1
|
Hamrangsekachaee M, Wen K, Bencherif SA, Ebong EE. Atherosclerosis and endothelial mechanotransduction: current knowledge and models for future research. Am J Physiol Cell Physiol 2023; 324:C488-C504. [PMID: 36440856 PMCID: PMC10069965 DOI: 10.1152/ajpcell.00449.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Laboratoire de BioMécanique et BioIngénierie, UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne, Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eno E Ebong
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Neuroscience Department, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
2
|
An agent-based model of vibration-induced intimal hyperplasia. Biomech Model Mechanobiol 2022; 21:1457-1481. [DOI: 10.1007/s10237-022-01601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
|
3
|
A Multiscale Approach for Predicting Certain Effects of Hand-Transmitted Vibration on Finger Arteries. VIBRATION 2022. [DOI: 10.3390/vibration5020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Prolonged exposure to strong hand-arm vibrations can lead to vascular disorders such as Vibration White Finger (VWF). We modeled the onset of this peripheral vascular disease in two steps. The first consists in assessing the reduction in shearing forces exerted by the blood on the walls of the arteries (Wall Shear Stress—WSS) during exposure to vibrations. An acute but repeated reduction in WSS can lead to arterial stenosis characteristic of VWF. The second step is devoted to using a numerical mechano-biological model to predict this stenosis as a function of WSS. WSS is reduced by a factor of 3 during exposure to vibration of 40 m·s−2. This reduction is independent of the frequency of excitation between 31 Hz and 400 Hz. WSS decreases logarithmically when the amplitude of the vibration increases. The mechano-biological model simulated arterial stenosis of 30% for an employee exposed for 4 h a day for 10 years. This model also highlighted the chronic accumulation of matrix metalloproteinase 2. By considering daily exposure and the vibratory level, we can calculate the degree of stenosis, thus that of the disease for chronic exposure to vibrations.
Collapse
|
4
|
Kang H, Yang J, Zhang W, Lu J, Ma X, Sun A, Deng X. Effect of endothelial glycocalyx on water and LDL transport through the rat abdominal aorta. Am J Physiol Heart Circ Physiol 2021; 320:H1724-H1737. [PMID: 33710913 DOI: 10.1152/ajpheart.00861.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
The surface of vascular endothelial cells (ECs) is covered by a protective negatively charged layer known as the endothelial glycocalyx. Herein, we hypothesized its transport barrier and mechanosensory role in transmural water flux and low-density lipoprotein (LDL) transport in an isolated rat abdominal aorta perfused under 85 mmHg and 20 dyn/cm2 ex vivo. The endothelial glycocalyx was digested by hyaluronidase (HAase) from bovine tests. Water infiltration velocity (Vw) was measured by a graduated pipette. LDL coverage and mean maximum infiltration distance (MMID) in the vessel wall were quantified by confocal laser scanning microscopy. EC apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) technique, and leaky junction rates were evaluated by electron microscopy. The results showed that a 42% degradation of the endothelial glycocalyx by HAase treatment increased Vw, LDL coverage, and MMID. Shear stress increased Vw, which cannot be inhibited by HAase treatment. Four hour-shear application increased about fourfolds of LDL coverage, whereas exerted no significant effects on its MMID, EC apoptosis, and the leaky junctions. On the contrary, 24-h shear exposure has no significant effects on LDL coverage, whereas increased 2.74-folds of MMID and about 53% of EC apoptotic rates that could be inhibited by HAase treatment. These results suggest endothelial glycocalyx acts as a transport barrier by decreasing water and LDL transport, as well as a mechanosensor of shear to regulate EC apoptosis, thus affecting leaky junctions and regulating LDL transport into the vessel wall.NEW & NOTEWORTHY A 42% degradation of the endothelial glycocalyx by hyaluronidase of the isolated rat abdominal aorta facilitated water and LDL transport across the vessel wall, suggesting endothelial glycocalyx as a transport barrier. A 24-h shear exposure increased LDL mean maximum infiltration distance, and enhanced EC apoptosis, which could be both inhibited by hyaluronidase treatment, suggesting endothelial glycocalyx may also act as a mechanosensor of shear to regulate EC apoptosis, thus affecting leaky junctions and regulating LDL transport.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiali Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weichen Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jinyan Lu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xuejiao Ma
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
5
|
Ai L, Rouhanizadeh M, Wu JC, Takabe W, Yu H, Alavi M, Li R, Chu Y, Miller J, Heistad DD, Hsiai TK. Shear stress influences spatial variations in vascular Mn-SOD expression: implication for LDL nitration. Am J Physiol Cell Physiol 2008; 294:C1576-85. [PMID: 18434620 PMCID: PMC3008554 DOI: 10.1152/ajpcell.00518.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluid shear stress modulates vascular production of endothelial superoxide anion (O2*-) and nitric oxide (*NO). Whether the characteristics of shear stress influence the spatial variations in mitochondrial manganese superoxide dismutase (Mn-SOD) expression in vasculatures is not well defined. We constructed a three-dimensional computational fluid dynamics model simulating spatial variations in shear stress at the arterial bifurcation. In parallel, explants of arterial bifurcations were sectioned from the human left main coronary bifurcation and right coronary arteries for immunohistolocalization of Mn-SOD expression. We demonstrated that Mn-SOD staining was prominent in the pulsatile shear stress (PSS)-exposed and atheroprotective regions, but it was nearly absent in the oscillatory shear stress (OSS)-exposed regions and lateral wall of arterial bifurcation. In cultured bovine aortic endothelial cells, PSS at mean shear stress (tau ave) of 23 dyn/cm2 upregulated Mn-SOD mRNA expression at a higher level than did OSS at tau ave = 0.02 dyn/cm2 +/- 3.0 dyn.cm(-2).s(-1) and at 1 Hz (PSS by 11.3 +/- 0.4-fold vs. OSS by 5.0 +/- 0.5-fold vs. static condition; P < 0.05, n = 4). By liquid chromatography and tandem mass spectrometry, it was found that PSS decreased the extent of low-density lipoprotein (LDL) nitration, whereas OSS increased nitration (P < 0.05, n = 4). In the presence of LDL, treatment with Mn-SOD small interfering RNA increased intracellular nitrotyrosine level (P < 0.5, n = 4), a fingerprint for nitrotyrosine formation. Our findings indicate that shear stress in the atheroprone versus atheroprotective regions regulates spatial variations in mitochondrial Mn-SOD expression with an implication for modulating LDL nitration.
Collapse
Affiliation(s)
- Lisong Ai
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ferrara DE, Weiss D, Carnell PH, Vito RP, Vega D, Gao X, Nie S, Taylor WR. Quantitative 3D fluorescence technique for the analysis of en face preparations of arterial walls using quantum dot nanocrystals and two-photon excitation laser scanning microscopy. Am J Physiol Regul Integr Comp Physiol 2005; 290:R114-23. [PMID: 16223849 DOI: 10.1152/ajpregu.00449.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditional imaging with one-photon confocal microscopy and organic fluorophores poses several challenges for the visualization of vascular tissue, including autofluorescence, fluorophore crosstalk, and photobleaching. We studied human coronary arteries (HCAs) and mouse aortas with a modified immunohistochemical (IHC) "en face" method using quantum dot (Qdot) bioconjugates and two-photon excitation laser scanning microscopy (TPELSM). We demonstrated the feasibility of multilabeling intimal structures by exciting multicolored Qdots with only one laser wavelength (750 nm). Detailed cell structures, such as the granular appearance of von Willebrand factor (VWF) and the subcellular distribution of endothelial nitric oxide synthase, were visualized using green dots (525 nm), even when the emission maximum of these Qdots overlapped that of tissue autofluorescence (510-520 nm). In addition, sensitive fluorescence quantification of vascular cell adhesion molecule 1 expression at areas of varying hemodynamics (intercostal branches vs. nonbranching areas) was performed in normal C57Bl/6 mice. Finally, we took advantage of the photostability of Qdots and the inherent three-dimensional (3D) resolution of TPELSM to obtain large z-stack series without photobleaching. This innovative en face method allowed simple multicolor profiling, highly sensitive fluorescence quantitation, and 3D visualization of the vascular endothelium with excellent spatial resolution. This is a promising technique to define the spatial and temporal interactions of endothelial inflammatory markers and quantify the effects of different interventions on the endothelium.
Collapse
Affiliation(s)
- Dardo E Ferrara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Baskurt OK, Yalcin O, Ozdem S, Armstrong JK, Meiselman HJ. Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation. Am J Physiol Heart Circ Physiol 2003; 286:H222-9. [PMID: 14512280 DOI: 10.1152/ajpheart.00532.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of enhanced red blood cell (RBC) aggregation on nitric oxide (NO)-dependent vascular control mechanisms have been investigated in a rat exchange transfusion model. RBC aggregation for cells in native plasma was increased via a novel method using RBCs covalently coated with a 13-kDa poloxamer copolymer (Pluronic F-98); control experiments used RBCs coated with a nonaggregating 8.4-kDa poloxamer (Pluronic F-68). Rats exchange transfused with aggregating RBC suspensions demonstrated significantly enhanced RBC aggregation throughout the 5-day follow-up period, with mean arterial blood pressure increasing gradually over this period. Arterial segments ( approximately 300 microm in diameter) were isolated from gracilis muscle on the fifth day and mounted between two glass micropipettes in a special chamber equipped with pressure servo-control system. Dose-dependent dilation by ACh and flow-mediated dilation of arterial segments pressurized to 30 mmHg and preconstricted to 45-55% of the original diameter by phenylephrine were significantly blunted in rats with enhanced RBC aggregation. Both responses were totally abolished by nonspecific NO synthase (NOS) inhibitor (Nomega-nitro-l-arginine methyl ester) treatment of arterial segments, indicating that the responses were NO related. Additionally, expression of endothelial NOS protein was found to be decreased in muscle samples obtained from rats exchanged with aggregating cell suspensions. These results imply that enhanced RBC aggregation results in suppressed expression of NO synthesizing mechanisms, thereby leading to altered vasomotor tonus; the mechanisms involved most likely relate to decreased wall shear stresses due to decreased blood flow and/or increased axial accumulation of RBCs.
Collapse
Affiliation(s)
- Oguz K Baskurt
- Dept. of Physiology, Akdeniz Univ. Faculty of Medicine, Kampus, Antalya, Turkey 07070.
| | | | | | | | | |
Collapse
|
8
|
Liu SQ, Zhong L, Goldman J. Control of the shape of a thrombus-neointima-like structure by blood shear stress. J Biomech Eng 2002; 124:30-6. [PMID: 11871602 DOI: 10.1115/1.1428744] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fluid mechanical factors are thought to influence vascular morphogenesis. Here we show how blood shear stress regulates the shape of a thrombus-neointima-like tissue on a polymer micro-cylinder implanted in the center of the rat vena cava with the micro-cylinder perpendicular to blood flow. In this model, the micro-cylinder is exposed to a laminarflow with a known shear stress field in the leading region and a vortexflow in the trailing region. At 1, 5, 10, 20, and 30 days after implantation, it was found that the micro-cylinder was encapsulated by a thrombus-neointima-like tissue with a streamlined body profile. The highest growth rate of the thrombus-neointima-like tissue was found along the trailing and leading stagnation edges of the micro-cylinder. Blood shear stress in the laminar flow region was inversely correlated with the rate of thrombus formation and cell proliferation, and the percentage of smooth muscle a actin-positive cells. These biological changes were also found in the trailing vortex flow region, which was associated with lowered shear stress. These results suggest that blood shear stress regulates the rate of thrombus and neointimal formation and, thus, influences the shape of the thrombus-neointima-like structure in the present model.
Collapse
Affiliation(s)
- S Q Liu
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208-3107, USA
| | | | | |
Collapse
|
9
|
Liu SQ, Moore MM, Yap C. Prevention of mechanical stretch-induced endothelial and smooth muscle cell injury in experimental vein grafts. J Biomech Eng 2000; 122:31-8. [PMID: 10790827 DOI: 10.1115/1.429625] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vein grafts are subject to increased tensile stress due to exposure to arterial blood pressure, which has been hypothesized to induce endothelial cell (EC) and smooth muscle cell (SMC) injury. This study was designed to verify this hypothesis and to develop a tissue engineering approach that can be used to prevent these pathological events. Two experimental models were created in rats to achieve these goals: (1) a nonengineered vein graft with increased tensile stress, which was created by grafting a jugular vein into the abdominal aorta using a conventional end-to-end anastomotic technique; and (2) an engineered vein graft with reduced tensile stress, which was created by restricting a vein graft into a cylindrical sheath constructed using a polytetrafluoroethylene membrane. The integrity of ECs in these models was examined by using a silver nitrate staining method, and the integrity of SMCs was assessed by using a fluorescein phalloidin-labeling technique. It was found that nonengineered vein grafts were associated with early EC denudation with a change in EC coverage from 100 percent in normal jugular veins to 36 +/- 10, 28 +/- 12, 18 +/- 9, 44 +/- 15, 80 +/- 13, and 97 +/- 6 percent at 1 and 6 hours and 1, 5, 10, and 30 days, respectively. Similarly, rapid SMC actin filament degradation was found during the early period with a change in SMC coverage from approximately 94 percent in normal jugular veins to 80 +/- 10, 41 +/- 17, 25 +/- 9, 51 +/- 15, 79 +/- 15, 98 +/- 2 percent at 1 and 6 hours and 1, 5, 10, and 30 days, respectively, in nonengineered vein grafts. In engineered vein grafts with reduced tensile stress, EC denudation and SMC actin filament degradation were prevented significantly. These results suggested that mechanical stretch due to increased tensile stress contributed to EC and SMC injury in experimental vein grafts, and these pathological events could be partially prevented when tensile stress was reduced by using a biomechanical engineering approach.
Collapse
Affiliation(s)
- S Q Liu
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208-3107, USA
| | | | | |
Collapse
|
10
|
Taylor WR. Hypertensive vascular disease and inflammation: mechanical and humoral mechanisms. Curr Hypertens Rep 1999; 1:96-101. [PMID: 10981048 DOI: 10.1007/s11906-999-0079-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Clinical hypertensive vascular disease is the result of complex alterations in the biology of the cellular components of the arterial wall. In this review, the hypothesis will be put forth that elevated blood pressure induces an inflammatory state in the arterial wall through both humoral and mechanical signaling pathways. The generation of reactive oxygen species and subsequent upregulation of redox-sensitive proinflammatory gene products are common endpoints of these pathways. Subsequent adaptive and maladaptive responses of the wall occur as a result of the integration of the humoral and mechanical stimuli.
Collapse
Affiliation(s)
- W R Taylor
- Division of Cardiology, Department of Medicine, Atlanta VA Medical Center and Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|