 18-45 years) (17%) and pediatric (age <18 years) GBMs (11%), suggesting that overexpression of EGFR in Chinese GBMs may be associated closely with the patients age but not with the tumors' pathological pathway.
Collapse
Affiliation(s)
- Dan Xie
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fukushima T, Katayama Y, Watanabe T, Yoshino A, Ogino A, Ohta T, Komine C. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea. Clin Cancer Res 2005; 11:1539-44. [PMID: 15746058 DOI: 10.1158/1078-0432.ccr-04-1625] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In certain types of human cancers, transcriptional inactivation of hMLH1 by promoter hypermethylation plays a causal role in the loss of mismatch repair functions that modulate cytotoxic pathways in response to DNA-damaging agents. The aim of the present study was to investigate the role of promoter methylation of the hMLH1 gene in malignant astrocytomas. EXPERIMENTAL DESIGN We examined the hMLH1 promoter methylation in a homogeneous cohort of patients with 41 malignant astrocytomas treated by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea chemotherapy in combination with radiation and interferon therapy, and assessed the correlation of such methylation with clinical outcome. RESULTS hMLH1 promoter methylation was found in 6 (15%) of the 41 newly diagnosed malignant astrocytomas. Hypermethylation of the hMLH1 promoter corresponded closely with a loss of immunohistochemical staining for hMLH1 protein (P = 0.0013). Patients with hMLH1-methylated tumors displayed a greater chance of responding to adjuvant therapy as compared with those with hMLH1-unmethylated tumors (P = 0.0150). The presence of hMLH1 hypermethylation was significantly associated with a longer progression-free survival on both univariate analysis (P = 0.0340) and multivariate analysis (P = 0.0161). CONCLUSIONS The present study identified hMLH1 methylation status as a predictor of the clinical response of malignant astrocytomas to chloroethylnitrosourea-based adjuvant therapy. The findings obtained suggest that determination of the methylation status of hMLH1 could provide a potential basis for designing rational chemotherapeutic strategies, as well as for predicting prognosis.
Collapse
Affiliation(s)
- Takao Fukushima
- Department of Neurological Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Itabashi, Tokyo 173-8610, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Rao VK, Wangsa D, Robey RW, Huff L, Honjo Y, Hung J, Knutsen T, Ried T, Bates SE. Characterization of ABCG2 gene amplification manifesting as extrachromosomal DNA in mitoxantrone-selected SF295 human glioblastoma cells. ACTA ACUST UNITED AC 2005; 160:126-33. [PMID: 15993268 DOI: 10.1016/j.cancergencyto.2004.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 11/26/2004] [Accepted: 12/02/2004] [Indexed: 11/20/2022]
Abstract
The human ABCG2 gene, located on chromosome 4, encodes an ATP-binding cassette half-transporter that has been shown to confer resistance to chemotherapeutic agents. Relatively little is known about the mechanisms controlling expression of ABCG2. In previous studies, we had shown that overexpression of ABCG2 can result from rearrangement or gene amplification involving chromosome 4. To better characterize the mechanisms of ABCG2 overexpression, SF295 glioblastoma cells were exposed to increasing amounts of mitoxantrone to generate the SF295 MX50, MX100, MX250, and MX500 sublines, maintained in mitoxantrone concentrations ranging from 50 to 500 nmol/L. Northern blot analysis confirmed overexpression of ABCG2 mRNA, and immunoblot analysis demonstrated increased protein expression in the selected cell lines. Efflux of BODIPY-prazosin confirmed a functional protein. ABCG2 gene amplification was observed in all resistant sublines, as determined by Southern blot analysis. Fluorescence in situ hybridization (FISH) revealed amplification of ABCG2 via double minute chromosomes (dmins) detected in metaphase chromosome spreads in the SF295 MX50 and MX100 sublines. At higher levels of drug selection, in the MX250 and MX500 sublines, fewer dmins were observed but homogeneously staining regions (hsr) were visible with FISH analysis, revealing reintegration of the ABCG2 gene into multiple chromosomes. Spectral karyotyping (SKY) demonstrated multiple clonal and nonclonal rearrangements of chromosome 4, including hsrs. These results suggest that amplification of ABCG2 occurred initially in the form of dmins, followed by chromosomal reintegration of the amplicon at multiple sites. This occurred with increasing drug-selection pressure, generating a more stable genotype.
Collapse
Affiliation(s)
- V Koneti Rao
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 12C103, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Broniscer A, Gajjar A. Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist. Oncologist 2004; 9:197-206. [PMID: 15047924 DOI: 10.1634/theoncologist.9-2-197] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pediatric high-grade gliomas represent a heterogeneous group of tumors that accounts for 15%-20% of all pediatric central nervous system tumors. These neoplasms predominantly involve the supratentorial hemispheres or the pons, in which case the tumors are usually called diffuse brainstem gliomas. The diagnosis of supratentorial neoplasms is dependent on their histologic appearance. The maximum possible surgical resection is always attempted since the degree of surgical resection is the main prognostic factor for these patients. Older children (>3 years) with supratentorial neoplasms undergo a multimodality treatment comprised of surgical resection, radiation therapy, and chemotherapy. The addition of chemotherapy seems to improve the survival of a subset of these children, particularly those with glioblastoma multiforme. However, 2-year survival rates remain poor for children with supratentorial neoplasms, ranging from 10%-30%. The diagnosis of a diffuse brainstem glioma is based upon typical imaging, dispensing with the need for surgery in the majority of cases. Radiation therapy is the mainstay of treatment for children with diffuse brainstem gliomas. The role of chemotherapy for these children is not clear, and it is, in general, employed in the context of an investigational study. Less than 10% of children with diffuse brainstem gliomas survive 2 years. Because the outcome for patients with either type of tumor is poor when standard multimodality therapy is used, these children are ideal candidates for innovative treatment approaches.
Collapse
Affiliation(s)
- Alberto Broniscer
- Division of Neuro-Oncology, Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
41
|
Vaish M, Kumar R, Mittal RD, Mittal B. Evaluation of microsatellite instability in tumors of central nervous system: A pilot study. Indian J Clin Biochem 2004; 19:156-162. [PMID: 23105476 PMCID: PMC3454185 DOI: 10.1007/bf02894277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microsatellite instability (MSI) characterized by alterations at simple repetitive genomic sequences is a distinct mechanism in tumorogenesis. Central nervous system (CNS) tumors have been reported to exhibit MSI, indicator of defective mismatch repair system with controversies. The present study was undertaken to examine sixteen primary brain and two spinal tumors for MSI at six mono: BAT-26, BAT-40, BAX, TGFßRII, IGFIIR and hMSH3 and four dinucleotide loci: D2S123, D9S1851, D9S283 and D18S58. Polymerase chain reaction (PCR) was done to amplify tumour and blood DNA, analyzed on 8% denaturing Polyacrylamide gel followed by autoradiography. Out of 18 CNS tumors examined, 39% exhibited MSI at BAT-26, BAT-40, D9S1851, D9S283 and D18S58 in tumoral DNA. However, no alteration was observed at BAX, TGFßRII, IGFIIR, hMSH3 and D2S123 loci. Low incidence of MS1-high hypothesizes role of MSI in evolution of CNS tumors but not in cancer initiation or progression.
Collapse
Affiliation(s)
- Minal Vaish
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, 226014 Lucknow, India
| | - Raj Kumar
- Department Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, 226014 Lucknow, India
| | - R. D. Mittal
- Department Urology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, 226014 Lucknow, India
| | - Balraj Mittal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, 226014 Lucknow, India
| |
Collapse
|
42
|
Okamoto H, Mineta T, Nakahara Y, Ichinose M, Shiraishi T, Tabuchi K. Molecular analysis of astrocytoma associated with Turcot syndrome type 1--case report. Neurol Med Chir (Tokyo) 2004; 44:124-8. [PMID: 15095965 DOI: 10.2176/nmc.44.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 49-year-old man presented with a brain tumor and colon carcinoma. The patient had been treated under diagnoses of hereditary non-polyposis colorectal cancer syndrome and Muir-Torre syndrome. Magnetic resonance imaging revealed a mass lesion in the right frontal lobe with diffuse high intensity on T2-weighted and fluid-attenuated inversion recovery images. A few small lesions were enhanced by gadolinium on the T1-weighted images. Histological examination revealed the brain neoplasm was astrocytoma grade III according to the World Health Organization classification. Molecular genetic analysis detected microsatellite instability and p53 mutation only in the tumor tissue, indicating a failure of the deoxyribonucleic acid mismatch repair system. These results suggest that inactivation of mismatch repair system and p53 is closely associated with the tumorigenesis of this neoplasm. The final diagnosis was Turcot syndrome type 1.
Collapse
Affiliation(s)
- Hiroaki Okamoto
- Department of Neurosurgery, Saga Medical School, Saga, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Chan TL, Chan YW, Ho JWC, Chan C, Chan ASY, Chan E, Lam PWY, Tse CW, Lee KC, Lau CW, Gwi E, Leung SY, Yuen ST. MSH2 c.1452-1455delAATG is a founder mutation and an important cause of hereditary nonpolyposis colorectal cancer in the southern Chinese population. Am J Hum Genet 2004; 74:1035-42. [PMID: 15042510 PMCID: PMC1181966 DOI: 10.1086/383591] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 02/09/2004] [Indexed: 01/20/2023] Open
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) accounts for approximately 2% of all colorectal cancer (CRC) cases and is the most common hereditary CRC syndrome. We have previously reported a high incidence of microsatellite instability (MSI) and germline mismatch repair (MMR) gene mutations in young Hong Kong Chinese with CRC. Ongoing studies at the Hereditary Gastrointestinal Cancer Registry in Hong Kong have revealed a unique germline MSH2 c.1452-1455delAATG mutation that has not been reported in other ethnic groups. Detailed analysis showed that this specific MSH2 mutation constituted 21% of all germline MMR gene mutations and 36% of all MSH2 germline mutations identified. We designed a specific PCR-based diagnostic test on paraffin-embedded tissues and identified this germline mutation in 2 (1.5%) of 138 consecutive patients with early-onset CRC (<46 years of age at diagnosis). Haplotype analysis was performed using 11 microsatellite markers located between D2S391 and D2S123. All 10 families had the same disease haplotype, suggesting a founder effect. These 10 families all originated from the Chinese province of Guangdong, which historically included Hong Kong. It is the most populous of the Chinese provinces, with a population of >93 million. Further analysis suggested that this founder mutation may date back to between 22 and 103 generations ago. The identification of this MSH2 founder mutation has important implications for the design of mutation-detection strategies for the southern Chinese population. Since there were major emigrations from Hong Kong and Guangdong province during the 19th and 20th centuries, this finding is also significant for Chinese communities worldwide.
Collapse
Affiliation(s)
- Tsun Leung Chan
- Department of Pathology, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thiffault I, Hamel N, Pal T, McVety S, Marcus VA, Farber D, Cowie S, Deschênes J, Meschino W, Odefrey F, Goldgar D, Graham T, Narod S, Watters AK, MacNamara E, Sart DD, Chong G, Foulkes WD. Germline truncating mutations in both MSH2 and BRCA2 in a single kindred. Br J Cancer 2004; 90:483-91. [PMID: 14735197 PMCID: PMC2409581 DOI: 10.1038/sj.bjc.6601424] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There has been interest in the literature in the possible existence of a gene that predisposes to both breast cancer (BC) and colorectal cancer (CRC). We describe the detailed characterisation of one kindred, MON1080, with 10 cases of BC or CRC invasive cancer among 26 first-, second- or third-degree relatives. Linkage analysis suggested that a mutation was present in BRCA2. DNA sequencing from III: 22 (diagnosed with lobular BC) identified a BRCA2 exon 3 542G>T (L105X) mutation. Her sister (III: 25) had BC and endometrial cancer and carries the same mutation. Following immunohistochemical and microsatellite instability studies, mutation analysis by protein truncation test, cDNA sequencing and quantitative real-time PCR revealed a deletion of MSH2 exon 8 in III: 25, confirming her as a double heterozygote for truncating mutations in both BRCA2 and MSH2. The exon 8 deletion was identified as a 14.9 kb deletion occurring between two Alu sequences. The breakpoint lies within a sequence of 45 bp that is identical in both Alu sequences. In this large BC/CRC kindred, MON1080, disease-causing truncating mutations are present in both MSH2 and BRCA2. There appeared to be no increased susceptibility to the development of colorectal tumours in BRCA2 mutation carriers or to the development of breast tumours in MSH2 mutation carriers. Additionally, two double heterozygotes did not appear to have a different phenotype than would be expected from the presence of a mutation in each gene alone.
Collapse
Affiliation(s)
- I Thiffault
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Diagnostic Medicine, SMBD-Jewish General Hospital
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - N Hamel
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - T Pal
- Centre for Research in Woman's Health, University of Toronto, Toronto, Ontario, Canada
| | - S McVety
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Diagnostic Medicine, SMBD-Jewish General Hospital
| | - V A Marcus
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - D Farber
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - S Cowie
- Murdoch Children's Research Institute, Melbourne, Australia
| | - J Deschênes
- Department of Diagnostic Medicine, SMBD-Jewish General Hospital
| | - W Meschino
- Department of Genetics, North York General Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | - T Graham
- Preventive Oncology Program, Toronto Sunnybrook Regional Cancer Centre, Toronto, Ontario, Canada
| | - S Narod
- Centre for Research in Woman's Health, University of Toronto, Toronto, Ontario, Canada
| | - A K Watters
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - E MacNamara
- Department of Diagnostic Medicine, SMBD-Jewish General Hospital
| | - D Du Sart
- Murdoch Children's Research Institute, Melbourne, Australia
| | - G Chong
- Department of Diagnostic Medicine, SMBD-Jewish General Hospital
| | - W D Foulkes
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Diagnostic Medicine, SMBD-Jewish General Hospital
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Montreal General Hospital, Room L10-120, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4. E-mail:
| |
Collapse
|
45
|
Johnson MD, Vnencak-Jones CL, Toms SA, Moots PM, Weil R. Allelic losses in oligodendroglial and oligodendroglioma-like neoplasms: analysis using microsatellite repeats and polymerase chain reaction. Arch Pathol Lab Med 2003; 127:1573-9. [PMID: 14632576 DOI: 10.5858/2003-127-1573-alioao] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Oligodendroglial tumors are heterogenous neoplasms with histologic features shared with other central nervous system tumors, such as dysembryoplastic neuroepithelial tumors. OBJECTIVE We examined a series of tumors, identified as possessing oligodendroglial components at the time of intraoperative examination, to see if molecular subsets based on the oligodendroglial component could be recognized. DESIGN DNA was extracted from fresh brain tumor tissue and corresponding peripheral blood or normal tissues. Genotypes for multiple loci were determined by polymerase chain reaction amplification using fluorescent-labeled primers for markers on chromosomes 1p, 17p, and 19q. RESULTS Of the 12 oligodendrogliomas, 6 (60%) of 10 informative cases for 1p exhibited loss of heterozygosity (LOH). Six (50%) of 12 informative cases for 19q exhibited LOH. Each case also showed LOH at 1p. Three (25%) of 12 informative cases exhibited LOH at 17p for the dinucleotide repeat within the TP53 gene. In oligoastrocytomas, none of 4 informative cases showed LOH at 1p, 1 (25%) showed LOH at 19q, and 2 (50%) at 17p. One case also displayed microsatellite instability at 3 of 8 markers. In the 3 anaplastic oligodendrogliomas, 1 was not informative for 1p and none of the informative tumors exhibited LOH at 1p or 17p; 1 case (33%) exhibited LOH at 19q. Of the 14 informative anaplastic oligoastrocytomas, LOH was seen in 5 (36%) at both 1p and 19q and in 2 (14%) at 17p. Those with allelic loss at TP53 were astrocytoma predominant. No dysembryoplastic neuroepithelial tumors exhibited LOH at any marker on 1p, 17p, or 19q. CONCLUSIONS These findings suggest that routine screening for allelic losses, in samples intraoperatively determined to have an oligodendroglial component, will reveal prognostically or therapeutically relevant information in the majority of cases.
Collapse
Affiliation(s)
- Mahlon D Johnson
- Department of Pathology, Vanderbilt Medical School, Nashville, Tenn 37232, USA.
| | | | | | | | | |
Collapse
|
46
|
Hirose Y, Katayama M, Stokoe D, Haas-Kogan DA, Berger MS, Pieper RO. The p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents. Mol Cell Biol 2003; 23:8306-15. [PMID: 14585987 PMCID: PMC262371 DOI: 10.1128/mcb.23.22.8306-8315.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although human cells exposed to DNA-methylating agents undergo mismatch repair (MMR)-dependent G(2) arrest, the basis for the linkage between MMR and the G(2) checkpoint is unclear. We noted that mitogen-activated protein kinase p38alpha was activated in MMR-proficient human glioma cells exposed to the chemotherapeutic methylating agent temozolomide (TMZ) but not in paired cells made MMR deficient by expression of a short inhibitory RNA (siRNA) targeted to the MMR protein Mlh1. Furthermore, activation of p38alpha in MMR-proficient cells was associated with nuclear inactivation of the cell cycle regulator Cdc25C phosphatase and its downstream target Cdc2 and with activation of the G(2) checkpoint, actions which were suppressed by the p38alpha/beta inhibitors SB203580 and SB202590 or by expression of a p38alpha siRNA. Finally, pharmacologic or genetic inhibition of p38alpha increased the sensitivity of MMR-proficient cells to the cytotoxic actions of TMZ by increasing the percentage of cells that underwent mitotic catastrophe as a consequence of G(2) checkpoint bypass. These results suggest that p38alpha links DNA MMR to the G(2) checkpoint and to resistance to chemotherapeutic DNA-methylating agents. The p38 pathway may therefore represent a new target for the development of agents to sensitize tumor cells to chemotherapeutic methylating agents.
Collapse
Affiliation(s)
- Yuichi Hirose
- UCSF Cancer Center, Department of Neurological Surgery, University of California-San Francisco, 2340 Sutter Street, San Francisco, CA 94115-0875, USA
| | | | | | | | | | | |
Collapse
|
47
|
Scarisbrick JJ, Mitchell TJ, Calonje E, Orchard G, Russell-Jones R, Whittaker SJ. Microsatellite Instability Is Associated with Hypermethylation of the hMLH1 Gene and Reduced Gene Expression in Mycosis Fungoides. J Invest Dermatol 2003; 121:894-901. [PMID: 14632210 DOI: 10.1046/j.1523-1747.2003.12496.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fifty-one mycosis fungoides samples were analyzed for microsatellite instability (MSI) using the panel of markers recommended for hereditary nonpolyposis colorectal cancer kindred and a panel we designed for cutaneous T cell lymphoma in order to compare detection rates and determine if MSI is a genome-wide phenomenon. Samples demonstrating MSI were analyzed for abnormalities of the hMLH1 gene including loss of heterozygosity, mutations, and promoter hypermethylation. MSI was detected in 16% using the hereditary nonpolyposis colorectal cancer panel and 22% with the cutaneous T cell lymphoma panel. Overall, 27% demonstrated MSI and 73% had a stable phenotype. hMLH1 gene studies did not detect loss of heterozygosity or reveal any mutations. Promoter hypermethylation was detected in nine of 14 patients with MSI, however (64%). In addition hMLH1 and hMSH2 protein expression was studied using immunohistochemical techniques. Five of nine patients with MSI and hMLH1 promoter methylation showed abnormal hMLH1 protein expression with normal hMSH2 gene expression. All other patients tested demonstrated normal hMLH1 and hMSH2 protein expression. MSI was found to be more prevalent in tumor stage mycosis fungoides (47%) than early stage disease (20%) and was associated with an older age of onset of mycosis fungoides. MSI may be a consequence of hMLH1 promoter hypermethylation in mycosis fungoides patients and may prevent transcription in a subset of patients. This suggests that the development of a mutator phenotype may contribute to disease progression in mycosis fungoides.
Collapse
Affiliation(s)
- Julia J Scarisbrick
- Skin Tumour Unit, St John's Institute Dermatology, St Thomas' Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Deng Y, Yao L, Chau L, Ng SSM, Peng Y, Liu X, Au WS, Wang J, Li F, Ji S, Han H, Nie X, Li Q, Kung HF, Leung SY, Lin MCM. N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. Int J Cancer 2003; 106:342-7. [PMID: 12845671 DOI: 10.1002/ijc.11228] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The most severe form of brain glioma, glioblastoma (GBM), is highly malignant and usually resistant to chemotherapy. Therefore, discovery of new targets for gene therapy is important. Using subtraction cloning, we identified the human N-Myc downstream-regulated gene 2 (hNDRG2), located at chromosome 14q11.2, as a gene that is significantly suppressed in GBM tissues. Semiquantitative RT-PCR showed that the hNDRG2 gene transcript is expressed in normal brain tissue and low-grade gliomas but is present at low levels in 15 of 27 (56%) human GBM tissues and all of the 6 human glioblastoma cell lines examined. Furthermore, transfection of human glioblastoma U373 and U138 cells with a cDNA encoding hNDRG2 markedly reduced the cell proliferation. Our findings provide the first evidence to suggest that hNDRG2 may play a role in glioblastoma carcinogenesis.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Northern
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- Cell Division
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA, Complementary/metabolism
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- In Situ Hybridization
- Molecular Sequence Data
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Proteins/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Transfection
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Yanchun Deng
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stark AM, Witzel P, Strege RJ, Hugo HH, Mehdorn HM. p53, mdm2, EGFR, and msh2 expression in paired initial and recurrent glioblastoma multiforme. J Neurol Neurosurg Psychiatry 2003; 74:779-83. [PMID: 12754350 PMCID: PMC1738476 DOI: 10.1136/jnnp.74.6.779] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The clinical course of glioblastoma multiforme is characterised by invasive growth and regular recurrence. Many genetic alteration have been identified in the genesis of the disease. However, information about immunohistochemical expression in recurrent lesions is sparse. OBJECTIVES To determine (1) whether the p53/mdm2/EGFR/msh2 expression pattern differs in initial v recurrent glioblastoma multiforme; (2) whether a possible change in expression correlates with prognostic variables (progression-free survival time, total survival time); and (3) whether chemotherapy in addition to surgery and radiotherapy influences the p53/mdm2/EGFR/msh2 expression profile. METHODS 27 patients were studied. They met the following criteria: histologically confirmed diagnosis of glioblastoma multiforme (WHO IV); total tumour resection at initial craniotomy; at least one re-craniotomy for glioblastoma multiforme recurrence; age 21 years or older. All underwent radiotherapy of at least 54 Gy, and 17 received additional chemotherapy. Immunohistochemical staining of initial tumours and recurrences was done with the following monoclonal antibodies: anti-p53 (DO-1), anti-mdm2 (IF-2), anti-EGFR (H11), and anti-msh2 (AB-1). RESULTS In comparison with the initial tumour, recurrent lesions were characterised by reduced expression of p53 (p < 0.0001) and msh2 (p = 0.0012), while the numbers of mdm2 (p = 0.02), EGFR (p < 0.0001), and msh2 positive specimens (p < 0.0001) were reduced. Chemotherapy was associated with reduced msh2 expression (p < 0.0001). Immunohistochemical variables were not associated with patient survival. CONCLUSIONS There are significant differences in the p53/mdm2/EGFR/msh2 expression patterns in initial v recurrent glioblastoma multiforme. There may be interactions between chemotherapy and changes in the msh2 expression.
Collapse
Affiliation(s)
- A M Stark
- Department of Neurosurgery, University of Kiel Medical Centre, Kiel, Germany.
| | | | | | | | | |
Collapse
|
50
|
Hirose Y, Kreklau EL, Erickson LC, Berger MS, Pieper RO. Delayed repletion of O6-methylguanine-DNA methyltransferase resulting in failure to protect the human glioblastoma cell line SF767 from temozolomide-induced cytotoxicity. J Neurosurg 2003; 98:591-8. [PMID: 12650433 DOI: 10.3171/jns.2003.98.3.0591] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Temozolomide (TMZ)-induced O6-methylguanine (MG) DNA lesions, if not removed by MG-DNA methyltransferase (MGMT), mispair with thymine, trigger rounds of futile mismatch repair (MMR), and in glioma cells lead to prolonged G2-M arrest and ultimately cell death. Depletion of MGMT by O6-benzylguanine (BG) sensitizes tumor cells to TMZ, and this combination is currently used in clinical trials. The use of the TMZ+BG combination in gliomas, however, is complicated by the prolonged TMZ-induced G2-M arrest, which may delay activation of poorly defined cell death pathways and allow for MGMT repletion and reversal of toxicity. METHODS To address these issues, the actions of TMZ were monitored in DNA MMR-proficient SF767 glioma cells depleted of MGMT by BG, and in cells in which BG was removed at various times after TMZ exposure. In MGMT-depleted cells, TMZ exposure led to DNA single-strand breaks and phosphorylation of cdc2, followed by G2-M arrest, induction of p53/p21, and DNA double-strand breaks. Although DNA single-strand breaks, phosphorylation of cdc2, and G2-M arrest could be reversed by repletion of MGMT up to 5 days after TMZ exposure, TMZ-induced cytotoxicity could only be prevented if MGMT was replenished within 24 hours of the onset of G2-M arrest, and before the creation of DNA double-strand breaks. CONCLUSIONS These results indicate that although SF767 glioma cells undergo a prolonged G2-M arrest in response to TMZ, their ability to escape TMZ-induced cytotoxicity by MGMT repletion is limited to an approximately 24-hour period after the onset of G2-M arrest.
Collapse
Affiliation(s)
- Yuichi Hirose
- Brain Tumor Research Center, Department of Neurological Surgery, and the University of California at San Francisco Cancer Center, University of California at San Francisco, California 94115, USA
| | | | | | | | | |
Collapse
|