1
|
Spitta LF, Diegeler S, Baumstark-Khan C, Hellweg CE. An in-vitro approach for water quality determination: activation of NF-κB as marker for cancer-related stress responses induced by anthropogenic pollutants of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3985-3995. [PMID: 27878482 DOI: 10.1007/s11356-016-7901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Epidemiological studies show that there is a link between urban water pollution and increase in human morbidity and mortality. With the increase in number of new substances arising from the chemical, pharmaceutical, and agricultural industries, there is an urgent need to develop biological test systems for fast evaluation of potential risks to humans and the environmental ecosystems. Here, a combined cellular reporter assay based on the cellular survival and the stress-induced activation of the survival-promoting factor nuclear factor κB (NF-κB) and its use for the detection of cytotoxicity and cancer-related stress responses is presented. A total of 14 chemicals that may be found in trace-amounts in ground water levels are applied and tested with the presented assay. The project is embedded within the joint research project TOX-BOX which aims to develop a harmonized testing strategy for risk management of anthropogenic trace substances in potable water. The assay identified carbendazim as a NF-κB-activating agent in mammalian cells.
Collapse
Affiliation(s)
- Luis F Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany.
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| | - Christine E Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| |
Collapse
|
2
|
Reporter Gene Assays in Ecotoxicology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 157:135-157. [PMID: 27928578 DOI: 10.1007/10_2016_47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The need for simple and rapid means for evaluating the potential toxic effects of environmental samples has prompted the development of reporter gene assays, based on tester cells (bioreporters) genetically engineered to report on sample toxicity by producing a readily quantifiable signal. Bacteria are especially suitable to serve as bioreporters owing to their fast responses, low cost, convenient preservation, ease of handling, and amenability to genetic manipulations. Various bacterial bioreporters have been introduced for general toxicity and genotoxicity assessment, and the monitoring of endocrine disrupting and dioxin-like compounds has been mostly covered by similarly engineered eukaryotic cells. Some reporter gene assays have been validated, standardized, and accredited, and many others are under constant development. Efforts are aimed at broadening detection spectra, lowering detection thresholds, and combining toxicity identification capabilities with characterization of the toxic effects. Taking advantage of bacterial robustness, attempts are also being made to incorporate bacterial bioreporters into field instrumentation for online continuous monitoring or on-site spot checks. However, key hurdles concerning test validation, cell preservation, and regulatory issues related to the use of genetically modified organisms still remain to be overcome.
Collapse
|
3
|
Lysosome based toxic detection in Saccharomyces cerevisiae using novel portable fluorometer. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
|
5
|
Microbial genotoxicity bioreporters based on sulA activation. Anal Bioanal Chem 2011; 400:3013-24. [PMID: 21533638 DOI: 10.1007/s00216-011-5007-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
A bacterial genotoxicity reporter strain was constructed in which the tightly controlled strong promoter of the Escherichia coli SOS response gene sulA was fused to the alkaline phosphatase-coding phoA reporter gene. The bioreporter responded in a dose-dependent manner to three model DNA-damaging agents-hydrogen peroxide, nalidixic acid (NA), and mitomycin C (MMC)-detected 30-60 min after exposure. Detection thresholds were 0.15 μM for MMC, 7.5 μM for nalidixic acid, and approximately 50 μM for hydrogen peroxide. A similar response to NA was observed when the bioreporter was integrated into a specially designed, portable electrochemical detection platform. Reporter sensitivity was further enhanced by single and double knockout mutations that enhanced cell membrane permeability (rfaE) and inhibited DNA damage repair mechanisms (umuD, uvrA). The rfaE mutants displayed a five- and tenfold increase in sensitivity to MMC and NA, respectively, while the uvrA mutation was advantageous in the detection of hydrogen peroxide. A similar sensitivity was displayed by the double rfaE/uvrA mutant when challenged with the pre-genotoxic agents 2-amino-3-methylimidazo[4,5-f]quinoline and 2-aminoanthracene following metabolic activation with an S9 mammalian liver fraction.
Collapse
|
6
|
Salunkhe SS, Raiker VA, Rewanwar S, Kotwal P, Kumar A, Padmanabhan S. Enhanced fluorescent properties of an OmpT site deleted mutant of green fluorescent protein. Microb Cell Fact 2010; 9:26. [PMID: 20429908 PMCID: PMC2868801 DOI: 10.1186/1475-2859-9-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30 degrees C as compared to 37 degrees C in E. coli K12 hosts. Since OmpT levels are higher at 37 degrees C than at 30 degrees C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold. RESULTS We describe the construction of two GFP variants with modified putative OmpT proteolytic sites by site directed mutagenesis (SDM). Such modified genes upon arabinose induction exhibited varied degrees of GFP fluorescence. While the mutation of K79G/R80A (SDM I) resulted in dramatic loss of fluorescence activity, the modification of K214A/R215A (SDM II) resulted in four fold enhanced fluorescence of GFP. CONCLUSIONS This is the first report on effect of OmpT protease site modification on GFP fluorescence. The wild type and the GFP variants showed similar growth profile in bioreactor studies with similar amounts of recombinant GFP expressed in the soluble fraction of the cell. Our observations on higher levels of fluorescence of SDM II GFP mutant over native GFPuv in an OmpT+ host like DH5alpha, JM109 and LE392 at 37 degrees C reiterates the role played by host OmpT in determining differences in fluorescent property of the expressed GFP. Both the WT GFP and the SDM II GFP plasmids in E. coli BL21 cells showed similar expression levels and similar GFP fluorescent activity at 37 degrees C. This result substantiates our hypothesis that OmpT protease could be a possible factor responsible for reducing the expression of GFP at 37 degrees C for WT GFP clone in K12 hosts like DH5alpha, JM109, LE 392 since the levels of GFP expression of SDM II clone in such cells at 37 degrees C is higher than that seen with WT GFP clone at the same temperature.
Collapse
|
7
|
Stojicic N, Baumstark-Khan C, Hellweg CE, Grotheer HH, Reitz G, Kolanus W, Hemmersbach R. Toxicity of ethylene combustion condensates is directly proportional to their carbon content. Toxicology 2010; 269:35-40. [DOI: 10.1016/j.tox.2010.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/03/2010] [Accepted: 01/05/2010] [Indexed: 01/08/2023]
|
8
|
Biran A, Yagur-Kroll S, Pedahzur R, Buchinger S, Reifferscheid G, Ben-Yoav H, Shacham-Diamand Y, Belkin S. Bacterial genotoxicity bioreporters. Microb Biotechnol 2009; 3:412-27. [PMID: 21255340 PMCID: PMC3815808 DOI: 10.1111/j.1751-7915.2009.00160.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ever since the introduction of the Salmonella typhimurium mammalian microsome mutagenicity assay (the ‘Ames test’) over three decades ago, there has been a constant development of additional genotoxicity assays based upon the use of genetically engineered microorganisms. Such assays rely either on reversion principles similar to those of the Ames test, or on promoter–reporter fusions that generate a quantifiable dose‐dependent signal in the presence of potential DNA damaging compounds and the induction of repair mechanisms; the latter group is the subject of the present review. Some of these assays were only briefly described in the scientific literature, whereas others have been developed all the way to commercial products. Out of these, only one, the umu‐test, has been fully validated and ISO‐ and OECD standardized. Here we review the main directions undertaken in the construction and testing of bacterial‐based genotoxicity bioassays, including the attempts to incorporate at least a partial metabolic activation capacity into the molecular design. We list the genetic modifications introduced into the tester strains, compare the performance of the different assays, and briefly describe the first attempts to incorporate such bacterial reporters into actual genotoxicity testing devices.
Collapse
Affiliation(s)
- Alva Biran
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Martineau R, Stout V, Towe B. Whole cell biosensing via recA::mCherry and LED-based flow-through fluorometry. Biosens Bioelectron 2009; 25:759-66. [DOI: 10.1016/j.bios.2009.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/14/2009] [Accepted: 08/15/2009] [Indexed: 10/20/2022]
|
10
|
Genetically Engineered Bacteria for Genotoxicity Assessment. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2009. [DOI: 10.1007/978-3-540-36253-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Baumstark-Khan C, Rabbow E, Rettberg P, Horneck G. The combined bacterial Lux-Fluoro test for the detection and quantification of genotoxic and cytotoxic agents in surface water: results from the "Technical Workshop on Genotoxicity Biosensing". AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 85:209-218. [PMID: 17936920 DOI: 10.1016/j.aquatox.2007.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/04/2007] [Accepted: 09/05/2007] [Indexed: 05/25/2023]
Abstract
The bioassay Lux-Fluoro test was developed for the rapid detection and quantification of environmental pollutants with genotoxic and/or cytotoxic potential. This bacterial test system uses two different reporter genes whose gene products and their reactions, respectively, can be measured easily and simultaneously by optical methods. Genotoxicity is measured by the increase of bioluminescence in genetically modified bacteria which carry a plasmid with a complete lux operon for the enzyme luciferase from the marine photobacterium P. leiognathi under the control of a DNA-damage dependent so-called SOS promoter. If the deoxyribonucleic acid in these bacteria is damaged by a genotoxic chemical, the SOS promoter is turned on and the lux operon is expressed. The newly synthesized luciferase reacts immediately with its substrate thereby producing bioluminescence in a damage-proportional manner. In the second part of the system, genetically modified bacteria carry the gene for the green fluorescent protein (gfp) from the jellyfish Aequora victoria downstream from a constitutively expressed promoter. These bacteria are fluorescent under common growth conditions. If their cellular metabolism is disturbed by the action of cytotoxic chemicals, the fluorescence decreases in a dose-proportional manner. The combined Lux-Fluoro test is shown to be well suited for the biological assessment of the geno- and cytotoxicity of a series of model agents and environmental samples at the Technical Workshop on Genotoxicity Biosensing (TECHNOTOX).
Collapse
Affiliation(s)
- Christa Baumstark-Khan
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany.
| | | | | | | |
Collapse
|
12
|
Jiang A, Wang H, Lee N, Yang G, Griffiths MW. Biological characteristics of luminescent Lactococcus lactis transformed with lux genes. Food Res Int 2006. [DOI: 10.1016/j.foodres.2005.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Rabbow E, Stojicic N, Walrafen D, Baumstark-Khan C, Rettberg P, Schulze-Varnholt D, Franz M, Reitz G. The SOS-LUX-TOXICITY-Test on the International Space Station. Res Microbiol 2005; 157:30-6. [PMID: 16431084 DOI: 10.1016/j.resmic.2005.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/16/2005] [Accepted: 08/17/2005] [Indexed: 11/15/2022]
Abstract
For the safety of astronauts and to ensure the stability and integrity of the genome of microorganisms and plants used in bioregenerative life support systems, it is important to improve our knowledge of the combined action of (space) radiation and microgravity. The SOS-LUX-TOXICITY test, as part of the TRIPLE-LUX project (accepted for flight at Biolab in Columbus on the International Space Station, (ISS)), will provide an estimation of the health risk resulting from exposure of astronauts to the radiation environment of space in microgravity. The project will: (i) increase our knowledge of biological/health threatening action of space radiation and enzymatic DNA repair; (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation; (iii) provide specified biosensors for spacecraft milieu examination; and (iv) provide experimental data on stability and integrity of bacterial DNA in spacecrafts. In the bacterial biosensor "SOS-LUX-Test" developed at DLR (patent), bacteria are transformed with the pBR322-derived plasmid pPLS-1 or the similar, advanced plasmid SWITCH, both carrying the promoterless lux operon of Photobacterium leiognathi as the reporter element controlled by a DNA damage-dependent SOS promoter as sensor element. A short description of the space experiment is given, and the current status of adaptation of the SOS-LUX-Test to the ISS, i.e. first results of sterilization, biocompatibility and functional tests performed with the already available hardware and bread board model of the automated space hardware under development, is described here.
Collapse
Affiliation(s)
- Elke Rabbow
- DLR, Institut für Luft- und Raumfahrtmedizin, Strahlenbiologie, 51117 Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Park KS, Baumstark-Khan C, Rettberg P, Horneck G, Rabbow E, Gu MB. Immobilization as a technical possibility for long-term storage of bacterial biosensors. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2005; 44:69-71. [PMID: 15791471 DOI: 10.1007/s00411-005-0271-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 12/20/2004] [Indexed: 05/24/2023]
Abstract
For applications in field experiments, the recombinant strain Salmonella typhimurium TA1535 was immobilized to permit its immediate utilization after long storage periods. Salmonella typhimurium TA1535 cells contain the plasmid that has an inducible SOS promoter fused to a promoterless luxCDABFE operon from Photobacterium leiognathi. The induction of bioluminescence occurs in the presence of the DNA-damaging agent mitomycin C which stimulates the bacterial SOS response. Early stationary phase cells were immobilized at a cell concentration of 10(10) CFU/ml in microtiter plates and stored up to 6 weeks at 4 degrees C in a sealed container. Even after 4 weeks of storage, the bioluminescence kinetics and yield in response to different concentrations of mitomycin C were not significantly different from those of freshly prepared samples.
Collapse
Affiliation(s)
- Kyeong Seo Park
- National Research Laboratory on Environmental Biotechnology, Gwangju Institute of Science and Technology, Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Baumstark-Khan C, Cioara K, Rettberg P, Horneck G. Determination of geno- and cytotoxicity of groundwater and sediments using the recombinant SWITCH test. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2005; 40:245-263. [PMID: 15717775 DOI: 10.1081/ese-200045529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The recombinant Salmonella typhimurium TA1535 strain carrying the SWITCH plasmid (combined construct of the SOS-Lux plasmid pPLS-1 and the LAC-Fluoro plasmid pGFPuv: pSWITCH) was treated with control substances for genotoxic (2-aminoanthracene) and cytotoxic (aureomycin) potency as well as with 18 environmental samples (groundwater, river water, sediments) provided at the SENSPOL Technical Meeting on Problems Related to Diffuse Pollution Sources (Characterization of Sediment, Dredged Material, and Groundwater) organized by the Federal Institute of Hydrology in Koblenz, Germany, during late October 2003. For metabolic activation the samples were treated with S9 mix (5% S9 fraction in cofactor mix, Aroclor 1254-induced rat liver microsomes, Moltox Inc., Mol, Belgium). Simultaneously determined cytotoxicity and genotoxicity data were derived through the Multilabel Counter 1420 Victor (PerkinElmer, Boston, MA, USA), by sequential measurement of luminescence, absorbance, and fluorescence. The newly designed SWITCH test, as it was applied at the Koblenz meeting, displays a comparable sensitivity for test samples with known cyto- and genotoxic potential. Groundwater samples from the wells at the former gas plant site Kiel Canal and the agricultural area at Niederwerth expressed neither genotoxic nor cytotoxic responses of the bacteria for both metabolic conditions (+/-S9). Spiked groundwater samples from the Niederwerth well BW1 and the Urmitz well U12 located on the river Rhine were identified to be positive in terms of genotoxicity for the direct and the metabolic approach. Samples from the lake Tiefer See in the city of Potsdam showed a reduction of GFPuv expression as an indication for cytotoxicity, while luminescence output of incubated bacteria remained unaffected. This reflects the well-known presence of contaminations (especially cyanides) in the lake sediment as well as in the acetonic extract. The results obtained at the SENSPOL Technical Meeting show the SWITCH test to be of major relevance not only for the analysis of chemicals under laboratory conditions but also for environmental samples polluted by diffuse industrial sources.
Collapse
|
16
|
Baumstark-Khan C, Khan RA, Rettberg P, Horneck G. Bacterial Lux-Fluoro test for biological assessment of pollutants in water samples from urban and rural origin. Anal Chim Acta 2003. [DOI: 10.1016/s0003-2670(03)00300-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Rabbow E, Rettberg P, Baumstark-Khan C, Horneck G. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS). ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2003; 31:1513-1524. [PMID: 12971406 DOI: 10.1016/s0273-1177(03)00086-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system reacts with a dose-dependent reduction of GFP-fluorescence. Currently, a fully automated miniaturized hardware system for the bacterial set up, which includes measurements of luminescence and fluorescence or absorption and the image analysis based evaluation is under development. During the first mission of the SOS-LUX-LAC-FLUORO-Toxicity-Test on the ISS, a standardized, DNA-damaging radiation source still to be determined will be used as a genotoxic inducer. A panel of recombinant Salmonella typhimurium strains carrying either the SOS-LUX plasmid or the fluorescence-mediating lac-GFPuv plasmid will be used to determine in parallel on one microplate the genotoxic and the cytotoxic action of the applied radiation in combination with microgravity. Either in addition to or in place of the fluorometric measurements of the cytotoxic agents, photometric measurements will simultaneously monitor cell growth, giving additional data on survival of the cells. The obtained data will be available on line during the TRIPLE-LUX mission time. Though it is the main goal during the TRIPLE-LUX mission to measure the radiation effect in microgravity, the SOS-LUX-LAC-FLUORO-Toxicity-test in principle is also applicable as a biomonitor for the detection and measurement of genotoxic substances in air or in the (recycled) water system on the ISS or on earth in general.
Collapse
Affiliation(s)
- E Rabbow
- RWTH Aachen, Lehrstuhl fur Flugmedizin, Aachen, Germany.
| | | | | | | |
Collapse
|
18
|
Rabbow E, Rettberg P, Baumstark-Khan C, Horneck G. SOS-LUX- and LAC-FLUORO-TEST for the quantification of genotoxic and/or cytotoxic effects of heavy metal salts. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(01)01594-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|