1
|
Nivetha R, Meenakumari M, Peroor Mahi Dev A, Janarthanan S. Fucose-binding lectins: purification, characterization and potential biomedical applications. Mol Biol Rep 2023; 50:10589-10603. [PMID: 37934371 DOI: 10.1007/s11033-023-08896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
The property of lectins to specifically recognize and bind carbohydrates makes them an excellent candidate in biomedical research. Among them are fucose-binding lectins possessing the capacity to bind fucose are taxonomically, evolutionarily and ecologically significant class of lectins that are identified in a wide range of taxa. Purification of fucose-binding lectins dates back to 1967 when L-fucose binding protein from Lotus tetragonolobus was isolated using a dye that contained three α-L-fucopyranosyl residues. Beginning with that, several FBLs were purified from various animals as well as plant sources that were structurally and functionally characterised. This review focuses on fucose-binding lectins, their occurrence and purification with special emphasis on various strategies adopted to purify them followed by molecular and functional characterization. The exclusive ability to recognize and bind to fucose-containing glycans endows these lectins with the potential to act as anti-cancer agents, diagnostic markers and mitogens for immune cells. Though they have been in research focus for more than half a century with their occurrence reported in various taxa, they still need to be explored for their prospective functions to develop them as a biological tool in biomedical research.
Collapse
Affiliation(s)
- Ramanathan Nivetha
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Mani Meenakumari
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
2
|
Seaweed-Derived Proteins and Peptides: Promising Marine Bioactives. Antioxidants (Basel) 2022; 11:antiox11010176. [PMID: 35052680 PMCID: PMC8773382 DOI: 10.3390/antiox11010176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Seaweeds are a typical food of East-Asian cuisine, to which are alleged several beneficial health effects have been attributed. Their availability and their nutritional and chemical composition have favored the increase in its consumption worldwide, as well as a focus of research due to their bioactive properties. In this regard, seaweed proteins are nutritionally valuable and comprise several specific enzymes, glycoproteins, cell wall-attached proteins, red algae phycobiliproteins, lectins, peptides, or mycosporine-like amino acids. This great extent of molecules has been reported to exert significant antioxidant, antimicrobial, anti-inflammatory, antihypertensive, antidiabetic, or antitumoral properties. Hence, knowledge on algae proteins and derived compounds have gained special interest for the potential nutraceutical, cosmetic or pharmaceutical industries based on these bioactivities. Although several molecular mechanisms of action on how these proteins and peptides exert biological activities have been described, many gaps in knowledge still need to be filled. Updating the current knowledge related to seaweed proteins and peptides is of interest to further asses their potential health benefits. This review addresses the characteristics of seaweed protein and protein-derived molecules, their natural occurrence, their studied bioactive properties, and their described potential mechanisms of action.
Collapse
|
3
|
Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells 2021; 10:cells10071619. [PMID: 34203435 PMCID: PMC8305077 DOI: 10.3390/cells10071619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.
Collapse
|
4
|
Barre A, Damme EJV, Simplicien M, Benoist H, Rougé P. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Mar Drugs 2020; 18:E543. [PMID: 33138151 PMCID: PMC7693892 DOI: 10.3390/md18110543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Seaweed lectins, especially high-mannose-specific lectins from red algae, have been identified as potential antiviral agents that are capable of blocking the replication of various enveloped viruses like influenza virus, herpes virus, and HIV-1 in vitro. Their antiviral activity depends on the recognition of glycoprotein receptors on the surface of sensitive host cells-in particular, hemagglutinin for influenza virus or gp120 for HIV-1, which in turn triggers fusion events, allowing the entry of the viral genome into the cells and its subsequent replication. The diversity of glycans present on the S-glycoproteins forming the spikes covering the SARS-CoV-2 envelope, essentially complex type N-glycans and high-mannose type N-glycans, suggests that high-mannose-specific seaweed lectins are particularly well adapted as glycan probes for coronaviruses. This review presents a detailed study of the carbohydrate-binding specificity of high-mannose-specific seaweed lectins, demonstrating their potential to be used as specific glycan probes for coronaviruses, as well as the biomedical interest for both the detection and immobilization of SARS-CoV-2 to avoid shedding of the virus into the environment. The use of these seaweed lectins as replication blockers for SARS-CoV-2 is also discussed.
Collapse
Affiliation(s)
- Annick Barre
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Els J.M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium;
| | - Mathias Simplicien
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Hervé Benoist
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| |
Collapse
|
5
|
Hwang HJ, Han JW, Jeon H, Cho K, Kim JH, Lee DS, Han JW. Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules 2020; 10:E333. [PMID: 32092955 PMCID: PMC7072537 DOI: 10.3390/biom10020333] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Lectins have the ability to bind specific carbohydrates and they have potential applications as medical and pharmacological agents. The unique structure and usefulness of red algal lectin have been reported, but these lectins are limited to a few marine algal groups. In this study, a novel mannose-binding lectin from Grateloupia chiangii (G. chiangii lectin, GCL) was purified using antiviral screens and affinity chromatography. We characterized the molecular weight, agglutination activity, hemagglutination activity, and heat stability of GCL. To determine the carbohydrate specificity, a glycan microarray was performed. GCL showed strong binding affinity for Maltohexaose-β-Sp1 and Maltoheptaose-β-Sp1 with weak affinity for other monosaccharides and preferred binding to high-mannan structures. The N-terminal sequence and peptide sequence of GCL were determined using an Edman degradation method and LC-MS/MS, and the cDNA and peptide sequences were deduced. GCL was shown to consist of 231 amino acids (24.9 kDa) and the N-terminus methionine was eliminated after translation. GCL possessed a tandem repeat structure of six domains, similar to the other red algal lectins. The mannose binding properties and tandem repeat structure of GCL may confer it the potential to act as an antiviral agent for protection against viral infection.
Collapse
Affiliation(s)
- Hyun-Ju Hwang
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Jin-Wook Han
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Hancheol Jeon
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Kichul Cho
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Ju-hee Kim
- Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Jong Won Han
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| |
Collapse
|
6
|
Barre A, Simplicien M, Benoist H, Van Damme EJM, Rougé P. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Mar Drugs 2019; 17:E440. [PMID: 31357490 PMCID: PMC6723950 DOI: 10.3390/md17080440] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
To date, a number of mannose-specific lectins have been isolated and characterized from seaweeds, especially from red algae. In fact, man-specific seaweed lectins consist of different structural scaffolds harboring a single or a few carbohydrate-binding sites which specifically recognize mannose-containing glycans. Depending on the structural scaffold, man-specific seaweed lectins belong to five distinct structurally-related lectin families, namely (1) the griffithsin lectin family (β-prism I scaffold); (2) the Oscillatoria agardhii agglutinin homolog (OAAH) lectin family (β-barrel scaffold); (3) the legume lectin-like lectin family (β-sandwich scaffold); (4) the Galanthus nivalis agglutinin (GNA)-like lectin family (β-prism II scaffold); and, (5) the MFP2-like lectin family (MFP2-like scaffold). Another algal lectin from Ulva pertusa, has been inferred to the methanol dehydrogenase related lectin family, because it displays a rather different GlcNAc-specificity. In spite of these structural discrepancies, all members from the five lectin families share a common ability to specifically recognize man-containing glycans and, especially, high-mannose type glycans. Because of their mannose-binding specificity, these lectins have been used as valuable tools for deciphering and characterizing the complex mannose-containing glycans from the glycocalyx covering both normal and transformed cells, and as diagnostic tools and therapeutic drugs that specifically recognize the altered high-mannose N-glycans occurring at the surface of various cancer cells. In addition to these anti-cancer properties, man-specific seaweed lectins have been widely used as potent human immunodeficiency virus (HIV-1)-inactivating proteins, due to their capacity to specifically interact with the envelope glycoprotein gp120 and prevent the virion infectivity of HIV-1 towards the host CD4+ T-lymphocyte cells in vitro.
Collapse
Affiliation(s)
- Annick Barre
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Mathias Simplicien
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Hervé Benoist
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Pierre Rougé
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
7
|
Wu M, Tong C, Wu Y, Liu S, Li W. A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities. Food Chem 2016; 201:7-13. [PMID: 26868541 DOI: 10.1016/j.foodchem.2016.01.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/29/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022]
Abstract
A lectin (HFL) was isolated from the brown alga, Hizikia fusiformis, through ion exchange on cellulose DE52 and HPLC with a TSK-gel G4000PWXL column. SDS-PAGE showed that HFL had a molecular mass of 16.1 kDa. The HPLC (with a TSK-gel G4000PWXL column) indicated that HFL is a tetramer in its native state. The total carbohydrate content was 41%. Glucose, galactose and fucose were the monosaccharide units of HFL, and the normalized mol% values were 6, 14 and 80, respectively. HFL contains a large amount of the acidic amino acid, Asx. The β-elimination reaction suggested that the oligosaccharide and peptide moieties of HFL may belong to the N-glucosidic linkage. The amino acid sequences, of about five segments of HFL, were acquired by MALDI-TOF/TOF, and the sequences have no homology with other lectins. HFL was found to agglutinate sheep erythrocytes. The hemagglutination activity was inhibited by thyroglobulin, from bovine thyroid, but not by any of the monosaccharides tested. The lectin reaction was independent of the presence of the divalent cation Ca(2+). HFL showed free radical scavenging activity against hydroxyl, DPPH and ABTS(+) radicals.
Collapse
Affiliation(s)
- Mingjiang Wu
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Changqing Tong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China.
| | - Yue Wu
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Shuai Liu
- Department of Agronomy, Hetao College, Hetao 015000, China
| | - Wei Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
8
|
do Nascimento ASF, Serna S, Beloqui A, Arda A, Sampaio AH, Walcher J, Ott D, Unverzagt C, Reichardt NC, Jimenez-Barbero J, Nascimento KS, Imberty A, Cavada BS, Varrot A. Algal lectin binding to core (α1-6) fucosylated N-glycans: structural basis for specificity and production of recombinant protein. Glycobiology 2015; 25:607-16. [PMID: 25573275 DOI: 10.1093/glycob/cwv002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
We determined the specificity of BTL, a lectin from the red marine alga Bryothamnion triquetrum, toward fucosylated oligosaccharides. BTL showed a strict specificity for the core α1,6-fucosylation, which is an important marker for cancerogenesis and quality control of therapeutical antibodies. The double fucosylation α1,6 and α1,3 was also recognized, but the binding was totally abolished in the sole presence of the α1,3-fucosylation. A more detailed analysis of the specificity of BTL showed a preference for bi- and tri-antennary nonbisected N-glycans. Sialylation or fucosylation at the nonreducing end of N-glycans did not affect the recognition by the lectin. BTL displayed a strong affinity for a core α1,6-fucosylated octasaccharide with a Kd of 12 μM by titration microcalorimetry. The structural characterization of the interaction between BTL and the octasaccharide was obtained by STD-NMR. It demonstrated an extended epitope for recognition that includes the fucose residue, the distal GlcNAc and one mannose residue. Recombinant rBTL was obtained in Escherichia coli and characterized. Its binding properties for carbohydrates were studied using hemagglutination tests and glycan array analysis. rBTL was able to agglutinate rabbit erythrocytes with strong hemagglutination activity only after treatment with papain and trypsin, indicating that its ligands were not directly accessible at the cell surface. The hemagglutinating properties of rBTL confirm the correct folding and functional state of the protein. The results show BTL as a potent candidate for cancer diagnosis and as a reagent for the preparation and quality control of antibodies lacking core α1,6-fucosylated N-glycans.
Collapse
Affiliation(s)
- Antônia S F do Nascimento
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, 38041 Grenoble, France Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Sonia Serna
- Glycotechnology Laboratory, CICbiomaGUNE, 20009 San Sebastian, Spain
| | - Ana Beloqui
- Glycotechnology Laboratory, CICbiomaGUNE, 20009 San Sebastian, Spain
| | - Ana Arda
- Chemical and Physical Biology, Centro de Investigaciones Biologicas, CSIC, 28040 Madrid, Spain
| | - Alexandre H Sampaio
- Laboratório de Biotecnologia Marinha-BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Janika Walcher
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Dimitri Ott
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Niels-Christian Reichardt
- Glycotechnology Laboratory, CICbiomaGUNE, 20009 San Sebastian, Spain CIBER-BBN, Paseo Miramon 182, 20009 San Sebastian, Spain
| | - Jesus Jimenez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biologicas, CSIC, 28040 Madrid, Spain
| | - Kyria S Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Anne Imberty
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, 38041 Grenoble, France
| | - Benildo S Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Annabelle Varrot
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, 38041 Grenoble, France
| |
Collapse
|
9
|
Purification, Characterization, and cDNA Cloning of a Novel Lectin from the Green Alga,Codium barbatum. Biosci Biotechnol Biochem 2014; 76:805-11. [DOI: 10.1271/bbb.110944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Shim E, Shim J, Klochkova TA, Han JW, Kim GH. PURIFICATION OF A SEX-SPECIFIC LECTIN INVOLVED IN GAMETE BINDING OF AGLAOTHAMNION CALLOPHYLLIDICOLA (RHODOPHYTA)(1). JOURNAL OF PHYCOLOGY 2012; 48:916-24. [PMID: 27009002 DOI: 10.1111/j.1529-8817.2012.01155.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Egg and sperm binding and correct recognition is the first stage for successful fertilization. In red algae, spermatial attachment to female trichogynes is mediated by a specific binding between the lectin(s) distributed on the surface of trichogyne and the complementary carbohydrates on the spermatial surface. A female-specific lectin was isolated from Aglaothamnion callophyllidicola by agarose-bound fetuin affinity chromatography. Two proteins, 50 and 14 kDa, eluted from the fetuin column were separated using a native-polyacrylamide gel electrophoresis method and subjected to a gamete binding assay. The 50 kDa protein, which blocked spermatial binding to female trichogynes, was used for further analysis. Internal amino acid sequence of the 50 kDa protein was analyzed using matrix-assisted laser desorption/ionization-mass spectrometry and degenerated primers were designed based on the information. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends polymerase chain reaction (PCR). The cDNA was 1552 bp in length and coded for a protein of 450 amino acids with a deduced molecular mass of 50.7 kDa, which agreed well with the protein data. Real-time PCR analysis showed that this protein was up-regulated about 10-fold in female thalli. As the protein was novel and showed no significant homology to any known proteins, it was designated Rhodobindin.
Collapse
Affiliation(s)
- Eunyoung Shim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Junbo Shim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Tatyana A Klochkova
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Jong Won Han
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| |
Collapse
|
11
|
Microwave-Assisted Extraction and In Vitro Antioxidant Evaluation of Polysaccharides from Enteromorpha prolifera. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amm.79.204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient microwave-assisted extraction (MAE) technique was developed to extract polysaccharides from Enteromorpha prolifera (PEP). The operating parameters, such as microwave power, liquid/material ratio, temperature and extraction time, were optimized using orthogonal array design coupled with single factor method. PEP yield was determined by the phenol-sulfuric acid method. The optimum extraction conditions were determined as follows: microwave power, 700 W; liquid/material ratio, 40:1 (mL/g); temperature, 70 °C; and extraction time, 25 min. Under such conditions, PEP yield reached to 10.79 %. In comparison with conventional hot water extraction and ultrasonic-assisted extraction, MAE showed obvious advantages in terms of high extraction efficiency, saving energy, rapidity, solvent consumption, and so on. The data demonstrated that MAE could be a fast and reliable method for quantitative analysis of PEP. The scavenging capability of PEP to DPPH/hydroxyl radical reached to 65.2 % and 41.2 % at the concentration of 0.5 mg/mL. The reducing power of PEP was 0.354. Compared with butylated hydroxytoluene (BHT) and gallic acid (GA), the experimental results showed that DPPH radical scavenging activity of PEP was higher than that of BHT. Thus, PEP had good potential as a natural antioxidant used in functional food or medicine industries.
Collapse
|
12
|
Harnedy PA, FitzGerald RJ. BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE(1). JOURNAL OF PHYCOLOGY 2011; 47:218-32. [PMID: 27021854 DOI: 10.1111/j.1529-8817.2011.00969.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid-like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein-derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino-acid-containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.
Collapse
|
13
|
Haemagglutinin of the antarctic seaweed Georgiella confluens (Reinsch) Kylin: isolation and partial characterization. Polar Biol 2010. [DOI: 10.1007/s00300-010-0818-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Isolation and characterization of a novel fucose-binding lectin from the gill of bighead carp (Aristichthys nobilis). Vet Immunol Immunopathol 2010; 133:154-64. [DOI: 10.1016/j.vetimm.2009.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/19/2009] [Accepted: 07/27/2009] [Indexed: 11/23/2022]
|
15
|
Yoon KS, Lee KP, Klochkova TA, Kim GH. MOLECULAR CHARACTERIZATION OF THE LECTIN, BRYOHEALIN, INVOLVED IN PROTOPLAST REGENERATION OF THE MARINE ALGA BRYOPSIS PLUMOSA (CHLOROPHYTA)(1). JOURNAL OF PHYCOLOGY 2008; 44:103-112. [PMID: 27041047 DOI: 10.1111/j.1529-8817.2007.00457.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When a coenocytic cell of the green alga Bryopsis plumosa (Hudson) C. Agardh was cut open and the cell contents expelled, the cell organelles agglutinated rapidly in seawater to form protoplasts. This process was mediated by a lectin, Bryohealin. The full sequence of the cDNA encoding Bryohealin was obtained, which consisted of 1,101 base pairs (bp), with 24 bp of 5' untranslated region (UTR) and 201 bp of 3' UTR. It had an open reading frame (ORF) of 771 bp encoding 257 amino acid residues. A signal peptide consisted of 22 amino acids presented before the start codon of Bryohealin, indicating that this lectin was a vacuolar (storage) protein. The C-terminal sequence of Bryohealin was composed of antibiotic domains, suggesting that this lectin could perform two functions: (i) aggregation of cell organelles in seawater and (ii) protection from bacterial contamination for successful protoplast regeneration. The BLAST search result showed that Bryohealin had little sequence homology with any known plant lectins, but rather resembled animal lectins with fucolectin domains. The expression of recombinant Bryohealin (rBryohealin) was obtained in the Escherichia coli system.
Collapse
Affiliation(s)
- Kang Sup Yoon
- Department of Biology, Kongju National University, Kongju, 314-701, KoreaDepartment of Chemistry, Kongju National University, Kongju, 314-701, KoreaDepartment of Biology, Kongju National University, Kongju, 314-701, Korea
| | - Key Pyoung Lee
- Department of Biology, Kongju National University, Kongju, 314-701, KoreaDepartment of Chemistry, Kongju National University, Kongju, 314-701, KoreaDepartment of Biology, Kongju National University, Kongju, 314-701, Korea
| | - Tatyana A Klochkova
- Department of Biology, Kongju National University, Kongju, 314-701, KoreaDepartment of Chemistry, Kongju National University, Kongju, 314-701, KoreaDepartment of Biology, Kongju National University, Kongju, 314-701, Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, 314-701, KoreaDepartment of Chemistry, Kongju National University, Kongju, 314-701, KoreaDepartment of Biology, Kongju National University, Kongju, 314-701, Korea
| |
Collapse
|
16
|
Nascimento KS, Nagano CS, Nunes EV, Rodrigues RF, Goersch GV, Cavada BS, Calvete JJ, Saker-Sampaio S, Farias WRL, Sampaio AH. Isolation and characterization of a new agglutinin from the red marine algaHypnea cervicornisJ. Agardh. Biochem Cell Biol 2006; 84:49-54. [PMID: 16462889 DOI: 10.1139/o05-152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biochemical characterization of a new lectin (Hypnea cervicornis agglutinin or HCA) isolated from the Brazilian red alga H. cervicornis is reported. The haemagglutinating activity of the lectin was only inhibited by the glycoprotein porcine stomach mucin at a minimum inhibitory concentration of 19 µg·mL–1. No haemagglutination inhibition was detected after the addition of simple sugars. The MALDI-TOF molecular masses of native and reduced and carbamidomethylated HCA were, respectively, 9196.6 Da and 9988.2 Da, indicating that the primary structure of the protein is crosslinked by 7 disulfide bonds. This unusual structural feature among lectins, along with its N-terminal sequence and amino-acid composition, clearly shows that HCA belongs to a protein family distinct from the isolectins Hypnin A1 and A2 isolated from the related Japanese alga Hypnea japonica. On the other hand, HCA displayed a high degree of similarity to the agglutinin from the Brazilian species Hypnea musciformis. Our data indicate the occurrence of structural diversity among lectins of closely related species living in distant ecosystems, i.e., the Pacific coast of Japan and the Atlantic coast of Brazil, and support the hypothesis that the lectin content (lectinome) might serve as a biomarker for taxonomical purposes.Key words: agglutinin, lectin, isolation, Hypnea cervicornis, red marine alga.
Collapse
Affiliation(s)
- K S Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nagano CS, Gallego del Sol F, Cavada BS, Nascimento KSD, Nunes EV, Sampaio AH, Calvete JJ. Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga Hypnea musciformis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:997-9. [PMID: 16511217 PMCID: PMC1978131 DOI: 10.1107/s1744309105033671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 10/18/2005] [Indexed: 11/10/2022]
Abstract
HML, a lectin from the red marine alga Hypnea musciformis, defines a novel lectin family. Orthorhombic crystals of HML belonging to space group P2(1)2(1)2(1) grew within three weeks at 293 K using the hanging-drop vapour-diffusion method. A complete data set was collected at 2.4 A resolution. HML is the first marine alga lectin to be crystallized.
Collapse
Affiliation(s)
| | | | - Benildo S. Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60451-970, Brazil
| | | | - Eudismar Vale Nunes
- Laboratorio de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE 60451-970, Brazil
| | - Alexandre H. Sampaio
- Laboratorio de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE 60451-970, Brazil
| | | |
Collapse
|
18
|
Nagano CS, Debray H, Nascimento KS, Pinto VPT, Cavada BS, Saker-Sampaio S, Farias WRL, Sampaio AH, Calvete JJ. HCA and HML isolated from the red marine algae Hypnea cervicornis and Hypnea musciformis define a novel lectin family. Protein Sci 2005; 14:2167-76. [PMID: 16046632 PMCID: PMC2279328 DOI: 10.1110/ps.051498505] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
HCA and HML represent lectins isolated from the red marine algae Hypnea cervicornis and Hypnea musciformis, respectively. Hemagglutination inhibition assays suggest that HML binds GalNAc/Gal substituted with a neutral sugar through 1-3, 1-4, or 1-2 linkages in O-linked mucin-type glycans, and Fuc(alpha1-6)GlcNAc of N-linked glycoproteins. The specificity of HCA includes the epitopes recognized by HML, although the glycoproteins inhibited distinctly HML and HCA. The agglutinating activity of HCA was inhibited by GalNAc, highlighting the different fine sugar epitope-recognizing specificity of each algal lectin. The primary structures of HCA (9193+/-3 Da) and HML (9357+/-1 Da) were determined by Edman degradation and tandem mass spectrometry of the N-terminally blocked fragments. Both lectins consist of a mixture of a 90-residue polypeptide containing seven intrachain disulfide bonds and two disulfide-bonded subunits generated by cleavage at the bond T50-E51 (HCA) and R50-E51 (HML). The amino acid sequences of HCA and HML display 55% sequence identity (80% similarity) between themselves, but do not show discernible sequence and cysteine spacing pattern similarities with any other known protein structure, indicating that HCA and HML belong to a novel lectin family. Alignment of the amino acid sequence of the two lectins revealed the existence of internal domain duplication, with residues 1-47 and 48-90 corresponding to the N- and C-terminal domains, respectively. The six conserved cysteines in each domain may form three intrachain cysteine linkages, and the unique cysteine residues of the N-terminal (Cys46) and the C-terminal (Cys71) domains may form an intersubunit disulfide bond.
Collapse
Affiliation(s)
- Celso S Nagano
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, E-46010 Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Leite YFMM, Silva LMCM, Amorim RCDN, Freire EA, de Melo Jorge DM, Grangeiro TB, Benevides NMB. Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Biochim Biophys Acta Gen Subj 2005; 1724:137-45. [PMID: 15869843 DOI: 10.1016/j.bbagen.2005.03.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/26/2005] [Accepted: 03/18/2005] [Indexed: 11/23/2022]
Abstract
A lectin from the marine red alga Gracilaria ornata (Gracilariaceae, Rodophyta) was purified and characterized. The purification procedure consisted of extracting soluble proteins in 0.025 M Tris-HCl buffer, pH 7.5, followed by ammonium sulfate precipitation (70% saturation), ion exchange chromatography on DEAE-cellulose and affinity chromatography on mucin-Sepharose 4B. The purified G. ornata lectin (GOL) showed a single protein band with an apparent molecular mass of 17 kDa when submitted to SDS-polyacrylamide gel electrophoresis under reducing conditions. The native molecular mass of GOL determined by gel filtration on a Sephadex G-100 column was 17.4 kDa and its carbohydrate content was estimated to be 2.9%. Therefore, GOL is a monomeric glycoprotein. The purified lectin agglutinated trypsin-treated erythrocytes from rabbit and chicken but not from human. Its activity was not inhibited by any of the mono- and disaccharides tested but by the complex glycoproteins porcine stomach mucin, lactotransferrin, asialofetuin and bovine and porcine thyroglobulins. Isoelectric focusing showed that GOL is an acidic protein with a pI of 5.4 with analysis of its amino acid composition revealing high contents of Asx, Glx, Ser, Glu, Ala and Cys. When incorporated in artificial seeds, GOL significantly affected the development of Callosobruchus maculatus larvae, indicating the possibility of using this lectin in a biotechnological strategy for insect management of stored cowpea seeds.
Collapse
|
20
|
Ambrosi M, Cameron NR, Davis BG. Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 2005; 3:1593-608. [PMID: 15858635 DOI: 10.1039/b414350g] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in glycobiology has revealed that cell surface oligosaccharides play an essential role in recognition events. More precisely, these saccharides may be complexed by lectins, carbohydrate-binding proteins other than enzymes and antibodies, able to recognise sugars in a highly specific manner. The ubiquity of lectin-carbohydrate interactions opens enormous potential for their exploitation in medicine. Therefore, extraordinary effort is made into the identification of new lectins as well as into the achievement of a deep understanding of their functions and of the precise mechanism of their association with specific ligands. In this review, a summary of the main features of lectins, particularly those found in legumes, will be presented with a focus on the mechanism of carbohydrate-binding. An overview of lectin-carbohydrate interactions will also be given, together with an insight into their energetics. In addition, therapeutic applications of lectins will be discussed.
Collapse
Affiliation(s)
- Moira Ambrosi
- Department of Chemistry, University of Durham, South Road, Durham, UKDH1 3LE
| | | | | |
Collapse
|