1
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
2
|
Akbari MS, Doran KS, Burcham LR. Metal Homeostasis in Pathogenic Streptococci. Microorganisms 2022; 10:1501. [PMID: 35893559 PMCID: PMC9331361 DOI: 10.3390/microorganisms10081501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are opportunistic pathogens that are capable of causing invasive disease in a wide range of populations. Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to survive across dynamic host environments, Streptococci have evolved complex systems to withstand metal stress and maintain metal homeostasis, especially during colonization and infection. There are many different types of transport systems that are used by bacteria to import or export metals that can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc, manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal homeostasis in pathogenic Streptococci, and their role in virulence.
Collapse
Affiliation(s)
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | |
Collapse
|
3
|
Lin Y, Zhou X, Li Y. Strategies for Streptococcus mutans biofilm dispersal through extracellular polymeric substances disruption. Mol Oral Microbiol 2021; 37:1-8. [PMID: 34727414 DOI: 10.1111/omi.12355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Dental caries is one of the most prevalent and costly biofilm-dependent oral infectious diseases affecting most of the world's population. Streptococcus mutans, a major extracellular polymeric substance (EPS) producing bacteria in dental plaque, plays a vital role in human dental caries. EPS acts as the framework of dental plaque and promotes bacterial adhesion, cohesion, and environmental stress resistance and hinders the diffusion of nutrients and metabolic products. Since EPS is critical for biofilm lifestyle and virulence of cariogenic bacteria, EPS disruption could be a potential strategy to prevent caries. This review sought to summarize potential strategies to inhibit S. mutans biofilms through EPS disruption. The signal network intervention has a positive effect on S. mutans biofilm disruption, which could be achieved by using cyclic dimeric G/AMP inhibitors, quorum sensing inhibitors, and diffusible signal factors. Besides the enzyme degradation of exopolysaccharides, extracellular DNA, and proteins, other novel strategies, such as nanoparticles and phage therapy, could also promote EPS matrix disruption.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Houari A, Di Martino P. Polysaccharide-hydrolysing enzymes enhance the in vitro cleaning efficiency of Nanofiltration membranes. AIMS Microbiol 2019; 5:368-378. [PMID: 31915749 PMCID: PMC6946636 DOI: 10.3934/microbiol.2019.4.368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
The development of biofilm on the surface of filtration membranes is the main fouling component of water filtration systems. Chemical cleaning is only partially effective in removing biofilm components from the membrane surface. In order to identify opportunities to improve the efficiency of commercial cleaning solutions used in nanofiltration, we compared the in vitro efficacy of different commercial treatments, with or without the addition of polysaccharidases, to clean fouled membrane samples. The treatments were tested at two stages of biofilm development corresponding to 80 (D80) and 475 (D475) days of filtration in an industrial plant. The cleaning efficiency was evaluated by comparing the ATR-FTIR spectra before and after cleaning. At D80 and D475, all cleaning solutions led to a reduction of infrared signals from the biofilm. At D80, enzymatic alkaline detergent (AEDT) treatment was significantly more effective than alkaline detergent (ADT) treatment in removing proteins, but no significant difference in efficacy between the two treatments was observed for polysaccharides. The addition of polysaccharidases to AEDT did not bring any significant efficiency gain. At D475, ADT and AEDT treatments had the same efficacy, but the addition of polysaccharidases to the AEDT treatment significantly increased the removal of polysaccharides and proteins from the membrane surface. In conclusion, polysaccharidases can increase the in vitro efficacy of a commercially available alkaline enzymatic detergent cleaning solution against sufficiently developed biofilms. These results pave the way for the development of new cleaning solutions containing polysaccharide degrading enzymes for the cleaning of membranes used in the production of drinking water. Further experiments are needed to characterize the mechanism of this polysaccharidase effect and to confirm this increase in cleaning efficiency in an industrial context.
Collapse
Affiliation(s)
- Ahmed Houari
- Laboratoire ERRMECe-EA1391, Université de Cergy-Pontoise, rue Descartes site de Neuville-sur-Oise 95031 Cergy-Pontoise, cedex France
| | - Patrick Di Martino
- Laboratoire ERRMECe-EA1391, Université de Cergy-Pontoise, rue Descartes site de Neuville-sur-Oise 95031 Cergy-Pontoise, cedex France
| |
Collapse
|
5
|
Guilhen C, Forestier C, Balestrino D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol 2017; 105:188-210. [PMID: 28422332 DOI: 10.1111/mmi.13698] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 01/22/2023]
Abstract
In most environments, microorganisms evolve in a sessile mode of growth, designated as biofilm, which is characterized by cells embedded in a self-produced extracellular matrix. Although a biofilm is commonly described as a "cozy house" where resident bacteria are protected from aggression, bacteria are able to break their biofilm bonds and escape to colonize new environments. This regulated process is observed in a wide variety of species; it is referred to as biofilm dispersal, and is triggered in response to various environmental and biological signals. The first part of this review reports the main regulatory mechanisms and effectors involved in biofilm dispersal. There is some evidence that dispersal is a necessary step between the persistence of bacteria inside biofilm and their dissemination. In the second part, an overview of the main methods used so far to study the dispersal process and to harvest dispersed bacteria was provided. Then focus was on the properties of the biofilm-dispersed bacteria and the fundamental role of the dispersal process in pathogen dissemination within a host organism. In light of the current body of knowledge, it was suggested that dispersal acts as a potent means of disseminating bacteria with enhanced colonization properties in the surrounding environment.
Collapse
Affiliation(s)
- Cyril Guilhen
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| | - Christiane Forestier
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| | - Damien Balestrino
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| |
Collapse
|
6
|
Propionibacterium acnes Recovered from Atherosclerotic Human Carotid Arteries Undergoes Biofilm Dispersion and Releases Lipolytic and Proteolytic Enzymes in Response to Norepinephrine Challenge In Vitro. Infect Immun 2015. [PMID: 26216428 DOI: 10.1128/iai.00510-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, human atherosclerotic carotid arteries were examined following endarterectomy for the presence of the Gram-positive bacterium Propionibacterium acnes and its potential association with biofilm structures within the arterial wall. The P. acnes 16S rRNA gene was detectable in 4 of 15 carotid artery samples, and viable P. acnes was one among 10 different bacterial species recoverable in culture. Fluorescence in situ hybridization analysis of 5 additional atherosclerotic carotid arteries demonstrated biofilm bacteria within all samples, with P. acnes detectable in 4 samples. We also demonstrated that laboratory-grown cultures of P. acnes biofilms were susceptible to induction of a biofilm dispersion response when challenged with physiologically relevant levels of norepinephrine in the presence of iron-bound transferrin or with free iron. The production and release of lipolytic and proteolytic extracellular enzymes by P. acnes were shown to increase in iron-induced dispersed biofilms, and these dispersion-induced P. acnes VP1 biofilms showed increased expression of mRNAs for the triacylglycerol lipases PPA2105 and PPA1796 and the hyaluronate lyase PPA380 compared to that in untreated biofilms. These results demonstrate that P. acnes can infect the carotid arteries of humans with atherosclerosis as a component of multispecies biofilms and that dispersion is inducible for this organism, at least in vitro, with physiologically relevant levels of norepinephrine resulting in the production and release of degradative enzymes.
Collapse
|
7
|
Lee HS, Dastgheyb SS, Hickok NJ, Eckmann DM, Composto RJ. Targeted release of tobramycin from a pH-responsive grafted bilayer challenged with S. aureus. Biomacromolecules 2015; 16:650-9. [PMID: 25585173 DOI: 10.1021/bm501751v] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A stimuli-responsive, controlled release bilayer for the prevention of bacterial infection on biomaterials is presented. Drug release is locally controlled by the pH-responsiveness of the bilayer, comprised of an inner poly(acrylic acid) (PAA) monolayer grafted to a biomaterial and cross-linked with an outer chitosan (CH) brush. Tobramycin (TOB) is loaded in the inner PAA in part to minimize bacteria resistance. Because biofilm formation causes a decrease in local pH, TOB is released from PAA and permeates through the CH, which is in contact with the biofilm. Antibiotic capacity is controlled by the PAA thickness, which depends on PAA brush length and the extent of cross-linking between CH and PAA at the bilayer interface. This TOB-loaded, pH-responsive bilayer exhibits significantly enhanced antibacterial activity relative to controls.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Materials Science and Engineering and ‡Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
8
|
Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio 2014; 5:e01206-14. [PMID: 24917599 PMCID: PMC4056553 DOI: 10.1128/mbio.01206-14] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Atherosclerosis, a disease condition resulting from the buildup of fatty plaque deposits within arterial walls, is the major underlying cause of ischemia (restriction of the blood), leading to obstruction of peripheral arteries, congestive heart failure, heart attack, and stroke in humans. Emerging research indicates that factors including inflammation and infection may play a key role in the progression of atherosclerosis. In the current work, atherosclerotic carotid artery explants from 15 patients were all shown to test positive for the presence of eubacterial 16S rRNA genes. Density gradient gel electrophoresis of 5 of these samples revealed that each contained 10 or more distinct 16S rRNA gene sequences. Direct microscopic observation of transverse sections from 5 diseased carotid arteries analyzed with a eubacterium-specific peptide nucleic acid probe revealed these to have formed biofilm deposits, with from 1 to 6 deposits per thin section of plaque analyzed. A majority, 93%, of deposits was located proximal to the internal elastic lamina and associated with fibrous tissue. In 6 of the 15 plaques analyzed, 16S rRNA genes from Pseudomonas spp. were detected. Pseudomonas aeruginosa biofilms have been shown in our lab to undergo a dispersion response when challenged with free iron in vitro. Iron is known to be released into the blood by transferrin following interaction with catecholamine hormones, such as norepinephrine. Experiments performed in vitro showed that addition of physiologically relevant levels of norepinephrine induced dispersion of P. aeruginosa biofilms when grown under low iron conditions in the presence but not in the absence of physiological levels of transferrin. IMPORTANCE The association of bacteria with atherosclerosis has been only superficially studied, with little attention focused on the potential of bacteria to form biofilms within arterial plaques. In the current work, we show that bacteria form biofilm deposits within carotid arterial plaques, and we demonstrate that one species we have identified in plaques can be stimulated in vitro to undergo a biofilm dispersion response when challenged with physiologically relevant levels of norepinephrine in the presence of transferrin. Biofilm dispersion is characterized by the release of bacterial enzymes into the surroundings of biofilm microcolonies, allowing bacteria to escape the biofilm matrix. We believe these enzymes may have the potential to damage surrounding tissues and facilitate plaque rupture if norepinephrine is able to stimulate biofilm dispersion in vivo. This research, therefore, suggests a potential mechanistic link between hormonal state and the potential for heart attack and stroke.
Collapse
|
9
|
Acute psychosocial stress differentially influences salivary endocrine and immune measures in undergraduate students. Physiol Behav 2012; 107:317-21. [DOI: 10.1016/j.physbeh.2012.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/23/2012] [Accepted: 09/09/2012] [Indexed: 11/21/2022]
|
10
|
Abstract
Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we provide a simple, versatile method of analysis for describing the compaction of bacteria during centrifugation based on a proposed centrifugation coefficient, C. Values of C can be related to different bacterial cell surface properties. Changing the geometry of the centrifugation container or centrifugation speeds changed the value of C significantly. Initial deposition rates of Staphylococcus aureus ATCC 12600 to a glass surface decayed exponentially from 4,217 to 1,478 cm⁻² s⁻¹ with increasing C, while the proportion of staphylococci with a zeta potential of around -15 mV decreased from 97 to 58%. These surface-sensitive parameters were used independently to derive a critical centrifugation coefficient (0.040), above which centrifugation was considered to impact the outcome of surface-sensitive experiments due to cell surface damage. The critical centrifugation coefficient could successfully predict staphylococcal cell surface damage, i.e., a significant change in initial deposition rate or zeta potential distribution, in 84% of all cases included here, whereas the centrifugation speed could predict damage in only 58% of all cases. Moreover, controlling the centrifugation coefficient within narrow limits over a series of experiments yielded 43% smaller standard deviations in initial staphylococcal deposition rates than with centrifugation at fixed speeds for replicate experiments.
Collapse
|
11
|
Trueba AF, Mizrachi D, Auchus RJ, Vogel PD, Ritz T. Effects of psychosocial stress on the pattern of salivary protein release. Physiol Behav 2011; 105:841-9. [PMID: 22056539 DOI: 10.1016/j.physbeh.2011.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Previous research suggests that acute stress can increase the release of immune-relevant proteins in saliva. However, no attempts have been made to examine a wider range of salivary proteins in response to stress. In this study, we identified and quantified changes in the pattern of salivary protein release in a 45 min time period following the Trier Social Stress Test (TSST) in 12 asthmatic and 13 healthy participants. Proteins were separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The relative protein amounts were quantified using the Image J software (NIH), and identified and characterized using mass spectroscopy. Negative affect was increased immediately after stress in both groups. The results showed that alpha amylase, cystatin S and light chain IgA were increased after the TSST and significant increases in glutathione S-transferase and prolactin inducible protein were also observed. Asthma patients showed responses similar to healthy controls, but had a tendency toward overall lower alpha amylase levels. Our findings suggest that a variety of proteins relevant to mucosal immunity are elevated following acute psychosocial stress, including glutathione S-transferase and prolactin inducible protein, which had not been characterized in this context before.
Collapse
Affiliation(s)
- Ana F Trueba
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Dallas, TX 75206, USA.
| | | | | | | | | |
Collapse
|
12
|
Azevedo CSD, Trung LCE, Simionato MRL, Freitas AZD, Matos AB. Evaluation of caries-affected dentin with optical coherence tomography. Braz Oral Res 2011; 25:407-13. [DOI: 10.1590/s1806-83242011000500006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/26/2011] [Indexed: 11/22/2022] Open
|
13
|
|
14
|
Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 2010; 6:e1000828. [PMID: 20360962 PMCID: PMC2847914 DOI: 10.1371/journal.ppat.1000828] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/18/2010] [Indexed: 01/15/2023] Open
Abstract
Biofilms are dynamic microbial communities in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. In the last decade, early events associated with C. albicans biofilm formation have received considerable attention. However, very little is known about C. albicans biofilm dispersion or the mechanisms and signals that trigger it. This is important because it is precisely C. albicans cells dispersed from biofilms that are the main culprits associated with candidemia and establishment of disseminated invasive disease, two of the gravest forms of candidiasis. Using a simple flow biofilm model recently developed by our group, we have performed initial investigations into the phenomenon of C. albicans biofilm dispersion, as well as the phenotypic characteristics associated with dispersed cells. Our results indicate that C. albicans biofilm dispersion is dependent on growing conditions, including carbon source and pH of the media used for biofilm development. C. albicans dispersed cells are mostly in the yeast form and display distinct phenotypic properties compared to their planktonic counterparts, including enhanced adherence, filamentation, biofilm formation and, perhaps most importantly, increased pathogenicity in a murine model of hematogenously disseminated candidiasis, thus indicating that dispersed cells are armed with a complete arsenal of “virulence factors” important for seeding and establishing new foci of infection. In addition, utilizing genetically engineered strains of C. albicans (tetO-UME6 and tetO-PES1) we demonstrate that C. albicans biofilm dispersion can be regulated by manipulating levels of expression of these key genes, further supporting the evidence for a strong link between biofilms and morphogenetic conversions at different stages of the C. albicans biofilm developmental cycle. Overall, our results offer novel and important insight into the phenomenon of C. albicans biofilm dispersion, a key part of the biofilm developmental cycle, and provide the basis for its more detailed analysis. Candida albicans is the main causative agent of candidiasis, a difficult-to-treat infection that occurs mostly in severely immunosuppressed and other at-risk patients. Candidiasis is often associated with the formation of biofilms (attached microbial communities encapsulated within a protective matrix) on host surfaces and/or implantable medical devices, most notably intravascular catheters. In recent years, for C. albicans, the process of biofilm formation has received much attention. However, the same is not true for biofilm dispersion (the release of cells from the biofilm). This is important since these dispersed cells are responsible for the subsequent establishment of disseminated candidiasis at distal organs. Here we have taken advantage of a model of biofilm formation under conditions of flow recently described by our group to study and characterize the phenomenon of C. albicans biofilm dispersion. Rather than an end-stage process, our results indicate that dispersion occurs at all different stages of the biofilm developmental cycle and is influenced by nutritional and other physiochemical conditions. In addition, our findings provide initial insights into how this process is regulated at the molecular level. We also demonstrate that dispersed cells display distinct phenotypic properties that are associated with increased virulence, with important clinical repercussions.
Collapse
|
15
|
Kaplan JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 2010; 89:205-18. [PMID: 20139339 DOI: 10.1177/0022034509359403] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Like all sessile organisms, surface-attached communities of bacteria known as biofilms must release and disperse cells into the environment to colonize new sites. For many pathogenic bacteria, biofilm dispersal plays an important role in the transmission of bacteria from environmental reservoirs to human hosts, in horizontal and vertical cross-host transmission, and in the exacerbation and spread of infection within a host. The molecular mechanisms of bacterial biofilm dispersal are only beginning to be elucidated. Biofilm dispersal is a promising area of research that may lead to the development of novel agents that inhibit biofilm formation or promote biofilm cell detachment. Such agents may be useful for the prevention and treatment of biofilms in a variety of industrial and clinical settings. This review describes the current status of research on biofilm dispersal, with an emphasis on studies aimed to characterize dispersal mechanisms, and to identify environmental cues and inter- and intracellular signals that regulate the dispersal process. The clinical implications of biofilm dispersal and the potential therapeutic applications of some of the most recent findings will also be discussed.
Collapse
Affiliation(s)
- J B Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA.
| |
Collapse
|
16
|
Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310-47. [PMID: 19487730 DOI: 10.1128/mmbr.00041-08] [Citation(s) in RCA: 607] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.
Collapse
|
17
|
Sellam A, Al-Niemi T, McInnerney K, Brumfield S, Nantel A, Suci PA. A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol 2009; 9:25. [PMID: 19187560 PMCID: PMC2647545 DOI: 10.1186/1471-2180-9-25] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 02/02/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dispersal from Candida albicans biofilms that colonize catheters is implicated as a primary factor in the link between contaminated catheters and life threatening blood stream infections (BSI). Appropriate in vitro C. albicans biofilm models are needed to probe factors that induce detachment events. RESULTS Using a flow through system to culture C. albicans biofilms we characterized a detachment process which culminates in dissociation of an entire early stage biofilm from a silicone elastomer surface. We analyzed the transcriptome response at time points that bracketed an abrupt transition in which a strong adhesive association with the surface is weakened in the initial stages of the process, and also compared batch and biofilm cultures at relevant time points. K means analysis of the time course array data revealed categories of genes with similar patterns of expression that were associated with adhesion, biofilm formation and glycoprotein biosynthesis. Compared to batch cultures the biofilm showed a pattern of expression of metabolic genes that was similar to the C. albicans response to hypoxia. However, the loss of strong adhesion was not obviously influenced by either the availability of oxygen in the medium or at the silicone elastomer surface. The detachment phenotype of mutant strains in which selected genes were either deleted or overexpressed was characterized. The microarray data indicated that changes associated with the detachment process were complex and, consistent with this assessment, we were unable to demonstrate that transcriptional regulation of any single gene was essential for loss of the strong adhesive association. CONCLUSION The massive dispersal of the early stage biofilm from a biomaterial surface that we observed is not orchestrated at the level of transcriptional regulation in an obvious manner, or is only regulated at this level by a small subpopulation of cells that mediate adhesion to the surface.
Collapse
Affiliation(s)
- Adnane Sellam
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Effects of quorum sensing on cell viability in Streptococcus mutans biofilm formation. Biochem Biophys Res Commun 2009; 379:933-8. [DOI: 10.1016/j.bbrc.2008.12.175] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/28/2008] [Indexed: 12/22/2022]
|
19
|
Effect of biofilm formation on virulence factor secretion via the general secretory pathway in Streptococcus mutans. Arch Oral Biol 2008; 53:1179-85. [DOI: 10.1016/j.archoralbio.2008.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/16/2008] [Accepted: 07/25/2008] [Indexed: 12/14/2022]
|
20
|
Hsueh YH, Somers EB, Wong ACL. Characterization of the codY gene and its influence on biofilm formation in Bacillus cereus. Arch Microbiol 2008; 189:557-68. [PMID: 18214442 DOI: 10.1007/s00203-008-0348-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 11/03/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
The foodborne pathogen Bacillus cereus can form biofilms on various food contact surfaces, leading to contamination of food products. To study the mechanisms of biofilm formation by B. cereus, a Tn5401 library was generated from strain UW101C. Eight thousand mutants were screened in EPS, a low nutrient medium. One mutant (M124), with a disruption in codY, developed fourfold less biofilm than the wild-type, and its defective biofilm phenotype was rescued by complementation. Addition of 0.1% casamino acids to EPS prolonged the duration of biofilms in the wild-type but not codY mutant. When decoyinine, a GTP synthesis inhibitor, was added to EPS, biofilm formation was decreased in the wild-type but not the mutant. The codY mutant produced three times higher protease activity than the wild-type. Zymogram and SDS-PAGE data showed that production of the protease ( approximately 130 kDa) was repressed by CodY. Addition of proteinase K to EPS decreased biofilm formation by the wild-type. Using a dpp-lacZ fusion reporter system, it was shown that that the B. cereus CodY can sense amino acids and GTP levels. These data suggest that by responding to amino acids and intracellular GTP levels CodY represses production of an unknown protease and is involved in biofilm formation.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
21
|
Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 2006; 188:7335-43. [PMID: 17050921 PMCID: PMC1636253 DOI: 10.1128/jb.00599-06] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple environmental cues have been shown to trigger biofilm detachment, the transition from surface-attached, highly organized communities known as biofilms to the motile lifestyle. The goal of this study was to identify a gene product involved in sensing environmental cues that trigger biofilm dispersion in Pseudomonas aeruginosa. To do so, we focused on novel putative chemotaxis transducer proteins that could potentially be involved in environmental sensing. We identified a locus encoding such a protein that played a role in detachment, as indicated by the observation that an isogenic mutant biofilm could not disperse in response to a variety of environmental cues. The locus was termed bdlA for biofilm dispersion locus. The BdlA protein harbors an MCP (methyl-accepting chemotaxis protein) domain and two PAS (Per-Arnt-Sint) domains that have been shown to be essential for responding to environmental signals in other proteins. The dispersion-deficient phenotype of the bdlA mutant was confirmed by treatment with the biocide H(2)O(2) and by microscopic observations. The dispersion response was independent of motility. bdlA mutant biofilms were found to have increased adherent properties and increased intracellular levels of cyclic di-GMP (c-di-GMP). Our findings suggest that BdlA may be a link between sensing environmental cues, c-di-GMP levels, and detachment. Based on our findings, a possible involvement of BdlA in a signaling cascade resulting in biofilm dispersion is discussed.
Collapse
Affiliation(s)
- Ryan Morgan
- Department of Biological Sciences, Binghamton University, SUNY at Binghamton, 104 Science III, NY 13902, USA
| | | | | | | | | |
Collapse
|
22
|
Mitrakul K, Loo CY, Gyurko C, Hughes CV, Ganeshkumar N. Mutational analysis of the adcCBA genes in Streptococcus gordonii biofilm formation. ACTA ACUST UNITED AC 2005; 20:122-7. [PMID: 15720574 DOI: 10.1111/j.1399-302x.2004.00205.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus gordonii, a primary colonizer, is part of the pioneer biofilm consortium that initiates dental plaque development on tooth surfaces. An insertion of Tn917-lac transposon into the adcR gene produced a biofilm-defective phenotype. S. gordonii adcR is a regulatory gene and is part of an operon (adc) that includes three other genes, adcCBA. AdcC contains a putative consensus-binding site for adenosine triphosphate, AdcB is a putative hydrophobic membrane protein, and AdcA is a putative lipoprotein permease. Mutants were constructed by insertional inactivation in each of the three adcCBA genes and their effects on biofilm formation examined. The adcC::spec(R) and adcB::spec(R) mutations displayed a biofilm-defective phenotype, whereas the adcA::spec(R) mutant was biofilm-positive in a static polystyrene microtiter plate biofilm assay. All three mutants formed poor biofilms in a flow-cell system and were competence-defective, suggesting the adc operon plays an important role in S. gordonii biofilm formation and competence.
Collapse
Affiliation(s)
- K Mitrakul
- Department of Pediatric Dentistry, Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | | | | | | | | |
Collapse
|
23
|
Hunt SM, Werner EM, Huang B, Hamilton MA, Stewart PS. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 2005; 70:7418-25. [PMID: 15574944 PMCID: PMC535154 DOI: 10.1128/aem.70.12.7418-7425.2004] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combination of experimental and theoretical approaches was used to investigate the role of nutrient starvation as a potential trigger for biofilm detachment. Experimental observations of detachment in a variety of biofilm systems were made with pure cultures of Pseudomonas aeruginosa. These observations indicated that biofilms grown under continuous-flow conditions detached after flow was stopped, that hollow cell clusters were sometimes observed in biofilms grown in flow cells, and that lysed cells were apparent in the internal strata of colony biofilms. When biofilms were nutrient starved under continuous-flow conditions, detachment still occurred, suggesting that starvation and not the accumulation of a metabolic product was responsible for triggering detachment in this particular system. A cellular automata computer model of biofilm dynamics was used to explore the starvation-dependent detachment mechanism. The model predicted biofilm structures and dynamics that were qualitatively similar to those observed experimentally. The predicted features included centrally located voids appearing in sufficiently large cell clusters, gradients in growth rate within these clusters, and the release of most of the biofilm with simulated stopped-flow conditions. The model was also able to predict biofilm sloughing resulting solely from this detachment mechanism. These results support the conjecture that nutrient starvation is an environmental cue for the release of microbes from a biofilm.
Collapse
Affiliation(s)
- Stephen M Hunt
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980, USA
| | | | | | | | | |
Collapse
|
24
|
Mitrakul K, Loo CY, Hughes CV, Ganeshkumar N. Role of a Streptococcus gordonii copper-transport operon, copYAZ, in biofilm detachment. ACTA ACUST UNITED AC 2005; 19:395-402. [PMID: 15491466 DOI: 10.1111/j.1399-302x.2004.00176.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus gordonii is a pioneer oral bacterium that is associated with the initiation of dental plaque development. Located downstream of the S. gordonii adc operon, which is involved in competence and biofilm formation, were three open reading frames, designated copY, copA and copZ. These open reading frames were homologous to the copYAZ genes in Streptococcus mutans that are involved in copper homeostasis and biofilm detachment. This study examined whether copYAZ genes play any role in the biofilm formation and detachment of S. gordonii. The copY gene encodes a 143-amino acid protein homologous to the negative transcriptional regulator of a copper-transport operon, copA encodes a 748-amino acid copper-transporting P-type ATPase, and copZ encodes a 69-amino acid putative metallochaperone protein in S. mutans. Each open reading frame in the copYAZ operon in S. gordonii was inactivated by insertional mutation and the growth, biofilm formation and detachment of each mutant were examined. S. gordonii copY::specR, copA::specR, and copZ::specR mutants were able to form biofilms on both polystyrene and glass surfaces. However, inactivation of copZ and to a lesser extent copY resulted in phenotypes that were defective in biofilm detachment, which is consistent with previous observations in S. mutans and suggests that the trace element copper might influence biofilm detachment of bacterial biofilms.
Collapse
Affiliation(s)
- K Mitrakul
- Department of Pediatric Dentistry, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
25
|
Sauer K, Cullen MC, Rickard AH, Zeef LAH, Davies DG, Gilbert P. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 2004; 186:7312-26. [PMID: 15489443 PMCID: PMC523207 DOI: 10.1128/jb.186.21.7312-7326.2004] [Citation(s) in RCA: 323] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The processes associated with early events in biofilm formation have become a major research focus over the past several years. Events associated with dispersion of cells from late stage biofilms have, however, received little attention. We demonstrate here that dispersal of Pseudomonas aeruginosa PAO1 from biofilms is inducible by a sudden increase in carbon substrate availability. Most efficient at inducing dispersal were sudden increases in availability of succinate > glutamate > glucose that led to approximately 80% reductions in surface-associated biofilm biomass. Nutrient-induced biofilm dispersion was associated with increased expression of flagella (fliC) and correspondingly decreased expression of pilus (pilA) genes in dispersed cells. Changes in gene expression associated with dispersion of P. aeruginosa biofilms were studied by using DNA microarray technology. Results corroborated proteomic data that showed gene expression to be markedly different between biofilms and newly dispersed cells. Gene families that were upregulated in dispersed cells included those for flagellar and ribosomal proteins, kinases, and phage PF1. Within the biofilm, genes encoding a number of denitrification pathways and pilus biosynthesis were also upregulated. Interestingly, nutrient-induced dispersion was associated with an increase in the number of Ser/Thr-phosphorylated proteins within the newly dispersed cells, and inhibition of dephosphorylation reduced the extent of nutrient-induced dispersion. This study is the first to demonstrate that dispersal of P. aeruginosa from biofilms can be induced by the addition of simple carbon sources. This study is also the first to demonstrate that dispersal of P. aeruginosa correlates with a specific dispersal phenotype.
Collapse
Affiliation(s)
- K Sauer
- Department of Biological Sciences, SUNY at Binghamton, Binghamton, NY 13902, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Knobloch JKM, Nedelmann M, Kiel K, Bartscht K, Horstkotte MA, Dobinsky S, Rohde H, Mack D. Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl Environ Microbiol 2004; 69:5812-8. [PMID: 14532029 PMCID: PMC201197 DOI: 10.1128/aem.69.10.5812-5818.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.
Collapse
Affiliation(s)
- Johannes K-M Knobloch
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Loiselle M, Anderson KW. The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. BIOFOULING 2003; 19:77-85. [PMID: 14618691 DOI: 10.1080/0892701021000030142] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A study was made of the use of cellulase to inhibit biofilm formation by a pathogenic bacterium commonly found in medical implants. A Pseudomonas aeruginosa biofilm was grown on glass slides in a parallel flow chamber for 4 d with glucose as the nutrient source. Biofilm development was assessed by measuring the colony forming units (CFU) and biomass areal density. Biofilm was grown at pH 5 and 7 in the presence of three different cellulase concentrations, 9.4, 37.6 and 75.2 units ml-1. In addition, a control study using deactivated cellulase was performed. The results show that cellulase is effective in partially inhibiting biomass and CFU formation by P. aeruginosa on glass surfaces. The effect of cellulase depended on concentration and was more effective at pH 5 than pH 7. The experiment was further extended by investigating the effect of cellulase on the apparent molecular weight of purified P. aeruginosa exopolysaccharides (EPS). The observation of EPS using size exclusion chromatography showed a decrease in apparent molecular weight when incubated with enzyme. An increase in the amount of reducing sugar with time when the purified EPS were incubated with enzyme also supports the hypothesis that cellulase degrades the EPS of P. aeruginosa. While cellulase does not provide total inhibition of biofilm formation, it is possible that the enzyme could be used in combination with other treatments or in combinations with other enzymes to increase effectiveness.
Collapse
Affiliation(s)
- Melanie Loiselle
- Department of Chemical and Materials Engineering, 177 Anderson Hall, University of Kentucky, Lexington, KY 40506-0046, USA
| | | |
Collapse
|
28
|
Lee SF, Boran TL. Roles of sortase in surface expression of the major protein adhesin P1, saliva-induced aggregation and adherence, and cariogenicity of Streptococcus mutans. Infect Immun 2003; 71:676-81. [PMID: 12540545 PMCID: PMC145395 DOI: 10.1128/iai.71.2.676-681.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sortase is a newly discovered transpeptidase that covalently links LPXTGX-containing surface proteins to the gram-positive bacterial cell wall. In this study, the sortase gene (srtA) was isolated from Streptococcus mutans NG8 by PCR. The gene encoded a 246-amino-acid protein, including a 40-amino-acid signal peptide. The srtA gene was insertionally inactivated by a tetracycline resistance cassette. P1, a major surface protein adhesin previously shown to anchor to the peptidoglycan by the LPXTGX motif, was secreted into the culture medium by the srtA mutant. In contrast, the wild-type P1 remained cell wall associated. Complementation of the mutant with srtA restored the P1 surface expression phenotype. P1 produced by the mutant, but not that produced by the wild type and the srtA-complemented mutant, was recognized by an antibody raised against the hydrophobic domain and charged tail C terminal to the LPXTGX motif. These results suggest that the failure to anchor P1 to the cell wall is due to the lack of cleavage of P1 at the LPXTGX motif. The srtA mutant was markedly less hydrophobic than the wild type and the complemented mutant. The srtA mutant failed to aggregate in the presence of saliva or salivary agglutinin and adhered poorly to saliva- or salivary agglutinin-coated hydroxylapatite. In rats, the srtA mutant colonized the teeth poorly when sucrose was absent. When sucrose was present, the srtA mutant colonized the teeth but less effectively and induced significantly less caries (P < 0.05) than the wild-type strain. In conclusion, the sortase enzyme in S. mutans is responsible for anchoring P1 to the cell surface and plays a role in modulating the surface properties and cariogenicity of S. mutans.
Collapse
Affiliation(s)
- Song F Lee
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.
| | | |
Collapse
|
29
|
Affiliation(s)
- David Davies
- Department of Biological Sciences, State University of New York, Binghamton, New York 13902, USA.
| |
Collapse
|
30
|
Akintoye SO, Dasso M, Hay DI, Ganeshkumar N, Spielman AI. Partial characterization of a human submandibular/sublingual salivary adhesion-promoting protein. Arch Oral Biol 2002; 47:337-45. [PMID: 12015214 DOI: 10.1016/s0003-9969(02)00020-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human submandibular/sublingual saliva contains a protein that promotes adhesion of Streptococcus mutans JBP serotype-c to spheroidal hydroxyapatite in vitro. A high molecular-weight (250,000-300,000 Da) adhesion-promoting protein (APP) was purified by Trisacryl 2000 M gel-filtration chromatography and gel electroelution before it was partially characterized. Lectin blotting identified that the terminal carbohydrates include N-acetyl glucosamine-beta 1-4-N-acetylglucosamine, galactose and galactose-beta 1-3-N-acetyl galactosamine. Antibodies to APP demonstrated no difference in the immunoreactive pattern of APP from saliva of caries-active or caries-resistant individuals belonging to four different ethnic groups: Asian, African-American, Hispanic or Caucasian. No immunological similarities to salivary mucins or parotid agglutinins were detected by Western blotting using immuno-cross-reactivity as a criterion. APP appears to be a unique protein found in submandibular/sublingual saliva. Understanding such a protein could help prevent S. mutans attachment to the enamel surface.
Collapse
Affiliation(s)
- S O Akintoye
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010-4086, USA
| | | | | | | | | |
Collapse
|
31
|
Vats N, Lee SF. Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. MICROBIOLOGY (READING, ENGLAND) 2001; 147:653-662. [PMID: 11238972 DOI: 10.1099/00221287-147-3-653] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A copper-transport (copYAZ) operon was cloned from the oral bacterium Streptococcus mutans JH1005. DNA sequencing showed that the operon contained three genes (copY, copA and copZ), which were flanked by a single promoter and a factor-independent terminator. copY encoded a small protein of 147 aa with a heavy-metal-binding motif (CXCX(4)CXC) at the C-terminus. CopY shared extensive homology with other bacterial negative transcriptional regulators. copA encoded a 742 aa protein that shared extensive homology with P-type ATPases. copZ encoded a 67 aa protein that also contained a heavy-metal-binding motif (CXXC) at the N-terminus. Northern blotting showed that a 3.2 kb transcript was produced by Cu2+-induced Strep. mutans cells, suggesting that the genes were synthesized as a polycistronic message. The transcriptional start site of the cop operon was mapped and shown to lie within the inverted repeats of the promoter-operator region. Strep. mutans wild-type cells were resistant to 800 microM Cu2+, whereas cells of a cop knock-out mutant were killed by 200 microM Cu2+. Complementation of the cop knock-out mutant with the cop operon restored Cu2+ resistance to wild-type level. The wild-type and the mutant did not show any differences in susceptibility to other heavy metals, suggesting that the operon was specific for copper. By using a chloramphenicol acetyltransferase reporter gene fusion, the cop operon was shown to be negatively regulated by CopY and could be derepressed by Cu2+.
Collapse
Affiliation(s)
- Neeraj Vats
- Department of Microbiology and Immunology, Faculty of Medicine1, and Department of Applied Oral Sciences, Faculty of Dentistry2, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 3J5
| | - Song F Lee
- Department of Microbiology and Immunology, Faculty of Medicine1, and Department of Applied Oral Sciences, Faculty of Dentistry2, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 3J5
| |
Collapse
|
32
|
Zuckert WR, Kerentseva TA, Lawson CL, Barbour AG. Structural conservation of neurotropism-associated VspA within the variable Borrelia Vsp-OspC lipoprotein family. J Biol Chem 2001; 276:457-63. [PMID: 11018048 DOI: 10.1074/jbc.m008449200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to avoid the immune response. One of these proteins, VspA of Borrelia turicatae, is also associated with neurotropism in infected mice. Vsp proteins are highly polymorphic in sequence, which may relate to their specific antibody reactivities and host cell interactions. To determine whether sequence variations affect protein structure, we compared B. turicatae VspA with three related proteins: VspB of B. turicatae, Vsp26 of the relapsing fever agent Borrelia hermsii, and OspC of the Lyme disease spirochete Borrelia burgdorferi. Recombinant non-lipidated proteins were purified by affinity or ion exchange chromatography. Circular dichroism spectra revealed similar, highly alpha-helical secondary structures for all four proteins. In vitro assays demonstrated protease-resistant, thermostable Vsp cores starting at a conserved serine at position 34 (Ser(34)). All proteins aggregate as dimers in solution. In situ trypsin treatment and surface protein cross-linking showed that the native lipoproteins also form protease-resistant dimers. These findings indicate that Vsp proteins have a common compact fold and that their established functions are based on localized polymorphisms. Two forms of VspA crystals suitable for structure determination by x-ray diffraction methods have been obtained.
Collapse
Affiliation(s)
- W R Zuckert
- Department of Microbiology & Molecular Genetics, University of California at Irvine, College of Medicine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|