1
|
Thuillier S, Viola S, Lockett-Walters B, Nay B, Bailleul B, Baudouin E. Mode-of-action of the natural herbicide radulanin A as an inhibitor of photosystem II. PEST MANAGEMENT SCIENCE 2024; 80:156-165. [PMID: 37293747 DOI: 10.1002/ps.7609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Radulanin A is a natural 2,5-dihydrobenzoxepin synthesized by several liverworts of the Radula genus. Breakthroughs in the total synthesis of radulanin A paved the way for the discovery of its phytotoxic activity. Nevertheless, its mode-of-action (MoA) has remained unknown so far and thus was investigated, in Arabidopsis thaliana. RESULTS Radulanin A phytotoxicity was associated with cell death and partially depended on light exposure. Photosynthesis measurements based on chlorophyll-a fluorescence evidenced that radulanin A and a Radula chromene inhibited photosynthetic electron transport with IC50 of 95 and 100 μm, respectively. We established a strong correlation between inhibition of photosynthesis and phytotoxicity for a range of radulanin A analogs. Based on these data, we also determined that radulanin A phytotoxicity was abolished when the hydroxyl group was modified, and was modulated by the presence of the heterocycle and its aliphatic chain. Thermoluminescence studies highlighted that radulanin A targeted the QB site of the Photosystem II (PSII) with a similar MoA as 3-(3,4-dichloropheny)-1,1-dimethylurea (DCMU). CONCLUSION We establish that radulanin A targets PSII, expanding QB sites inhibitors to bibenzyl compounds. The identification of an easy-to-synthesize analog of radulanin A with similar MoA and efficiency might be useful for future herbicide development. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Simon Thuillier
- Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Paris, France
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | - Stefania Viola
- Department of Life Sciences, Imperial College-South Kensington Campus, London, UK
| | - Bruce Lockett-Walters
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | - Bastien Nay
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | - Benjamin Bailleul
- Chloroplast Biology and Light-sensing in Microalgae-UMR7141, IBPC, CNRS-Sorbonne Université, Paris, France
| | - Emmanuel Baudouin
- Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
2
|
Wang G. Lipid-dependent sequential allosteric activation of heat-sensing TRPV1 channels by anchor-stereoselective "hot" vanilloid compounds and analogs. Biochem Biophys Rep 2021; 28:101109. [PMID: 34504955 PMCID: PMC8416642 DOI: 10.1016/j.bbrep.2021.101109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022] Open
Abstract
Both a silent resident phosphatidylinositol lipid and a “hot” vanilloid agonist capsaicin or resiniferatoxin have been shown to share the same inter-subunit binding pocket between a voltage sensor like domain and a pore domain in TRPV1. However, how the vanilloid competes off the resident lipid for allosteric TRPV1 activation is unknown. Here, the in silico research suggested that anchor-stereoselective sequential cooperativity between an initial recessive transient silent weak ligand binding site and a subsequent dominant steady-state strong ligand binding site in the vanilloid pocket may facilitate the lipid release for allosteric activation of TRPV1 by vanilloids or analogs upon non-covalent interactions. Thus, the resident lipid may play a critical role in allosteric activation of TRPV1 by vanilloid compounds and analogs. Four active vanilloid binding pockets as revealed by the cryo-EM structure of TRPV1 have no cooperativity between subunits. Allosteric activation of TRPV1 by vanilloid compounds and analogs is lipid-dependent and anchor-stereoselective. The resident and occluded lipid must be competed off for allosteric activation of TRPV1 by vanilloid compounds and analogs. The first ligand binding is needed to release the resident lipid for the second ligand binding in the vanilloid pocket. A lipid-free anchor facilitates the vanilloid ligand binding to remove the resident lipid from the active site in TRPV1. Site accessibility controls sequential cooperative interactions of TRPV1 with vanilloids or analogs to open the channel. The anchor stereoselectivity depends on the formation of a vanilloid bridge between two separated residues at the active site. Different anchor stereoselectivities produce diverse recessive transient reaction intermediates or steps for TRPV1 opening. Membrane hyperpolarization and depolarization may stabilize and loosen the resident lipid for TRPV1 gating, respectively. Phospholipids at N- and C- terminal domains may affect the cooperativity or the potency of the vanilloid ligands.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA.,Institute of Biophysical Medico-chemistry, Reno, NV, USA
| |
Collapse
|
3
|
Guo Y, Liu W, Wang H, Wang X, Qiang S, Kalaji HM, Strasser RJ, Chen S. Action Mode of the Mycotoxin Patulin as a Novel Natural Photosystem II Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7313-7323. [PMID: 34165302 DOI: 10.1021/acs.jafc.1c01811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A biocontrol method plays an important role in weed management. In this study, we aimed to clarify the phytotoxicity of the mycotoxin patulin (PAT) and reveal its mode of action as a new natural photosystem II (PSII) inhibitor. Phytotoxicity test showed that PAT has herbicidal activity and causes significant leaf lesions on Ageratina adenophora. Under a half-inhibition concentration I50 (2.24 μM), the observed significant decrease in oxygen evolution rate and the increase in the J-step of the chlorophyll fluorescence rise OJIP curve indicated that PAT strongly reduces photosynthetic efficiency by blocking electron transport from the primary to secondary plastoquinone acceptors (QA to QB) of PSII. Molecular modeling of PAT docking to the A. adenophora D1 protein suggested that PAT bounds to the QB site by forming hydrogen bonds to histidine 252 in the D1 protein. It is proposed that PAT is a new natural PSII inhibitor and has the potential to be developed into a bioherbicide or used as a template scaffold for discovering novel derivatives with more potent herbicidal activity.
Collapse
Affiliation(s)
- Yanjing Guo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Weizhe Liu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- Plant Protection and Quarantine Station, Yangcheng Agricultural and Rural Bureau, Yangcheng 048100, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, Warsaw 02776, Poland
| | - Reto Jörg Strasser
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- Bioenergetics Laboratory, University of Geneva, CH-1254, Jussy/Geneva 1211, Switzerland
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Swainsbury DJK, Friebe VM, Frese RN, Jones MR. Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens Bioelectron 2014; 58:172-8. [PMID: 24637165 PMCID: PMC4009402 DOI: 10.1016/j.bios.2014.02.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/21/2023]
Abstract
The Rhodobacter sphaeroides reaction centre is a relatively robust and tractable membrane protein that has potential for exploitation in technological applications, including biohybrid devices for photovoltaics and biosensing. This report assessed the usefulness of the photocurrent generated by this reaction centre adhered to a small working electrode as the basis for a biosensor for classes of herbicides used extensively for the control of weeds in major agricultural crops. Photocurrent generation was inhibited in a concentration-dependent manner by the triazides atrazine and terbutryn, but not by nitrile or phenylurea herbicides. Measurements of the effects of these herbicides on the kinetics of charge recombination in photo-oxidised reaction centres in solution showed the same selectivity of response. Titrations of reaction centre photocurrents yielded half maximal inhibitory concentrations of 208 nM and 2.1 µM for terbutryn and atrazine, respectively, with limits of detection estimated at around 8 nM and 50 nM, respectively. Photocurrent attenuation provided a direct measure of herbicide concentration, with no need for model-dependent kinetic analysis of the signal used for detection or the use of prohibitively complex instrumentation, and prospects for the use of protein engineering to develop the sensitivity and selectivity of herbicide binding by the Rba. sphaeroides reaction centre are discussed. The Rhodobacter sphaeroides reaction centre was used as a biosensor for herbicides. Herbicide concentration was assessed through the attenuation of a photocurrent. The biosensor showed selectivity for triazine herbicides. The limit of detection of the biosensor was in the low nanomolar range. Photocurrent attenuation is a simple and direct basis for a herbicide biosensor.
Collapse
Affiliation(s)
- David J K Swainsbury
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Vincent M Friebe
- Division of Physics and Astronomy, Department of Biophysics, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Raoul N Frese
- Division of Physics and Astronomy, Department of Biophysics, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Michael R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
5
|
Abstract
Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA.
| |
Collapse
|
6
|
Cui Y, Yang F, Cao X, Yarov-Yarovoy V, Wang K, Zheng J. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations. ACTA ACUST UNITED AC 2012; 139:273-83. [PMID: 22412190 PMCID: PMC3315147 DOI: 10.1085/jgp.201110724] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chen S, Xu X, Dai X, Yang C, Qiang S. Identification of tenuazonic acid as a novel type of natural photosystem II inhibitor binding in Q(B)-site of Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:306-18. [PMID: 17379181 DOI: 10.1016/j.bbabio.2007.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/31/2006] [Accepted: 02/05/2007] [Indexed: 11/21/2022]
Abstract
Tenuazonic acid (TeA) is a natural phytotoxin produced by Alternaria alternata, the causal agent of brown leaf spot disease of Eupatorium adenophorum. Results from chlorophyll fluorescence revealed TeA can block electron flow from Q(A) to Q(B) at photosystem II acceptor side. Based on studies with D1-mutants of Chlamydomonas reinhardtii, the No. 256 amino acid plays a key role in TeA binding to the Q(B)-niche. The results of competitive replacement with [(14)C]atrazine combined with JIP-test and D1-mutant showed that TeA should be considered as a new type of photosystem II inhibitor because it has a different binding behavior within Q(B)-niche from other known photosystem II inhibitors. Bioassay of TeA and its analogues indicated 3-acyl-5-alkyltetramic and even tetramic acid compounds may represent a new structural framework for photosynthetic inhibitors.
Collapse
Affiliation(s)
- Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
8
|
Abstract
Chili peppers produce the pungent vanilloid compound capsaicin, which offers protection from predatory mammals. Birds are indifferent to the pain-producing effects of capsaicin and therefore serve as vectors for seed dispersal. Here, we determine the molecular basis for this species-specific behavioral response by identifying a domain of the rat vanilloid receptor that confers sensitivity to capsaicin to the normally insensitive chicken ortholog. Like its mammalian counterpart, the chicken receptor is activated by heat or protons, consistent with the fact that both mammals and birds detect noxious heat and experience thermal hypersensitivity. Our findings provide a molecular basis for the ecological phenomenon of directed deterence and suggest that the capacity to detect capsaicin-like inflammatory substances is a recent acquisition of mammalian vanilloid receptors.
Collapse
Affiliation(s)
- Sven-Eric Jordt
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA
| | | |
Collapse
|
9
|
Yayama K, Hiyoshi H, Okamoto H. Expressions of bradykinin B2-receptor, kallikrein and kininogen mRNAs in the heart are altered in pressure-overload cardiac hypertrophy in mice. Biol Pharm Bull 2001; 24:34-8. [PMID: 11201242 DOI: 10.1248/bpb.24.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin-converting enzyme inhibitors prevent cardiac hypertrophy in vivo, and a component of this ameliorative effect has been attributed to accumulation of kinins in cardiac tissues. However, little is known regarding the levels of kallikrein-kinin components in the heart during the development of cardiac hypertrophy. The objectives of the present study were to define the effects of pressure-overload cardiac hypertrophy on cardiac levels of kininogen, kallikrein and bradykinin B2 receptor mRNAs. The pressure-overload induced by aortic constriction produced cardiac hypertrophy in mice after 14 and 28d, assessed from the increased ratios of heart weight to body weight and elevation of brain natriuretic peptide mRNA in the heart. B2 receptor mRNA rapidly decreased in the heart within 7 d after the operation, subsequently returning to those of sham-operated animals. In contrast, levels of both low-molecular-weight kininogen and tissue kallikrein mRNAs were increased 7, 14 and 28 d after aortic constriction. These findings suggest that the mechanical load or stretch in cardiac tissue by pressue-overload rapidly produces the downregulation of B2 receptor expression during the initial stage which may allow the promotion of cardiac hypertrophy induced by a mediation of hypertophic factors such as angiotensin II, while upregulation of kininogen and kallikrein mRNAs during the chronic stage may lead to an enhancement of local kinin generation in the heart, from which further progression of cardiac hypertrophy during later stages may be regulated.
Collapse
Affiliation(s)
- K Yayama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakulin University, Japan
| | | | | |
Collapse
|