1
|
Das J, Mishra HN. Electrochemical biosensor for monitoring fish spoilage based on nanocellulose as enzyme immobilization matrix. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Wang X, Wang Y, Guo C, Zhang X, Wang Y, Lv L, Wang X, Wei M. A pattern-free paper enzyme biosensor for one-step detection of fish freshness indicator hypoxanthine with a microfluidic aggregation effect. Food Chem 2023; 405:134811. [DOI: 10.1016/j.foodchem.2022.134811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
|
3
|
Mustafa F, Andreescu S. Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish. ACS Sens 2020; 5:4092-4100. [PMID: 33321038 DOI: 10.1021/acssensors.0c02350] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Food freshness monitoring, which can reflect the quality of the product at the time of use, remains a great challenge for consumers and the food industry. Herein, we report the development of a cost-effective enzyme-based paper biosensor, which can monitor fish freshness and predict spoilage. The biosensor measures the release of hypoxanthine (HX), an indicator of meat and fish degradation, using the enzymatic conversion of HX by xanthine oxidase (XOD). We demonstrate that the entrapment of XOD and an organic dye, nitro blue tetrazolium chloride (NBT), within a sol-gel biohybrid enables their stabilization on paper and promotes the enzymatic reaction with further retention of the reaction products within the cellulosic network . Linearity in the micromolar concentration range with a detection limit of 3.7 μM for HX is obtained. The biosensor has high selectivity toward HX and is manufactured in few steps from inexpensive widely available materials. The applicability of the biosensor is demonstrated by following fish degradation over time and measuring HX concentrations ranging from 117 (±9) to 198 (±5) μM within 24 h of degradation, at levels that are comparable with those measured by a commercial enzymatic kit for HX detection. As compared to the commercial kit, our biosensors are more cost-effective, do not require addition of exogenous reagents and are portable, having all of the reagents needed for analysis embedded within the sensing platform. This proof-of-concept work demonstrates that the paper-based HX biosensor has potential as a robust reagentless device for real-time monitoring of food freshness and for other applications in which HX plays an important role.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
4
|
Zhang L, Liu L, Xiao A, Huang S, Li D. Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractJute (Corchorus capsularis L.) is an annual herb of the bast fiber plant and has great potentials in food and medicinal usages because of its various bioactivities. In this study, ultrafiltration coupled with high-performance liquid chromatography-mass spectrometry was established for screening xanthine oxidase inhibitors from the jute leaves extract. Under the optimum screening conditions, three inhibitors were successfully screened and identified as chlorogenic acid, echinacoside, and isorhamnetin-rutinoside with UV and MS data. The fluorescent quenching analysis showed that three inhibitors quenched the fluorescence intensities of enzyme with different binding capacities. For further exploring the bioactivity of three inhibitors, the protective effects on hydrogen peroxide-induced oxidative stress was investigated using human normal liver cell (LO2), human gastric mucosal epithelial cell (GES-1), and human umbilical vein endothelial cell (HUVEC). As a result, they exhibited protective effects on three injured cells in dose-dependent manners without cytotoxicity. To evaluate the difference among different jute species obtained in our laboratories, the amounts of three compounds in ten samples were assessed and analyzed. The results showed that it could be divided into three groups. The jute leaves showed nutrient and medical potentials and deserved further research on pharmaceutical and biochemical utilization in future.
Collapse
Affiliation(s)
- Lang Zhang
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Liangliang Liu
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Aiping Xiao
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Siqi Huang
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Defang Li
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| |
Collapse
|
5
|
Untargeted foodomics strategy using high-resolution mass spectrometry reveals potential indicators for fish freshness. Anal Chim Acta 2020; 1127:98-105. [PMID: 32800143 DOI: 10.1016/j.aca.2020.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023]
Abstract
Fish among other food can easily become spoilage. However, the existing literature endeavouring into a holistic investigation of fish metabolome during storage is scarce. There is a need for a powerful tool for more in-depth determinations. The present study is leveraging high-resolution mass spectrometry (HRMS)-based untargeted foodomics in the exploration of potential indicators for fish freshness. Three batches of fish fillets were stored in the refrigerator (+4 °C) for 0, 24, 48, and 72 h. Features were detected via UPLC-Q-Orbitrap HRMS and hereby undergone selection, identification, and verification. Eight sensitive indicators with significant time-dependent responses were yielded. The loss of freshness in fish is manifested in the upregulation of uracil, hypoxanthine, and inosine (involved in nucleotide changes) and α-linolenic acid, docosahexaenoic acid, arachidonic acid, and linoleic acid (involved in lipid hydrolysis) as well as in the downregulation of decanoylcarnitine (involved in fatty acid metabolism). Our work provides a promising approach to assess the quality of fish during storage and gain deeper insights into the metabolic reaction.
Collapse
|
6
|
Erol E, Yildirim E, Cete S. Construction of biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole-paratoluenesulfonate film. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04715-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Enzyme-based ultrasensitive electrochemical biosensor using poly(l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: A meat freshness marker. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104000] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
A Simple and Cost-effective Microfluidic Paper-Based Biosensor Analytical Device and its Application for Hypoxanthine Detection in Meat Samples. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01626-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Zhang M, Zheng W, Liu Y, Huang P, Gong Z, Wei J, Gao Y, Zhou S, Li X, Chen X. A New Class of Blue‐LED‐Excitable NIR‐II Luminescent Nanoprobes Based on Lanthanide‐Doped CaS Nanoparticles. Angew Chem Int Ed Engl 2019; 58:9556-9560. [DOI: 10.1002/anie.201905040] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Meiran Zhang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry and Materials ScienceFujian Normal University Fuzhou Fujian 350007 China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry and Materials ScienceFujian Normal University Fuzhou Fujian 350007 China
| | - Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhongliang Gong
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jiaojiao Wei
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yu Gao
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Shanyong Zhou
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xingjun Li
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
10
|
A New Class of Blue‐LED‐Excitable NIR‐II Luminescent Nanoprobes Based on Lanthanide‐Doped CaS Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Amperometric biosensors based on carboxylated multiwalled carbon nanotubes-metal oxide nanoparticles-7,7,8,8-tetracyanoquinodimethane composite for the determination of xanthine. Talanta 2017; 167:286-295. [DOI: 10.1016/j.talanta.2017.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
|
12
|
Albelda JA, Uzunoglu A, Santos GNC, Stanciu LA. Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens Bioelectron 2017; 89:518-524. [DOI: 10.1016/j.bios.2016.03.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/17/2016] [Indexed: 11/29/2022]
|
13
|
Branched Platinum Nanostructures on Reduced Graphene: An excellent Transducer for Nonenzymatic Sensing of Hydrogen Peroxide and Biosensing of Xanthine. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Pundir CS, Devi R. Biosensing methods for xanthine determination: A review. Enzyme Microb Technol 2014; 57:55-62. [DOI: 10.1016/j.enzmictec.2013.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/03/2013] [Accepted: 12/07/2013] [Indexed: 01/03/2023]
|
15
|
BAş SALIHZEKI, GüLCE HANDAN, YILDIZ SALIH. Hypoxanthine Biosensor Based on Immobilization of Xanthine Oxidase on Modified Pt Electrode and Its Application for Fish Meat. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.854215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Devi R, Yadav S, Nehra R, Pundir CS. An amperometric hypoxanthine biosensor based on Au@FeNPs for determination of hypoxanthine in meat samples. Int J Biol Macromol 2013; 62:629-35. [PMID: 24140402 DOI: 10.1016/j.ijbiomac.2013.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
A xanthine oxidase (XOD) from buttermilk was immobilized covalently onto boronic acid functionalized gold coated iron nanoparticles (Au@FeNPs) electrodeposited on pencil graphite (PG) electrode, via the boroester linkages, between free hydroxyl groups of boronic acid, α-COOH and -NH2 groups of enzyme. The surface functionalization of Fe/Au nanoparticles with boronic acid (Au@FeNPs) on pencil graphite (PG) electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. The biosensor exhibited optimum response within 3s at pH 7.2 and 30 °C and linearity in the range, 0.05 μM to 150 μM for hypoxanthine with a detection limit of 0.05 μM (S/N=3). Apparent Michaelis Menten constant (Km(app)) for hypoxanthine was 40 μM and Imax 0.125 mA. The biosensor was employed to determine hypoxanthine in fish, chicken, pork, beef meat and lost 50% of its initial activity after its 200 uses over 100 days, when stored at 4 °C.
Collapse
Affiliation(s)
- Rooma Devi
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | | | | | | |
Collapse
|
17
|
Abstract
Electrically conducting polymers (ECPs) are finding applications in various fields of science owing to their fascinating characteristic properties such as binding molecules, tuning their properties, direct communication to produce a range of analytical signals and new analytical applications. Polyaniline (PANI) is one such ECP that has been extensively used and investigated over the last decade for direct electron transfer leading towards fabrication of mediator-less biosensors. In this review article, significant attention has been paid to the various polymerization techniques of polyaniline as a transducer material, and their use in enzymes/biomolecules immobilization methods to study their bio-catalytic properties as a biosensor for potential biomedical applications.
Collapse
|
18
|
Devi R, Yadav S, Nehra R, Yadav S, Pundir C. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2012.10.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Görgülü M, Çete S, Arslan H, Yaşar A. Preparing a new biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole-polyvinyl sulphonate film. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 41:327-31. [PMID: 23305069 DOI: 10.3109/21691401.2012.744993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, a new amperometric biosensor for the determination of hypoxanthine was developed. To this aim, polypyrrole-polyvinyl sulphonate films were prepared on the platinum electrode by the electropolymerization of pyrrole in the presence of polyvinyl sulphonate. Xanthine oxidase and uricase enzymes were immobilized in polypyrrole-polyvinyl sulphonate via the entrapment method. Optimum conditions of enzyme electrode were determined. Hypoxanthine detection is based on the oxidation of hydrogen peroxide at +400 mV produced by the enzymatic reaction on the enzyme electrode surface. The linear working range of biosensor for hypoxanthine was determined. The effects of pH and temperature on the response of the hypoxanthine biosensor were investigated. Optimum pH and temperature were measured as 8 and 30°C, respectively. Operational and storage stability of the biosensor were determined. After 20 assays, the biosensor sustained 74.5% of its initial performance. After 33 days, the biosensor lost 36% of its initial performance. The performance of the biosensor was tested in real samples.
Collapse
Affiliation(s)
- Mustafa Görgülü
- Department of Chemistry, Institute of Sciences, Gazi University , Ankara , Turkey
| | | | | | | |
Collapse
|
21
|
Torres AC, Ghica ME, Brett CMA. Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes. Anal Bioanal Chem 2012; 405:3813-22. [DOI: 10.1007/s00216-012-6631-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
|
22
|
Wang Y, Wang L, Tian T, Yao G, Hu X, Yang C, Xu Q. A highly sensitive and automated method for the determination of hypoxanthine based on lab-on-valve approach using Fe3O4/MWCNTs/β-CD modified electrode. Talanta 2012; 99:840-5. [DOI: 10.1016/j.talanta.2012.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
23
|
Lawal AT, Adeloju SB. Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: a review. Talanta 2012; 100:217-28. [PMID: 23141330 DOI: 10.1016/j.talanta.2012.07.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/28/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
Abstract
This review provides an update on the research conducted on the fabrication and utilization of hypoxanthine (Hx) biosensors published over the past four decades. In particular, the review focuses on progress made in the development and use of Hx biosensors for the assessment of fish and meat quality which has dominated research in this area. The various fish and meat freshness indexes that have been proposed over this period are highlighted. Furthermore, recent developments and future advances in the use of screen-printed electrodes and nanomaterials for achieving improved performances for the reliable determination of Hx in fish and meat are discussed.
Collapse
Affiliation(s)
- Abdulazeez T Lawal
- NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Vic. 3842, Australia
| | | |
Collapse
|
24
|
Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 2012; 30:489-511. [DOI: 10.1016/j.biotechadv.2011.09.003] [Citation(s) in RCA: 723] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/02/2011] [Accepted: 09/09/2011] [Indexed: 11/18/2022]
|
25
|
References. Anal Chem 2012. [DOI: 10.1201/b11478-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Devi R, Narang J, Yadav S, Pundir CS. Amperometric determination of xanthine in tea, coffee, and fish meat with graphite rod bound xanthine oxidase. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s1061934812030045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Dolmaci N, Çete S, Arslan F, Yaşar A. An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film. ACTA ACUST UNITED AC 2012; 40:275-9. [PMID: 22248304 DOI: 10.3109/10731199.2011.646410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A new amperometric biosensor was developed for determining hypoxanthine in fish meat. Xanthine oxidase with pyrrole and polyvinylsulphonate was immobilized on the surface of a platinum electrode by electropolymerization. The determination of xanthine-hypoxanthine was performed by means of oxidation of uric acid liberated during the enzyme reaction on the surface of the enzyme electrode at + 0.30V (SCE). The effects of pH, substrate concentration, and temperature on the response of the xanthine-hypoxanthine biosensor were investigated. The linear working range of the enzyme electrode was 1.0 × 10(-7) -1.0 × 10(-3) M of the hypoxanthine concentration, and the detection limit was 1.0 × 10(-7)M. The apparent K(m(app)) and I(max) of the immobilized xanthine oxidase were found to be 0.0154 mM and 1.203 μA/mM, respectively. The best pH and temperature value for xanthine oxidase were selected as 7.75 and 25°C, respectively. The sensor was used for the determination of hypoxhantine in fish meat. Results show that the fish degraded very rapidly after seven days and the hypoxanthine amount was found to increase over days of storage.
Collapse
|
28
|
Devi R, Yadav S, Pundir C. Au-colloids–polypyrrole nanocomposite film based xanthine biosensor. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Talik P, Krzek J, Ekiert RJ. Analytical Techniques Used for Determination of Methylxanthines and their Analogues—Recent Advances. SEPARATION AND PURIFICATION REVIEWS 2012. [DOI: 10.1080/15422119.2011.569047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
PUNDIR C, DEVI ROOMA, NARANG JAGRITI, SINGH SANDEEP, NEHRA JYOTI, CHAUDHRY SHWETA. FABRICATION OF AN AMPEROMETRIC XANTHINE BIOSENSOR BASED ON POLYVINYLCHLORIDE MEMBRANE. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00499.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Devi R, Yadav S, Pundir C. Electrochemical detection of xanthine in fish meat by xanthine oxidase immobilized on carboxylated multiwalled carbon nanotubes/polyaniline composite film. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Devi R, Thakur M, Pundir C. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens Bioelectron 2011; 26:3420-6. [DOI: 10.1016/j.bios.2011.01.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/11/2011] [Indexed: 11/15/2022]
|
33
|
|
34
|
Hernández-Cázares AS, Aristoy MC, Toldrá F. Hypoxanthine-based enzymatic sensor for determination of pork meat freshness. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.04.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Lawal A, Adeloju S. Comparison of polypyrrole-based xanthine oxidase amperometric and potentiometric biosensors for hypoxanthine. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Hernández-Cázares AS, Aristoy MC, Toldrá F. Nucleotides and their degradation products during processing of dry-cured ham, measured by HPLC and an enzyme sensor. Meat Sci 2010; 87:125-9. [PMID: 20965667 DOI: 10.1016/j.meatsci.2010.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 11/30/2022]
Abstract
The aim of this work was to study how nucleotide degradation during the processing of dry-cured ham is affected when using three types of salting (100% NaCl; 50% NaCl and 50% KCl; 55% NaCl, 25% KCl, 15% CaCl₂ and 5% MgCl₂). Divalent salts in the salting mixture depressed the breakdown rate from the beginning of the process (salting and post-salting) up to the ripening stage (7 months) when the inosine (Ino), hypoxanthine (Hx) and xanthine (X) concentrations matched for the three treatments. The evolution of Hx and Hx+X were analysed by HPLC and an enzyme sensor, respectively, during processing. Time and temperature conditions during the curing time did not affect Hx stability. The usefulness of the enzyme sensor was confirmed and it is a practical tool to determine Hx + X in dry-cured ham, as an index of minimum curing time. A good correlation between enzyme sensor and HPLC data was observed.
Collapse
Affiliation(s)
- Aleida S Hernández-Cázares
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | | | | |
Collapse
|
37
|
Teng Y, Chen C, Zhou C, Zhao H, Lan M. Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system. Sci China Chem 2010. [DOI: 10.1007/s11426-010-4038-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Mousty C. Biosensing applications of clay-modified electrodes: a review. Anal Bioanal Chem 2009; 396:315-25. [PMID: 19936720 DOI: 10.1007/s00216-009-3274-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 11/27/2022]
Abstract
Two-dimensional layered inorganic solids, such as cationic clays and layered double hydroxides (LDHs), also defined as anionic clays, have open structures which are favourable for interactions with enzymes and which intercalate redox mediators. This review aims to show the interest in clays and LDHs as suitable host matrices likely to immobilize enzymes onto electrode surfaces for biosensing applications. It is meant to provide an overview of the various types of electrochemical biosensors that have been developed with these 2D layered materials, along with significant advances over the last several years. The different biosensor configurations and their specific transduction procedures are discussed.
Collapse
Affiliation(s)
- Christine Mousty
- Laboratoire des Matériaux Inorganiques (LMI, UMR UBP-CNRS 6002), Université Blaise Pascal (Clermont-Ferrand), 24, Avenue des Landais, 63177, Aubière cedex, France.
| |
Collapse
|
39
|
Hason S, Stepankova S, Kourilova A, Vetterl V, Lata J, Fojta M, Jelen F. Simultaneous Electrochemical Monitoring of Metabolites Related to the Xanthine Oxidase Pathway Using a Grinded Carbon Electrode. Anal Chem 2009; 81:4302-7. [DOI: 10.1021/ac900201g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stanislav Hason
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Sona Stepankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Alena Kourilova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Vladimir Vetterl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jan Lata
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Frantisek Jelen
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
40
|
Electrochemical Investigation of Tryptophan at a Poly(p-aminobenzene sulfonic acid) Film Modified Glassy Carbon Electrode. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.5.928] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Li X, Xie Z, Min H, Xian Y, Jin L. Amperometric Biosensor for Hypoxanthine Based on Immobilized Xanthine Oxidase on Iron (III)Meso‐tetraphenylporphyrin Nanoparticles Modified Glassy Carbon Electrode. ANAL LETT 2008. [DOI: 10.1080/00032710701567055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Wu Y, Hu S. Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate. Anal Chim Acta 2007; 602:181-6. [DOI: 10.1016/j.aca.2007.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 07/18/2007] [Accepted: 09/04/2007] [Indexed: 11/24/2022]
|
43
|
Chapter 13 Application of electrochemical enzyme biosensors for food quality control. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0166-526x(06)49013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Zhao G, Qi Y, Tian Y. Simultaneous and Direct Determination of Tryptophan and Tyrosine at Boron-Doped Diamond Electrode. ELECTROANAL 2006. [DOI: 10.1002/elan.200503455] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
MASSA AGUEDAE, PALACIOS DIEGOL, PAREDI MARIAE, CRUPKIN MARCOS. POSTMORTEM CHANGES IN QUALITY INDICES OF ICE-STORED FLOUNDER (PARALICHTHYS PATAGONICUS). J Food Biochem 2005. [DOI: 10.1111/j.1745-4514.2005.00050.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Kotzian P, Brázdilová P, Kalcher K, Vytřas K. Determination of Hydrogen Peroxide, Glucose and Hypoxanthine using (Bio)Sensors Based on Ruthenium Dioxide‐Modified Screen‐Printed Electrodes. ANAL LETT 2005. [DOI: 10.1081/al-200057205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Angioi S, Gennaro M, Gianotti V, Marengo E, Robotti E. Organic Bases. FOOD SCIENCE AND TECHNOLOGY 2004. [DOI: 10.1201/b11081-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Wang L, Yuan Z. Direct Electrochemistry of Xanthine Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes. ANAL SCI 2004; 20:635-8. [PMID: 15116960 DOI: 10.2116/analsci.20.635] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The direct electrochemistry of xanthine oxidase (XOD) was accomplished at a gold electrode modified with single-wall carbon nanotubes (SWNTs). A pair of well-defined redox peaks was obtained for XOD with the reduction peak potential at -0.478 V and a peak potential separation of 28 mV at pH 7.0. Both FT-IR spectra and the dependence of the reduction peak current on the scan rate revealed that XOD adsorbed onto the SWNT surfaces. The redox wave corresponds to the redox center of the flavin adenine dinucleotide (FAD) of the XOD adsorbate. Compared to other types of carbonaceous electrode materials, the electron transfer rate of XOD redox reaction was greatly enhanced at the SWNT-modified electrode. The peak potential was shown to be pH dependent. Spectral methods verified that the attachment of XOD onto SWNTs does not perturb the XOD conformations drastically.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Applied Chemistry, Graduate School, The Chinese Academy of Science, Beijing, 100039, P R China
| | | |
Collapse
|
49
|
Oliveira-Brett AM, Silva LA, Farace G, Vadgama P, Brett CMA. Voltammetric and impedance studies of inosine-5'-monophosphate and hypoxanthine. Bioelectrochemistry 2003; 59:49-56. [PMID: 12699819 DOI: 10.1016/s1567-5394(02)00189-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidation mechanism and adsorption of inosine 5'-monophosphate and hypoxanthine were investigated in solutions of different pH using voltammetric and impedance methods at glassy carbon electrodes. For both compounds, the pH dependence from differential pulse voltammetry showed that the same number of electrons and protons are involved in the rate-determining step of the electrochemical reaction. In the case of hypoxanthine, it was also possible to study the effect of different concentrations. At high concentrations of hypoxanthine, two oxidation peaks were observed, the first due to hypoxanthine oxidation with formation of oligomers and the second due to hypoxanthine oligomer oxidation, both compounds adsorbing strongly. Impedance measurements corroborated the voltammetric results and enabled the study of the adsorption of hypoxanthine on glassy carbon.
Collapse
Affiliation(s)
- Ana Maria Oliveira-Brett
- Departamento de Química, Fac. Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
50
|
Sato N, Usui K, Okuma H. Development of a bienzyme reactor sensor system for the determination of ornithine. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00035-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|