1
|
Woo HC, Tolosa L, El-Metwally D, Viscardi RM. Glucose monitoring in neonates: need for accurate and non-invasive methods. Arch Dis Child Fetal Neonatal Ed 2014; 99:F153-7. [PMID: 24065727 DOI: 10.1136/archdischild-2013-304682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neonatal hypoglycaemia can lead to devastating consequences. Thus, constant, accurate and safe glucose monitoring is imperative in neonatal care. However, point-of-care (POC) devices for glucose testing currently used for neonates were originally designed for adults and do not address issues specific to neonates. This review will address currently available monitoring options and describe new methodologies for non-invasive glucose monitoring in newborns.
Collapse
Affiliation(s)
- Hyung Chul Woo
- Division of Neonatology, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, , Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
2
|
Kostov Y, Ge X, Rao G, Tolosa L. Portable system for the detection of micromolar concentrations of glucose. MEASUREMENT SCIENCE & TECHNOLOGY 2014; 25:025701. [PMID: 24587594 PMCID: PMC3934490 DOI: 10.1088/0957-0233/25/2/025701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glucose in non-invasively collected biofluids is generally in the micromolar range and thus, requires sensing methodologies capable of measuring glucose at these levels. Here, we present a small fluorometer system that can quantify glucose in the range of 0-5 μM with resolution of ~0.07 μM. It relies on the glucose binding protein (GBP) fluorescently labeled with two fluorophores. Fluorescence signals from the dual-labeled GBP are utilized in a ratiometric mode, making the measurements insensitive to variations in protein concentration and other systematic errors. Fluorescence is quantified by a miniature, dedicated ratiometric fluorometer that is powered via USB. Concentration is calculated using an ultra-mobile personal computer (UMPC). The whole system is designed to be pocket sized suitable for point-of-care or bedside applications. Test results suggest that the system is a promising tool for accurate measurements of low glucose concentrations (0.1-10 μM) in biological samples.
Collapse
Affiliation(s)
- Yordan Kostov
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| |
Collapse
|
3
|
Deacon LJ, Billones H, Galyean AA, Donaldson T, Pennacchio A, Iozzino L, D'Auria S, Dattelbaum JD. Tryptophan-scanning mutagenesis of the ligand binding pocket in Thermotoga maritima arginine-binding protein. Biochimie 2013; 99:208-14. [PMID: 24370478 DOI: 10.1016/j.biochi.2013.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/11/2013] [Indexed: 11/28/2022]
Abstract
The Thermotoga maritima arginine binding protein (TmArgBP) is a member of the periplasmic binding protein superfamily. As a highly thermostable protein, TmArgBP has been investigated for the potential to serve as a protein scaffold for the development of fluorescent protein biosensors. To establish a relationship between structural dynamics and ligand binding capabilities, we constructed single tryptophan mutants to probe the arginine binding pocket. Trp residues placed around the binding pocket reveal a strong dependence on fluorescence emission of the protein with arginine for all but one of the mutants. Using these data, we calculated dissociation constants of 1.9-3.3 μM for arginine. Stern-Volmer quenching analysis demonstrated that the protein undergoes a large conformational change upon ligand binding, which is a common feature of this protein superfamily. While still active at room temperature, time-resolved intensity and anisotropy decay data suggest that the protein exists as a highly rigid structure under these conditions. Interestingly, TmArgBP exists as a dimer at room temperature in both the presence and absence of arginine, as determined by asymmetric flow field flow fractionation (AF4) and supported by native gel-electrophoresis and time-resolved anisotropy. Our data on dynamics and stability will contribute to our understanding of hyperthermophilic proteins and their potential biotechnological applications.
Collapse
Affiliation(s)
- Lindsay J Deacon
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA
| | - Hilbert Billones
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA
| | - Anne A Galyean
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Teraya Donaldson
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA
| | - Anna Pennacchio
- Laboratory for Molecular Sensing, IBP-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Luisa Iozzino
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA; Laboratory for Molecular Sensing, IBP-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, IBP-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | | |
Collapse
|
4
|
The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging. J Fluoresc 2010; 20:1099-128. [DOI: 10.1007/s10895-010-0644-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
|
5
|
Lam H, Kostov Y, Rao G, Tolosa L. A luminescence lifetime assisted ratiometric fluorimeter for biological applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:124302. [PMID: 20059156 PMCID: PMC2803713 DOI: 10.1063/1.3264106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/26/2009] [Indexed: 05/28/2023]
Abstract
In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system--a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.
Collapse
Affiliation(s)
- Hung Lam
- Department of Chemical and Biochemical Engineering, Center of Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
6
|
Tolosa L. On the design of low-cost fluorescent protein biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 116:143-57. [PMID: 19347267 DOI: 10.1007/10_2008_39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
There is a large body of knowledge on proteins and their ligands that is available to the sensor researcher for the successful design of fluorescent biosensors. Chemically synthesized receptors rarely match the sensitivity and selectivity of proteins.Additionally, proteins are easily produced and manipulated through recombinant protein techniques. Although limitations exist in the prediction of signal response of proteins labeled with fluorescent probes, thoughtful experimentation can lead to useful, highly responsive fluorescent protein assays. Conversion of these assays into sensor devices may require additional manipulation of the fluorescence properties of the labeled proteins. We have shown that this can be achieved by a second fluorophore serving as a reference for ratiometric measurements. The choice of reference is contingent on the low-cost, miniaturized design of the device. Accordingly, the reference fluorophore is excitable with the same LED as the signal transducing probe and has a fluorescence decay lifetime that is orders of magnitude longer.Alternating illumination with intensity modulated light at two frequencies allows for ratiometric sensing without the need for bulky filter wheels while collecting the signals over a wide range of emission wavelengths. The result is a simple optoelectronics design that is cost-effective and small enough to be portable.In summary, the process of designing protein-based fluorescent biosensors for practical applications requires the systematic collaboration of a cross-disciplinary group of molecular biologists, chemists and engineers.
Collapse
Affiliation(s)
- Leah Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD21050, USA
| |
Collapse
|
7
|
Liu YM, Liu ZL, Shi YM, Tian W. The determination of glutamine with flow-injection chemiluminescence detection and mechanism study. LUMINESCENCE 2009; 25:50-4. [DOI: 10.1002/bio.1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Lam H, Kostov Y, Rao G, Tolosa L. Low-cost optical lifetime assisted ratiometric glutamine sensor based on glutamine binding protein. Anal Biochem 2008; 383:61-7. [PMID: 18786501 DOI: 10.1016/j.ab.2008.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/21/2008] [Accepted: 08/07/2008] [Indexed: 11/16/2022]
Abstract
Here we report a reagentless fluorescence sensing technique for glutamine in the submicromolar range based on the glutamine binding protein (QBP). The S179C mutant is labeled with the short-lived acrylodan (lifetime<5ns) and the long-lived tris(dibenzoylmethane) mono(5-amino-1,10-phenanthroline)europium(III) (lifetime > 300 micros) at the -SH and the N-terminal positions, respectively. In the presence of glutamine the fluorescence of acrylodan is quenched, while the fluorescence of europium complex remains constant. In this report we describe an innovative technique, the so called lifetime assisted ratiometric sensing to discriminate the two fluorescence signals using minimal optics and power requirements. This method exploits the large difference between the fluorescence lifetimes of the two fluorophores to isolate the individual fluorescence from each other by alternating the modulation frequency of the excitation light between 300 Hz and 10 kHz. The result is a ratiometric optical method that does not require expensive and highly attenuating band pass filters for each of the dyes, but only one long pass filter for both. Thus, the signal to noise ratio is enhanced, and at the same time, the optical setup is simplified. The end product is a simple sensing device suitable for low-cost applications such as point-of-care diagnostics or in-the-field analysis.
Collapse
Affiliation(s)
- Hung Lam
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
9
|
Hong NN, Yang G, Li J, Zhang YP, Li JL. Rapid Determination of l-Glutamine using Engineered Escherichia coli Overexpressing Glutamine Synthetase. Appl Biochem Biotechnol 2008; 158:398-407. [DOI: 10.1007/s12010-008-8341-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 08/01/2008] [Indexed: 11/25/2022]
|
10
|
Ge X, Lam H, Modi SJ, LaCourse WR, Rao G, Tolosa L. Comparing the performance of the optical glucose assay based on glucose binding protein with high-performance anion-exchange chromatography with pulsed electrochemical detection: efforts to design a low-cost point-of-care glucose sensor. J Diabetes Sci Technol 2007; 1:864-72. [PMID: 19885158 PMCID: PMC2769676 DOI: 10.1177/193229680700100610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The glucose binding protein (GBP) is one of many soluble binding proteins found in the periplasmic space of gram-negative bacteria. These proteins are responsible for chemotactic responses and active transport of chemical species across the membrane. Upon ligand binding, binding proteins undergo a large conformational change, which is the basis for converting these proteins into optical biosensors. METHODS The GBP biosensor was prepared by attaching a polarity-sensitive fluorescent probe to a single cysteine mutation at a site on the protein that is allosterically responsive to glucose binding. The fluorescence response of the resulting sensor was validated against high-performance anion-exchange chromatography (HPAEC) with pulsed electrochemical detection. Finally, a simple fluorescence reader was built using a lifetime-assisted ratiometric technique. RESULTS The GBP assay has a linear range of quantification of 0.100-2.00 microM and a sensitivity of 0.164 microM(-1) under the specified experimental conditions. The comparison between GBP and HPAEC readings for nine blind samples indicates that there is no statistical difference between the analytical results of the two methods at the 95% confidence level. Although the methods of fluorescence detection are based on different principles, the response of the homemade device to glucose concentrations was comparable to the response of the larger and more expensive tabletop fluorescence spectrophotometer. CONCLUSIONS A glucose binding protein labeled with a polarity-sensitive probe can be used for measuring micromolar amounts of glucose. Using a lifetime-assisted ratiometric technique, a low-cost GBP-based micromolar glucose monitor could be built.
Collapse
Affiliation(s)
- Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Hung Lam
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Swati J. Modi
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - William R. LaCourse
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
11
|
Vercillo NC, Herald KJ, Fox JM, Der BS, Dattelbaum JD. Analysis of ligand binding to a ribose biosensor using site-directed mutagenesis and fluorescence spectroscopy. Protein Sci 2007; 16:362-8. [PMID: 17242374 PMCID: PMC2203328 DOI: 10.1110/ps.062595707] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Computational design of proteins with altered ligand specificity is an emerging method for the creation of new biosensing systems. In this work, we investigated the outcome of site-directed mutagenesis on the Escherichia coli ribose binding protein (RBP), which is frequently used as a design scaffold for computational searches. A ribose biosensor was first constructed whereby an environmentally sensitive fluorescent probe was covalently attached to RBP at position S265C. This protein conjugate displayed a 54% decrease in emission intensity upon the addition of saturating ribose concentrations and exhibited an apparent dissociation constant (K(d) ) of 3.4 microM. Site-directed mutants within the RBP binding pocket were created and examined for ribose binding ability and overall structural stability. Because as many as 12 mutations are needed to alter ligand specificity in RBP, we measured the effect of single and multiple alanine mutations on stability and signal transduction potential of the ribose biosensor. Single alanine mutations had significant impact on both stability and signaling. Mutations of N190A and F214A each produced melting temperatures >8 degrees C below those observed for the wild-type protein. Residue Q235, located in the hinge region of RBP, appeared to be a hot spot for global protein stability as well. Additional single alanine mutations demonstrated as much as 200-fold increase in apparent K(d) but retained overall protein stability. The data collected from this study may be incorporated into design algorithms to help create more stable biosensors and optimize signal transduction properties for a variety of important analytes.
Collapse
Affiliation(s)
- Natalie C Vercillo
- Department of Chemistry, University of Richmond, Gottwald Center for Sciences, Richmond, Virginia 23173, USA
| | | | | | | | | |
Collapse
|
12
|
Binding of glutamine to glutamine-binding protein from Escherichia coli induces changes in protein structure and increases protein stability. Proteins 2006; 58:80-7. [PMID: 15517590 DOI: 10.1002/prot.20289] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamine-binding protein (GlnBP) from Escherichia coli is a monomeric protein localized in the periplasmic space of the bacterium. It is responsible for the first step in the active transport of L-glutamine across the cytoplasmic membrane. The protein consists of two similar globular domains linked by two peptide hinges, and X-ray crystallographic data indicate that the two domains undergo large movements upon ligand binding. Fourier transform infrared spectroscopy (FTIR) was used to analyze the structure and thermal stability of the protein in detail. The data indicate that glutamine binding induces small changes in the secondary structure of the protein and that it renders the structure more thermostable and less flexible. Detailed analyses of IR spectra show a lower thermal sensitivity of alpha-helices than beta-sheets in the protein both in the absence and in the presence of glutamine. Generalized two-dimensional (2D) analyses of IR spectra reveal the same sequence of unfolding events in the protein in the absence and in the presence of glutamine, indicating that the amino acid does not affect the unfolding pathway of the protein. The data give new insight into the structural characteristics of GlnBP that are useful for both basic knowledge and biotechnological applications.
Collapse
|
13
|
Altschuh D, Oncul S, Demchenko AP. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J Mol Recognit 2006; 19:459-77. [PMID: 17089349 DOI: 10.1002/jmr.807] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular biosensors are devices of molecular size that are designed for sensing different analytes on the basis of biospecific recognition. They should provide two coupled functions - the recognition (specific binding) of the target and the transduction of information about the recognition event into a measurable signal. The present review highlights the achievements and prospects in design and operation of molecular biosensors for which the transduction mechanism is based on fluorescence. We focus on the general strategy of fluorescent molecular sensing, construction of sensor elements, based on natural and designed biopolymers (proteins and nucleic acids). Particular attention is given to the coupling of sensing elements with fluorescent reporter dyes and to the methods for producing efficient fluorescence responses.
Collapse
Affiliation(s)
- Danièle Altschuh
- UMR 7175 CNRS/ULP, ESBS, Parc d'Innovation, Bld S. Brant, BP 10413, 67412 Illkirch Cedex, France.
| | | | | |
Collapse
|
14
|
Demchenko AP. The problem of self-calibration of fluorescence signal in microscale sensor systems. LAB ON A CHIP 2005; 5:1210-23. [PMID: 16234943 DOI: 10.1039/b507447a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most recent developments in fluorescent molecular sensor devices are based on "ON-OFF" switching, which is an operation with a single measurable parameter, commonly the quenching of total intensity. In the meantime, with this approach self-calibration on the molecular level is not achievable. This calibration is strongly needed in all kinds of microscale applications, including microarrays, microfluidic systems and living cell imaging. Different possibilities are discussed for overcoming this difficulty and an "OR-OR" switching concept is suggested that involves the two-channel detection as a promising solution. For achieving the desired efficiency specific conditions are needed: it should be a single reporter dye exhibiting rapid reversible excited-state reaction and providing two-band wavelength ratiometric response.
Collapse
Affiliation(s)
- Alexander P Demchenko
- TUBITAK Research Institute for Genetic Engineering and Biotechnology, 41470 Gebze-Kocaeli, Turkey.
| |
Collapse
|
15
|
Bartolome A, Bardliving C, Rao G, Tolosa L. Fatty acid sensor for low-cost lifetime-assisted ratiometric sensing using a fluorescent fatty acid binding protein. Anal Biochem 2005; 345:133-9. [PMID: 16137630 DOI: 10.1016/j.ab.2005.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/14/2005] [Accepted: 07/21/2005] [Indexed: 11/26/2022]
Abstract
Elevated free fatty acid (FA) levels lead to insulin resistance, hypertension, and microangiopathy, all of which are associated with type 2 diabetes. On the other hand, deficiencies of FA are indicative of certain neurodegenerative diseases, including autism. Thus, free FA levels are a diagnostic indicator for a variety of disorders. Here we describe the use of a commercially available FA binding protein labeled with acrylodan (ADIFAB), which we modified with a ruthenium metal-ligand complex with the intention of creating a low-cost FA sensor. The dual-labeled FA binding protein was used in lifetime-assisted ratiometric sensing (LARS) of oleic acid. For both steady-state and time-resolved luminescence decay experiments, the protein is responsive to oleic acid in the range of 0.02-4.7 microM. The emission at 432 nm, which is associated with the acrylodan occupying the FA binding site, decreases in intensity and red shifts to 505 nm on the addition of oleic acid. The intensities of the 505-nm peak due to the acrylodan displaced from the binding site by FA and of the 610-nm emission peak of ruthenium remained nearly unchanged. Fitting of the fluorescence decay data using the method of least squares revealed three emitting components with lifetimes of approximately 0.60, 4.00, and 370 ns. Fractional intensities of the emitting species indicate that changes in modulation between 2 and 10 MHz on binding of the protein with oleic acid are due mainly to the 4.00-ns component. The 0.60- and 370-ns components are assigned to acrylodan (505 nm) and ruthenium, respectively. Note that because ruthenium has a lifetime that is two orders of magnitude longer than that of acrylodan, the FA measurements were carried out at excitation frequencies lower than what can be done with acrylodan alone. Thus, low-cost instrumentation can be designed for a practical FA sensor without sacrificing the quality of measurements.
Collapse
Affiliation(s)
- Amelita Bartolome
- Center for Advanced Sensor Technology, Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
16
|
Demchenko AP. Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 2005; 343:1-22. [PMID: 16018869 DOI: 10.1016/j.ab.2004.11.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 11/23/2022]
Affiliation(s)
- Alexander P Demchenko
- TUBITAK Research Institute for Genetic Engineering Biotechnology, 41470 Gebze-Kocaeli, Turkey.
| |
Collapse
|
17
|
Ge X, Tolosa L, Simpson J, Rao G. Genetically engineered binding proteins as biosensors for fermentation and cell culture. Biotechnol Bioeng 2004; 84:723-31. [PMID: 14595785 DOI: 10.1002/bit.10830] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The signal-transduction properties and the potential applications of two engineered binding proteins from E. coli were extensively studied. Both proteins have a single cysteine mutation in their polypeptide chains, which allow the introduction of an environmentally sensitive fluorophore: ANS for glucose-binding protein (GBP) and acrylodan for glutamine-binding protein (QBP). Both proteins respond to their ligands in the micromolar range. The proteins can be stored at 4 degrees C for at least 5 months. Apparent binding constant, protein concentration, and fluorophore are three major factors that affect the biosensor's responsive ranges. The binding of the ligand is quick and reversible in solution, but the unfavorable dissociation equilibrium and mass-transfer resistance for encapsulated proteins can delay the response to several minutes and the recovery to hours. Simulated results show that using dialysis tubing with a diameter of 1 mm or less is possible to reduce the recovery time to less than 30 minutes. The potential applications of GBP were studied in yeast fermentation and E. coli fermentations in three different scales: 150 mL, 5 mL, and 100 microL. The results were compared with an YSI 2700 Chemistry Analyzer. Although the latter could not give reliable results for the E. coli fermentations as the glucose concentration in LB medium is close to its lower detection limit, the glucose biosensor presented here was successfully applied to each situation. Glutamine-binding protein was tested in cell cultures of two different scales (100 mL and 100 microL) and the results were also compared with those obtained with YSI. Both QBP and YSI gave good results for the 100-mL cell culture, but the relatively large sample volume requirement of YSI (at least 5 microL) prevented it from being used in the 100-microL cell culture. Because of their small sample volume requirements (less than 1 microL) and high sensitivity, the assays described here might find wide applications in high-throughput bioprocessing.
Collapse
Affiliation(s)
- Xudong Ge
- Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
18
|
Ge X, Tolosa L, Rao G. Dual-Labeled Glucose Binding Protein for Ratiometric Measurements of Glucose. Anal Chem 2004; 76:1403-10. [PMID: 14987097 DOI: 10.1021/ac035063p] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly sensitive glucose monitoring has potential applications in conditions where the glucose levels are below the detection limit of currently available technology. Examples include bioprocess monitoring of bacterial cultures and measurement of minute amounts of human interstitial fluid extracted by iontophoresis. Here we describe a ratiometric glucose sensor capable of measuring micromolar levels of glucose. This sensor is based on an E. coli glucose binding protein (GBP) labeled with two fluorophores. The L255C mutant of GBP was labeled with the environment-sensitive fluorophore, acrylodan, at the cysteine mutation and a long-lived metal ligand complex of ruthenium (ruthenium bis(2,2'-bipyridyl)-1, 10-phenanthroline-9-isothiocyanate) at the N-terminal. The acrylodan emission is quenched in the presence of glucose while the ruthenium emission remained constant, thereby serving as a reference. The sensitivity of the sensor is in the micromolar range (K(d) = 0.4-1.4 microM). Thus, it is possible to measure glucose concentrations at micromolar levels and higher (with dilution). Calculations of the fluorescence energy-transfer efficiency between acrylodan and ruthenium gave an approximate distance of 25 A between the two fluorophores, consistent with X-ray crystallographic data. The effect of temperature on glucose binding was measured and analyzed. Maximum signal changes and apparent binding constants increase with temperature. The enthalpy change for glucose binding as calculated from the apparent binding constants is approximately 43.1 kJ/mol. In addition to ratiometric measurements, the presence of the long-lived ruthenium metal ligand complex allows for low-cost modulation-based sensing.
Collapse
Affiliation(s)
- Xudong Ge
- Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | |
Collapse
|