• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4633406)   Today's Articles (3949)   Subscriber (49942)
For: Wang A, Zhang L, Fang Y. Determination and separation of chloramphenicol and its hydrolysate in eye-drops by capillary zone electrophoresis with amperometric detection. Anal Chim Acta 1999. [DOI: 10.1016/s0003-2670(99)00314-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Number Cited by Other Article(s)
1
Kallakkattil S, Venkataramanappa Y. Fabrication of sulphur-doped graphitic carbon nitride anchored Ag@AgCl electrocatalyst for the sensing of chloramphenicol. ANAL SCI 2024:10.1007/s44211-024-00658-9. [PMID: 39242488 DOI: 10.1007/s44211-024-00658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
2
Detection of antibiotics by electrochemical sensors based on metal-organic frameworks and their derived materials. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
3
Tong TTV, Cao TT, Tran NH, Le TKV, Le DC. Green, Cost-Effective Simultaneous Assay of Chloramphenicol, Methylparaben, and Propylparaben in Eye-Drops by Capillary Zone Electrophoresis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021;2021:5575701. [PMID: 33936836 PMCID: PMC8055384 DOI: 10.1155/2021/5575701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
4
Roushani M, Rahmati Z, Hoseini SJ, Hashemi Fath R. Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle. Colloids Surf B Biointerfaces 2019;183:110451. [PMID: 31472389 DOI: 10.1016/j.colsurfb.2019.110451] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
5
Yadav M, Ganesan V, Gupta R, Yadav DK, Sonkar PK. Cobalt oxide nanocrystals anchored on graphene sheets for electrochemical determination of chloramphenicol. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
6
Zhou Y, Sui C, Yin H, Wang Y, Wang M, Ai S. Tungsten disulfide (WS2) nanosheet-based photoelectrochemical aptasensing of chloramphenicol. Mikrochim Acta 2018;185:453. [PMID: 30209622 DOI: 10.1007/s00604-018-2970-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/18/2018] [Indexed: 01/23/2023]
7
Yan C, Zhang J, Yao L, Xue F, Lu J, Li B, Chen W. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chem 2018;260:208-212. [PMID: 29699664 DOI: 10.1016/j.foodchem.2018.04.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/24/2017] [Accepted: 04/06/2018] [Indexed: 12/28/2022]
8
wu C, Gan N, Ou C, Tang H, Zhou Y, Cao J. A homogenous “signal-on” aptasensor for antibiotics based on a single stranded DNA binding protein-quantum dot aptamer probe coupling exonuclease-assisted target recycling for signal amplification. RSC Adv 2017. [DOI: 10.1039/c6ra27337h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
9
Facile synthesis of reduced graphene oxide supported Pt-Pd nanocubes with enhanced electrocatalytic activity for chloramphenicol determination. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
10
Zheng W, Yan F, Su B. Electrochemical determination of chloramphenicol in milk and honey using vertically ordered silica mesochannels and surfactant micelles as the extraction and anti-fouling element. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
11
Bai X, Qin C, Huang X. Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1945-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
12
Sun Q, Yan F, Yao L, Su B. Anti-Biofouling Isoporous Silica-Micelle Membrane Enabling Drug Detection in Human Whole Blood. Anal Chem 2016;88:8364-8. [DOI: 10.1021/acs.analchem.6b02091] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
13
Jakubec P, Urbanová V, Medříková Z, Zbořil R. Advanced Sensing of Antibiotics with Magnetic Gold Nanocomposite: Electrochemical Detection of Chloramphenicol. Chemistry 2016;22:14279-84. [DOI: 10.1002/chem.201602434] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 11/07/2022]
14
A triple-amplification SPR electrochemiluminescence assay for chloramphenicol based on polymer enzyme-linked nanotracers and exonuclease-assisted target recycling. Biosens Bioelectron 2016;86:477-483. [PMID: 27434234 DOI: 10.1016/j.bios.2016.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 11/23/2022]
15
Hussain A, Alajmi MF, Ali I. Determination of chloramphenicol in biological matrices by solid-phase membrane micro-tip extraction and capillary electrophoresis. Biomed Chromatogr 2016;30:1935-1941. [DOI: 10.1002/bmc.3769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/13/2016] [Accepted: 05/20/2016] [Indexed: 11/08/2022]
16
Label-free and sensitive aptasensor based on dendritic gold nanostructures on functionalized SBA-15 for determination of chloramphenicol. Anal Bioanal Chem 2016;408:2557-65. [PMID: 26879648 DOI: 10.1007/s00216-016-9358-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
17
Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer. Talanta 2015;144:1260-5. [DOI: 10.1016/j.talanta.2015.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
18
Switch-on fluorescence scheme for antibiotics based on a magnetic composite probe with aptamer and hemin/G-quadruplex coimmobilized nano-Pt-luminol as signal tracer. Talanta 2015;147:296-301. [PMID: 26592610 DOI: 10.1016/j.talanta.2015.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 11/22/2022]
19
Sadakwala VM, Chauhan RS, Shah SA, Shah DR. Stability-Indicating HPTLC Method for Simultaneous Estimation of Flurbiprofen and Chloramphenicol in Ophthalmic Solution. J Chromatogr Sci 2015. [DOI: 10.1093/chromsci/bmv101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
20
Bagheri Hashkavayi A, Bakhsh Raoof J, Ojani R, Hamidi Asl E. Label-Free Electrochemical Aptasensor for Determination of Chloramphenicol Based on Gold Nanocubes-Modified Screen-Printed Gold Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201400718] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
21
Hamidi-Asl E, Dardenne F, Blust R, De Wael K. An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine. SENSORS 2015;15:7605-18. [PMID: 25825978 PMCID: PMC4431305 DOI: 10.3390/s150407605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 12/17/2022]
22
Rosy R, Goyal RN, Shim YB. Glutaraldehyde sandwiched amino functionalized polymer based aptasensor for the determination and quantification of chloramphenicol. RSC Adv 2015. [DOI: 10.1039/c5ra11131e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
23
Yadav SK, Agrawal B, Chandra P, Goyal RN. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosens Bioelectron 2013;55:337-42. [PMID: 24412768 DOI: 10.1016/j.bios.2013.12.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/22/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
24
Pilehvar S, Mehta J, Dardenne F, Robbens J, Blust R, De Wael K. Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit. Anal Chem 2012;84:6753-8. [PMID: 22725137 DOI: 10.1021/ac3012522] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
25
Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.08.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
26
Samsonova JV, Cannavan A, Elliott CT. A Critical Review of Screening Methods for the Detection of Chloramphenicol, Thiamphenicol, and Florfenicol Residues in Foodstuffs. Crit Rev Anal Chem 2012. [DOI: 10.1080/10408347.2012.629951] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
27
Yang XF, Li NB, Luo HQ. Post-chemiluminescence determination of chloramphenicol based on luminol-potassium periodate system. LUMINESCENCE 2011;27:217-22. [PMID: 21774067 DOI: 10.1002/bio.1335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 05/25/2011] [Accepted: 06/07/2011] [Indexed: 11/09/2022]
28
Zhang C, Wang S, Fang G, Zhang Y, Jiang L. Competitive immunoassay by capillary electrophoresis with laser-induced fluorescence for the trace detection of chloramphenicol in animal-derived foods. Electrophoresis 2008;29:3422-8. [DOI: 10.1002/elps.200800188] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
29
CHUANUWATANAKUL S, CHAILAPAKUL O, MOTOMIZU S. Electrochemical Analysis of Chloramphenicol Using Boron-doped Diamond Electrode Applied to a Flow-Injection System. ANAL SCI 2008;24:493-8. [DOI: 10.2116/analsci.24.493] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
30
12 CE in impurity profiling of drugs. CAPILLARY ELECTROPHORESIS METHODS FOR PHARMACEUTICAL ANALYSIS 2008. [DOI: 10.1016/s0149-6395(07)00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
31
Xiao F, Zhao F, Li J, Yan R, Yu J, Zeng B. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube–gold nanoparticle–ionic liquid composite film modified glassy carbon electrodes. Anal Chim Acta 2007;596:79-85. [PMID: 17616243 DOI: 10.1016/j.aca.2007.05.053] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 11/24/2022]
32
Flurer CL. Analysis of antibiotics by capillary electrophoresis. Electrophoresis 2001;22:4249-61. [PMID: 11824641 DOI: 10.1002/1522-2683(200111)22:19<4249::aid-elps4249>3.0.co;2-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
33
Wang A, Fang Y. Applications of capillary electrophoresis with electrochemical detection in pharmaceutical and biomedical analyses. Electrophoresis 2000;21:1281-90. [PMID: 10826671 DOI: 10.1002/(sici)1522-2683(20000401)21:7<1281::aid-elps1281>3.0.co;2-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA