1
|
Hsieh YH, Huang YJ, Jin JS, Yu L, Yang H, Jiang C, Wang B, Tai PC. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities. Biochem Biophys Res Commun 2014; 454:308-12. [PMID: 25450394 DOI: 10.1016/j.bbrc.2014.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Ying-Ju Huang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Jin-Shan Jin
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Liyan Yu
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Hsiuchin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Chun Jiang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Binghe Wang
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
2
|
Structural changes in the catalytic cycle of the Na+,K+-ATPase studied by infrared spectroscopy. Biophys J 2009; 96:3433-42. [PMID: 19383486 DOI: 10.1016/j.bpj.2009.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/20/2008] [Accepted: 01/02/2009] [Indexed: 11/23/2022] Open
Abstract
Pig kidney Na(+),K(+)-ATPase was studied by means of reaction-induced infrared difference spectroscopy. The reaction from E1Na(3)(+) to an E2P state was initiated by photolysis of P(3)-1-(2-nitrophenyl)ethyl ATP (NPE caged ATP) in samples that contained 3 mM free Mg(2+) and 130 mM NaCl at pH 7.5. Release of ATP from caged ATP produced highly detailed infrared difference spectra indicating structural changes of the Na(+),K(+)-ATPase. The observed transient state of the enzyme accumulated within seconds after ATP release and decayed on a timescale of minutes at 15 degrees C. Several controls ensured that the observed difference signals were due to structural changes of the Na(+),K(+)-ATPase. Samples that additionally contained 20 mM KCl showed similar spectra but less intense difference bands. The absorbance changes observed in the amide I region, reflecting conformational changes of the protein backbone, corresponded to only 0.3% of the maximum absorbance. Thus the net change of secondary structure was concluded to be very small, which is in line with movement of rigid protein segments during the catalytic cycle. Despite their small amplitude, the amide I signals unambiguously reveal the involvement of several secondary structure elements in the conformational change. Similarities and dissimilarities to corresponding spectra of the Ca(2+)-ATPase and H(+),K(+)-ATPase are discussed, and suggest characteristic bands for the E1 and E2 conformations at 1641 and 1661 cm(-1), respectively, for alphabeta heterodimeric ATPases. The spectra further indicate the participation of protonated carboxyl groups or lipid carbonyl groups in the reaction from E1Na(3)(+) to an E2P state. A negative band at 1730 cm(-1) is in line with the presence of a protonated Asp or Glu residue that coordinates Na(+) in E1Na(3)(+). Infrared signals were also detected in the absorption regions of ionized carboxyl groups.
Collapse
|
3
|
Neault JF, Benkiran A, Malonga H, Tajmir-Riahi HA. The effects of anions on the solution structure of Na,K-ATPase. J Biomol Struct Dyn 2001; 19:95-102. [PMID: 11565855 DOI: 10.1080/07391102.2001.10506723] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Anions interact with protein to induce structural changes at ligand binding sites. The effects of anion complexation include structural stabilization and promote cation-protein interaction. This study was designed to examine the interaction of aspirin and ascorbate anions with the Na+, K+-dependent adenosine triphosphatase (Na,K-ATPase) in H2O and D2O solutions at physiological pH, using anion concentrations of 0.1 microM to 1 mM with final protein concentration of 0.5 to 1 mg/ml. Absorption spectra and Fourier transform infrared (FTIR) difference spectroscopy with its self-deconvolution, second derivative resolution enhancement and curve-fitting procedures were applied to characterize the anion binding mode, binding constant, and the protein secondary structure in the anion-ATPase complexes. Spectroscopic evidence showed that the anion interaction is mainly through the polypeptide C=O and C-N groups with minor perturbation of the lipid moiety. Evidence for this came from major spectral changes (intensity variations) of the protein amide I and amide II vibrations at 1651 and 1550 cm(-1). respectively. The anion-ATPase binding constants were K=6.45 x 10(3) M(-1) for aspirin and K=1.04 x 10(4) M(-1) for ascorbate complexes. The anion interaction resulted in major protein secondary structural changes from that of the alpha-helix 19.8%; beta-pleated sheet 25.6%; turn 9.1%; beta-antiparallel 7.5% and random 38% in the free Na,K-ATPase to that of the alpha-helix 24-26%; beta-pleated 17-18%; turn 8%; beta-antiparallel 5-3% and random 45.0% in the anion-ATPase complexes.
Collapse
Affiliation(s)
- J F Neault
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, Canada
| | | | | | | |
Collapse
|