1
|
Zhang D, Bai Y, Niu H, Chen L, Xiao J, Guo Q, Jia P. Enzyme Immobilization by Inkjet Printing on Reagentless Biosensors for Electrochemical Phosphate Detection. BIOSENSORS 2024; 14:168. [PMID: 38667161 PMCID: PMC11047959 DOI: 10.3390/bios14040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Enzyme-based biosensors commonly utilize the drop-casting method for their surface modification. However, the drawbacks of this technique, such as low reproducibility, coffee ring effects, and challenges in mass production, hinder its application. To overcome these limitations, we propose a novel surface functionalization strategy of enzyme crosslinking via inkjet printing for reagentless enzyme-based biosensors. This method includes printing three functional layers onto a screen-printed electrode: the enzyme layer, crosslinking layer, and protective layer. Nanomaterials and substrates are preloaded together during our inkjet printing. Inkjet-printed electrodes feature a uniform enzyme deposition, ensuring high reproducibility and superior electrochemical performance compared to traditional drop-casted ones. The resultant biosensors display high sensitivity, as well as a broad linear response in the physiological range of the serum phosphate. This enzyme crosslinking method has the potential to extend into various enzyme-based biosensors through altering functional layer components.
Collapse
Affiliation(s)
- Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Yang Bai
- Department of Biomedical Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Haoran Niu
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Lingyun Chen
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Junfeng Xiao
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Peipei Jia
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| |
Collapse
|
2
|
Kilic MS. A Novel Flow‐injection Rhodium Nanoparticles Modified Phosphate Biosensor and its Operation in Artificial Urine. ELECTROANAL 2021. [DOI: 10.1002/elan.202100154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Muhammet Samet Kilic
- Department of Biomedical Engineering Zonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| |
Collapse
|
3
|
Korkut S, Göl S, Kilic MS. Poly(pyrrole‐
co
‐pyrrole‐2‐carboxylic acid)/Pyruvate Oxidase Based Biosensor for Phosphate: Determination of the Potential, and Application in Streams. ELECTROANAL 2020. [DOI: 10.1002/elan.201900517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seyda Korkut
- Department of Environmental EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| | - Saliha Göl
- Department of Environmental EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| | - Muhammet Samet Kilic
- Department of Biomedical EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| |
Collapse
|
4
|
Javanbakht S, Shaabani A. Multicomponent Reactions-Based Modified/Functionalized Materials in the Biomedical Platforms. ACS APPLIED BIO MATERIALS 2019; 3:156-174. [DOI: 10.1021/acsabm.9b00799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| |
Collapse
|
5
|
ZnO nanorods array based field-effect transistor biosensor for phosphate detection. J Colloid Interface Sci 2017; 498:292-297. [PMID: 28342312 DOI: 10.1016/j.jcis.2017.03.069] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 11/20/2022]
Abstract
A promising field-effect transistor (FET) biosensor has been fabricated based on pyruvate oxidase (PyO) functionalized ZnO nanorods (ZnO NRs) array grown on seeded SiO2/Si substrate. The direct and vertically grown ZnO NRs on the seeded SiO2/Si substrate offers high surface area for enhanced PyO immobilization, which further helps to detect phosphate with higher specificity. Under optimum conditions, the fabricated FET biosensor provided a convenient method for phosphate detection with high sensitivity (80.57μAmM-1cm-2) in a wide-linear range (0.1µM-7.0mM). Additionally, it also showed very low effect of electroactive species, stability and good reproducibility. Encouraging results suggest that this approach presents a promising method to be used for field measurements to detect phosphate.
Collapse
|
6
|
Norouzi B, Malekan A, Moradian M. Nickel-Zeolite modified carbon paste electrode as electrochemical sensor for hydrogen peroxide. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516040108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Azizi SN, Ghasemi S, Gilani NS. Ag-supported nanozeolite L-modified electrode: a new high performance nonenzymatic hydrogen peroxide sensor. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1664-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Liu TC, Chuang MC, Chu CY, Huang WC, Lai HY, Wang CT, Chu WL, Chen SY, Chen YY. Implantable Graphene-based Neural Electrode Interfaces for Electrophysiology and Neurochemistry in In Vivo Hyperacute Stroke Model. ACS APPLIED MATERIALS & INTERFACES 2016; 8:187-196. [PMID: 26653098 DOI: 10.1021/acsami.5b08327] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Implantable microelectrode arrays have attracted considerable interest due to their high temporal and spatial resolution recording of neuronal activity in tissues. We herein presented an implantable multichannel neural probe with multiple real-time monitoring of neural-chemical and neural-electrical signals by a nonenzymatic neural-chemical interface, which was designed by creating the newly developed reduced graphene oxide-gold oxide (rGO/Au2O3) nanocomposite electrode. The modified electrode on the neural probe was prepared by a facile one-step cyclic voltammetry (CV) electrochemical method with simultaneous occurrence of gold oxidation and GOs reduction to induce the intimate attachment by electrostatic interaction using chloride ions (Cl(-)). The rGO/Au2O3-modified electrode at a low deposition scan rate of 10 mVs(-1) displayed significantly improved electrocatalytic activity due to large active areas and well-dispersive attached rGO sheets. The in vitro amperometric response to H2O2 demonstrated a fast response of less than 5 s and a very low detection limit of 0.63 μM. In in vivo hyperacute stroke model, the concentration of H2O2 was measured as 100.48 ± 4.52 μM for rGO/Au2O3 electrode within 1 h photothrombotic stroke, which was much higher than that (71.92 μM ± 2.52 μM) for noncoated electrode via in vitro calibration. Simultaneously, the somatosensory-evoked potentials (SSEPs) test provided reliable and precise validation for detecting functional changes of neuronal activities. This newly developed implantable probe with localized rGO/Au2O3 nanocomposite electrode can serve as a rapid and reliable sensing platform for practical H2O2 detection in the brain or for other neural-chemical molecules in vivo.
Collapse
Affiliation(s)
- Ta-Chung Liu
- Department of Materials Science and Engineering, National Chiao Tung University , No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 300, Republic of China
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University , No. 181, Sec. 3, Taichung Port Rd., Taichung, Taiwan 407, Republic of China
| | - Chao-Yi Chu
- Department of Materials Science and Engineering, National Chiao Tung University , No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 300, Republic of China
| | - Wei-Chen Huang
- Department of Materials Science and Engineering, Carnegie Mellon University , No.5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, Pennsylvania 15213, United States
| | - Hsin-Yi Lai
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University , No.866 Yuhangtang Rd., Hangzhou, Zhejiang Province 310058, China
| | - Chao-Ting Wang
- Department of Biomedical Engineering, National Yang Ming University , No.155, Sec. 2, Linong St., Taipei, Taiwan 112, Republic of China
| | - Wei-Lin Chu
- Department of Biomedical Engineering, University of Michigan , No.2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, United States
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao Tung University , No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 300, Republic of China
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University , No.155, Sec. 2, Linong St., Taipei, Taiwan 112, Republic of China
| |
Collapse
|
9
|
Recent advances in phosphate biosensors. Biotechnol Lett 2015; 37:1335-45. [DOI: 10.1007/s10529-015-1823-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
10
|
Ghaderi S, Mehrgardi MA. Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide. Bioelectrochemistry 2014; 98:64-9. [DOI: 10.1016/j.bioelechem.2014.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/08/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
11
|
Progress and recent advances in phosphate sensors: A review. Talanta 2013; 114:191-203. [DOI: 10.1016/j.talanta.2013.03.031] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/25/2022]
|
12
|
Bayram E, Akyilmaz E. A new pyruvate oxidase biosensor based on 3-mercaptopropionic acid/6-aminocaproic acid modified gold electrode. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:418-22. [DOI: 10.3109/21691401.2013.815626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Phosphate determination in seawater: toward an autonomous electrochemical method. Talanta 2011; 87:161-7. [PMID: 22099663 DOI: 10.1016/j.talanta.2011.09.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 11/21/2022]
Abstract
Initial steps to create an autonomous in situ electrochemical sensor for orthophosphate determination in seawater are presented. First, the optimal conditions to form the molybdophosphate complex in artificial seawater medium were determined by addition of sulphuric acid and sodium molybdate to the solution containing orthophosphate. Secondly, the anodic oxidation of molybdenum to form molybdate ions and protons was used to create the molybdophosphate complex without addition of any liquid reagents. The molybdophosphate complex is detectable by amperometry with an average precision of 2.2% for the concentration range found in the open ocean and the detection limit is 0.12 μM. Three solutions are proposed to address the silicate interferences issue and one of these methods is used for the natural samples collected in the coastal waters offshore Peru during the Pelagico 1011-12-BIC OLAYA cruise in November-December 2010. Results showed a good precision with an average of 2.5% and a reasonable deviation of the amperometric analysis as compared with colorimetric measurements (4.9%).
Collapse
|
14
|
Fabrication of a bilayer potentiometric phosphate biosensor by cross-link immobilization with bovine serum albumin and glutaraldehyde. Anal Chim Acta 2011; 691:89-94. [DOI: 10.1016/j.aca.2011.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 11/30/2022]
|
15
|
Li B, Nihira T, Nakai H, Nishimoto M, Kitaoka M. An Enzymatic Colorimetric Quantification of Orthophosphate. J Appl Glycosci (1999) 2011. [DOI: 10.5458/jag.jag.jag-2011_002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Hydrogen peroxide sensor based on Prussian blue electrodeposited on (3-mercaptopropyl)-trimethoxysilane polymer-modified gold electrode. Bioprocess Biosyst Eng 2010; 34:215-21. [DOI: 10.1007/s00449-010-0463-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|
17
|
|
18
|
Razmi H, Mohammad-Rezaei R, Heidari H. Self-Assembled Prussian Blue Nanoparticles Based Electrochemical Sensor for High Sensitive Determination of H2O2in Acidic Media. ELECTROANAL 2009. [DOI: 10.1002/elan.200904687] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Comparison of enzyme immobilisation methods for potentiometric phosphate biosensors. Biosens Bioelectron 2009; 25:406-10. [DOI: 10.1016/j.bios.2009.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/10/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
|
20
|
Gilbert L, Jenkins ATA, Browning S, Hart JP. Development of an amperometric assay for phosphate ions in urine based on a chemically modified screen-printed carbon electrode. Anal Biochem 2009; 393:242-7. [PMID: 19576165 DOI: 10.1016/j.ab.2009.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/23/2009] [Accepted: 06/29/2009] [Indexed: 11/27/2022]
Abstract
An amperometric assay for the determination of inorganic phosphate (Pi) in urine has been developed without the need for sample preparation. A screen-printed carbon electrode modified with the electrocatalyst cobalt phthalocyanine (CoPC-SPCE) and covered with a cellulose acetate membrane (CAM) serves as the sensor. The sensor detects hydrogen peroxide (H(2)O(2)), which is produced as a result of the oxidative decarboxylation of pyruvate, catalyzed by pyruvate oxidase (PyOd), in the presence of Pi, oxygen, and cofactors. Following optimization of solution conditions, and in the presence of a urine sample, a linear range was found to exist between the rate of current increase and phosphate concentration over the range of 2.27 x 10(-5) to 1.81 x 10(-4)M, and the limit of detection was found to be 4.27 x 10(-6)M. The assay was applied to the determination of phosphate ions in the urine of a normal subject, and the mean concentration in unspiked urine was found to be 3.40 x 10(-5)M with a coefficient of variation of 8.0% (n=5). The mean recovery of phosphate added to urine samples was 98.7% with a coefficient of variation of 5.5% (n=3). To the authors' knowledge, this is the first report of an amperometric assay for Pi that incorporates a CoPC-SPCE as the sensing device.
Collapse
Affiliation(s)
- L Gilbert
- Centre for Research in Analytical Materials and Sensor Science, University of the West of England, Bristol, UK
| | | | | | | |
Collapse
|
21
|
Amperometric determination of hydrogen peroxide on surface of a novel PbPCNF-modified carbon-ceramic electrode in acidic medium. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2008.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Camacho C, Matías J, Chico B, Cao R, Gómez L, Simpson B, Villalonga R. Amperometric Biosensor for Hydrogen Peroxide, Using Supramolecularly Immobilized Horseradish Peroxidase on the β-Cyclodextrin-Coated Gold Electrode. ELECTROANAL 2007. [DOI: 10.1002/elan.200703993] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Akyilmaz E, Yorganci E. Construction of an amperometric pyruvate oxidase enzyme electrode for determination of pyruvate and phosphate. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.06.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Camacho C, Matías JC, García D, Simpson BK, Villalonga R. Amperometric enzyme biosensor for hydrogen peroxide via Ugi multicomponent reaction. Electrochem commun 2007. [DOI: 10.1016/j.elecom.2007.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
|
26
|
Rahman MA, Park DS, Chang SC, McNeil CJ, Shim YB. The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations. Biosens Bioelectron 2006; 21:1116-24. [PMID: 15893466 DOI: 10.1016/j.bios.2005.04.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 11/23/2022]
Abstract
An enzymatic biosensor was fabricated by the covalent immobilization of pyruvate oxidase (PyO) onto the nano-particle comprised poly-5,2':5',2''-terthiophene-3'-carboxylic acid, poly-TTCA (nano-CP) layers on a glassy carbon electrode (GCE) for the amperometric detection of the phosphate ions. The direct electron transfer reaction of the immobilized PyO onto the nano-CP layers was investigated and the electron transfer rate constant was determined to be 0.65 s(-1). The electrochemically prepared nano-CP lowered the oxidation potential (+0.40 V versus Ag/AgCl) of an enzymatically generated H(2)O(2) by PyO in a phosphate solution. Experimental parameters affecting the sensitivity of the biosensors, such as amounts of the cofactors, the pH, the applied potential, and the temperature were optimized. A linear response for the detection of the phosphate ion was observed between 1.0 microM and 100 microM and the detection limit was determined to be about 0.3 microM. The response time of the biosensors was about 6s. The biosensor showed good selectivity towards other interfering anions. The long-term storage stability of the phosphate biosensor was studied and the sensor was applied in a human serum sample for the phosphate ions detection.
Collapse
Affiliation(s)
- Md Aminur Rahman
- Department of Chemistry and Center for Innovative Bio. Physio Sensor Technology, Pusan National University, Keumjeong-Ku, Busan 609-735, South Korea
| | | | | | | | | |
Collapse
|
27
|
Davis F, Higson SPJ. Structured thin films as functional components within biosensors. Biosens Bioelectron 2005; 21:1-20. [PMID: 15967347 DOI: 10.1016/j.bios.2004.10.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/04/2004] [Accepted: 10/05/2004] [Indexed: 12/15/2022]
Abstract
This review provides an introduction to the field of thin films formed by Langmuir-Blodgett or self-assembly techniques and discusses applications in the field of biosensors. The review commences with an overview of thin films and methods of construction. Methods covered will include Langmuir-Blodgett film formation, formation of self-assembled monolayers such as gold-thiol monolayers and the formation of multilayers by the self-assembly of polyelectrolytes. The structure and forces governing the formation of the materials will also be discussed. The next section focussed on methods for interrogating these films to determine their selectivity and activity. Interrogation methods to be covered will include electrochemical measurements, optical measurements, quartz crystal microbalance, surface plasmon resonance and other techniques. The final section is dedicated to the functionality of these films, incorporation of biomolecules within these films and their effect on film structure. Species for incorporation will include antibodies, enzymes, proteins and DNA. Discussions on the location, availability, activity and stability of the included species are included. The review finishes with a short consideration of future research possibilities and applications of these films.
Collapse
Affiliation(s)
- Frank Davis
- Institute of Bioscience and Technology, Cranfield University at Silsoe, Silsoe, Bedfordshire MK45 4DT, UK.
| | | |
Collapse
|
28
|
Sotiropoulou S, Chaniotakis NA. Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Sotiropoulou S, Vamvakaki V, Chaniotakis NA. Stabilization of enzymes in nanoporous materials for biosensor applications. Biosens Bioelectron 2005; 20:1674-9. [PMID: 15626627 DOI: 10.1016/j.bios.2004.07.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 07/20/2004] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
In this study we present the results obtained from efforts to stabilize the inherently unstable m-AChE in nanoporous materials, for the development of biosensors with increased operational stability. Based on existing theoretical models, the entrapment of proteins into relatively small rigid cages drastically increases the stability of these proteins, as this is manifested by their decreased tendency to unfold. The use of two different meso/nanomaterials for the immobilization of the m-AChE shows that there is both a decrease in the leaching of the protein from the biosensor membrane to the test solution, as well as a drastic increase in the operational stability of the resulting biosensor.
Collapse
Affiliation(s)
- Sofia Sotiropoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete, Knossou Avenue, 71 409 Iraklion, Crete, Greece
| | | | | |
Collapse
|
30
|
Chapter 10 Non-affinity sensing technology: the exploitation of biocatalytic events for environmental analysis. BIOSENSORS AND MODERN BIOSPECIFIC ANALYTICAL TECHNIQUES 2005. [DOI: 10.1016/s0166-526x(05)44010-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Mak WC, Chan C, Barford J, Renneberg R. Biosensor for rapid phosphate monitoring in a sequencing batch reactor (SBR) system. Biosens Bioelectron 2004; 19:233-7. [PMID: 14611759 DOI: 10.1016/s0956-5663(03)00209-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A thick-film phosphate biosensor based on hydrogel immobilized pyruvate oxidase (POD) has been developed for rapid phosphate process control monitoring in an experimental sequencing batch reactor (SBR) system. We have employed a phosphate biosensor in an off-line monitoring of phosphate concentrations in a bench scale SBR. Measurements with biosensor show a good correlation (r2=0.98) with those of commercial colorimetric phosphate testing kits. The signal response time was 1 min with a detection limit of 5 microM. The biosensor method showed a good operational stability, needed less experimental procedures and a small sample size (approximately 20 microl). This allows its practical application for rapid phosphate measurements to obtain real time process data in a SBR system.
Collapse
Affiliation(s)
- Wing Cheung Mak
- Sino-German Nano-Analytical Lab (SiGNAL), Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | |
Collapse
|
32
|
Quintana JC, Idrissi L, Palleschi G, Albertano P, Amine A, El Rhazi M, Moscone D. Investigation of amperometric detection of phosphate. Talanta 2004; 63:567-74. [DOI: 10.1016/j.talanta.2003.11.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 10/30/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
|
33
|
|
34
|
Dimakis VT, Gavalas VG, Chaniotakis NA. Polyelectrolyte-stabilized biosensors based on macroporous carbon electrode. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00377-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Ito HA, Oliveira MFD, Gomes Neto JA, Stradiotto NR. Eletrodo modificado em filme de paládio para a determinação voltamétrica de fosfito. ECLÉTICA QUÍMICA 2002. [DOI: 10.1590/s0100-46702002000200014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Os íons fosfito constituem um importante componente inorgânico como fonte de fósforo na fertilização de solos, apresentando incontáveis vantagens em relação ao fosfato. A determinação desse ânion em produtos fertilizantes é usualmente realizada empregando-se método clássico de análise como gravimetria, sob a forma de pirofosfato de magnésio ou pela formação de cloreto mercuroso. Entretanto, existem algumas desvantagens nesta metodologia, como a necessidade de um elevado tempo de digestão e a possível produção de resíduos tóxicos. Sendo assim, este trabalho teve como objetivo propor uma metodologia eletroquímica alternativa para a determinação de fosfito. A modificação eletroquímica na superfície de eletrodos de platina realizada por eletrodeposição de paládio apresentou efeito catalítico para a oxidação de íons fosfito a fosfato em meio de ácido sulfúrico 1,0 mol.L-1. Uma dependência linear em relação à concentração de fosfito foi obtida no intervalo de 5,0x10-6 a 5,0x10-4 mol.L-1 tendo uma sensibilidade amperométrica de 8,5x10(4) miA.mol-1.L e um limite de detecção de 3.67x10-6 mol.L-1.
Collapse
|
36
|
Situmorang M, Gooding J, Hibbert D, Barnett D. The Development of a Pyruvate Biosensor Using Electrodeposited Polytyramine. ELECTROANAL 2002. [DOI: 10.1002/1521-4109(200201)14:1<17::aid-elan17>3.0.co;2-o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|