1
|
Flori L, Spezzini J, Calderone V, Testai L. Role of mitochondrial potassium channels in ageing. Mitochondrion 2024; 76:101857. [PMID: 38403095 DOI: 10.1016/j.mito.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Ageing is described as an inevitable decline in body functions over time and an increase in susceptibility to age-related diseases. Therefore, the increase of life expectancy is also viewed as a condition in which many elderly will develop age-related diseases and disabilities, such as cardiovascular, metabolic, neurological and oncological ones. Currently, several recognized cellular hallmarks of senescence are taken in consideration to evaluate the level of biological ageing and are the topic to plan preventive/curative anti-ageing interventions, including genomic instability, epigenetic alterations, and mitochondrial dysfunction. In this scenario, alterations in the function/expression of mitochondrial ion channels have been found in ageing and associated to an impairment of calcium cycling and a reduced mitochondrial membrane potential. Although several ion channels have been described at mitochondrial level, undoubtedly the mitochondrial potassium (mitoK) channels are the most investigated. Therefore, this review summarized the evidence that sheds to light a correlation between age-related diseases and alteration of mitoK channels, focusing the attention of the main age-related diseases, i.e. cardiovascular, neurological and oncological ones.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Guven C, Taskin E, Aydın Ö, Kaya ST, Sevgiler Y. Diazoxide attenuates DOX-induced cardiotoxicity in cultured rat myocytes. Biotech Histochem 2024; 99:113-124. [PMID: 38439686 DOI: 10.1080/10520295.2024.2324368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity is a well known clinical problem, and many investigations have been made of its possible amelioration. We have investigated whether diazoxide (DIA), an agonist at mitochondrial ATP-sensitive potassium channels (mitoKATP), could reverse DOX-induced apoptotic myocardial cell loss, in cultured rat cardiomyocytes. The role of certain proteins in this pathway was also studied. The rat cardiomyocyte cell line (H9c2) was treated with DOX, and also co-treated with DOX and DIA, for 24 h. Distribution of actin filaments, mitochondrial membrane potential, superoxide dismutase (SOD) activity, total oxidant and antioxidant status (TOS and TAS, respectively), and some protein expressions, were assessed. DOX significantly decreased SOD activity, increased ERK1/2 protein levels, and depolarised the mitochondrial membrane, while DIA co-treatment inhibited such changes. DIA co-treatment ameliorated DOX-induced cytoskeletal changes via F-actin distribution and mitoKATP structure. Co-treatment also decreased ERK1/2 and cytochrome c protein levels. Cardiomyocyte loss due to oxidative stress-mediated apoptosis is a key event in DOX-induced cytotoxicity. DIA had protective effects on DOX-induced cardiotoxicity, via mitoKATP integrity, especially with elevated SUR2A levels; but also by a cascade including SOD/AMPK/ERK1/2. Therefore, DIA may be considered a candidate agent for protecting cardiomyocytes against DOX chemotherapy.
Collapse
Affiliation(s)
- Celal Guven
- Department of Biophysics, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Eylem Taskin
- Department of Physiology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Özgül Aydın
- Department of Biology, Institute of Natural and Applied Sciences, Adıyaman University, Adıyaman, Turkey
| | - Salih Tunç Kaya
- Department of Biology, Faculty of Science and Letters, Düzce University, Düzce, Turkey
| | - Yusuf Sevgiler
- Department of Biology, Faculty of Science and Letters, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
3
|
Guerrero-Orriach JL, Carmona-Luque MD, Raigón-Ponferrada A. Beneficial Effects of Halogenated Anesthetics in Cardiomyocytes: The Role of Mitochondria. Antioxidants (Basel) 2023; 12:1819. [PMID: 37891898 PMCID: PMC10604121 DOI: 10.3390/antiox12101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
In the last few years, the use of anesthetic drugs has been related to effects other than those initially related to their fundamental effect, hypnosis. Halogenated anesthetics, mainly sevoflurane, have been used as a therapeutic tool in patients undergoing cardiac surgery, thanks to the beneficial effect of the cardiac protection they generate. This effect has been described in several research studies. The mechanism by which they produce this effect has been associated with the effects generated by anesthetic preconditioning and postconditioning. The mechanisms by which these effects are induced are directly related to the modulation of oxidative stress and the cellular damage generated by the ischemia/reperfusion procedure through the overexpression of different enzymes, most of them included in the Reperfusion Injury Salvage Kinase (RISK) and the Survivor Activating Factor Enhancement (SAFE) pathways. Mitochondria is the final target of the different routes of pre- and post-anesthetic conditioning, and it is preserved from the damage generated in moments of lack of oxygen and after the recovery of the normal oxygen concentration. The final consequence of this effect has been related to better cardiac function in this type of patient, with less myocardial damage, less need for inotropic drugs to achieve normal myocardial function, and a shorter hospital stay in intensive care units. The mechanisms through which mitochondrial homeostasis is maintained and its relationship with the clinical effect are the basis of our review. From a translational perspective, we provide information regarding mitochondrial physiology and physiopathology in cardiac failure and the role of halogenated anesthetics in modulating oxidative stress and inducing myocardial conditioning.
Collapse
Affiliation(s)
- José Luis Guerrero-Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - María Dolores Carmona-Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Cordoba, Spain;
- Cellular Therapy Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Cell Therapy Group, University of Cordoba, 14004 Cordoba, Spain
| | - Aida Raigón-Ponferrada
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| |
Collapse
|
4
|
Ribeiro E, Vale N. Understanding the Clinical Use of Levosimendan and Perspectives on its Future in Oncology. Biomolecules 2023; 13:1296. [PMID: 37759695 PMCID: PMC10526140 DOI: 10.3390/biom13091296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Drug repurposing, also known as repositioning or reprofiling, has emerged as a promising strategy to accelerate drug discovery and development. This approach involves identifying new medical indications for existing approved drugs, harnessing the extensive knowledge of their bioavailability, pharmacokinetics, safety and efficacy. Levosimendan, a calcium sensitizer initially approved for heart failure, has been repurposed for oncology due to its multifaceted pharmacodynamics, including phosphodiesterase 3 inhibition, nitric oxide production and reduction of reactive oxygen species. Studies have demonstrated that levosimendan inhibits cancer cell migration and sensitizes hypoxic cells to radiation. Moreover, it exerts organ-protective effects by activating mitochondrial potassium channels. Combining levosimendan with traditional anticancer agents such as 5-fluorouracil (5-FU) has shown a synergistic effect in bladder cancer cells, highlighting its potential as a novel therapeutic approach. This drug repurposing strategy offers a cost-effective and time-efficient solution for developing new treatments, ultimately contributing to the advancement of cancer therapeutics and improved outcomes for patients. Further investigations and clinical trials are warranted to validate the effectiveness of levosimendan in oncology and explore its potential benefits in a clinical setting.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
5
|
Szabo I, Szewczyk A. Mitochondrial Ion Channels. Annu Rev Biophys 2023; 52:229-254. [PMID: 37159294 DOI: 10.1146/annurev-biophys-092622-094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
6
|
Viloria MAD, Li Q, Lu W, Nhu NT, Liu Y, Cui ZY, Cheng YJ, Lee SD. Effect of exercise training on cardiac mitochondrial respiration, biogenesis, dynamics, and mitophagy in ischemic heart disease. Front Cardiovasc Med 2022; 9:949744. [PMID: 36304547 PMCID: PMC9592995 DOI: 10.3389/fcvm.2022.949744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 12/07/2022] Open
Abstract
Objective Cardiac mitochondrial dysfunction was found in ischemic heart disease (IHD). Hence, this study determined the effects of exercise training (ET) on cardiac mitochondrial respiration and cardiac mitochondrial quality control in IHD. Methods A narrative synthesis was conducted after searching animal studies written in English in three databases (PubMed, Web of Science, and EMBASE) until December 2020. Studies that used aerobic exercise as an intervention for at least 3 weeks and had at least normal, negative (sedentary IHD), and positive (exercise-trained IHD) groups were included. The CAMARADES checklist was used to check the quality of the included studies. Results The 10 included studies (CAMARADES score: 6–7/10) used swimming or treadmill exercise for 3–8 weeks. Seven studies showed that ET ameliorated cardiac mitochondrial respiratory function as manifested by decreased reactive oxygen species (ROS) production and increased complexes I-V activity, superoxide dismutase 2 (SOD2), respiratory control ratio (RCR), NADH dehydrogenase subunits 1 and 6 (ND1/6), Cytochrome B (CytB), and adenosine triphosphate (ATP) production. Ten studies showed that ET improved cardiac mitochondrial quality control in IHD as manifested by enhanced and/or controlled mitochondrial biogenesis, dynamics, and mitophagy. Four other studies showed that ET resulted in better cardiac mitochondrial physiological characteristics. Conclusion Exercise training could improve cardiac mitochondrial functions, including respiration, biogenesis, dynamics, and mitophagy in IHD. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=226817, identifier: CRD42021226817.
Collapse
Affiliation(s)
- Mary Audrey D. Viloria
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,Department of Physical Therapy, College of Health Sciences, Mariano Marcos State University, Batac, Philippines
| | - Qing Li
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wang Lu
- Department of Traditional Treatment, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Yijie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Medicine, Shanghai, China,Institute of Rehabilitation Medicine, Shanghai University of Traditional Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,Yu-Jung Cheng
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,School of Rehabilitation Medicine, Weifang Medical University, Weifang, China,Department of Physical Therapy, Asia University, Taichung, Taiwan,*Correspondence: Shin-Da Lee
| |
Collapse
|
7
|
Hawrysh PJ, Myrka AM, Buck LT. Review: A history and perspective of mitochondria in the context of anoxia tolerance. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110733. [PMID: 35288242 DOI: 10.1016/j.cbpb.2022.110733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Symbiosis is found throughout nature, but perhaps nowhere is it more fundamental than mitochondria in all eukaryotes. Since mitochondria were discovered and mechanisms of oxygen reduction characterized, an understanding gradually emerged that these organelles were involved not just in the combustion of oxygen, but also in the sensing of oxygen. While multiple hypotheses exist to explain the mitochondrial involvement in oxygen sensing, key elements are developing that include potassium channels and reactive oxygen species. To understand how mitochondria contribute to oxygen sensing, it is informative to study a model system which is naturally adapted to survive extended periods without oxygen. Amongst air-breathing vertebrates, the most highly adapted are western painted turtles (Chrysemys picta bellii), which overwinter in ice-covered and anoxic water bodies. Through research of this animal, it was postulated that metabolic rate depression is key to anoxic survival and that mitochondrial regulation is a key aspect. When faced with anoxia, excitatory neurotransmitter receptors in turtle brain are inhibited through mitochondrial calcium release, termed "channel arrest". Simultaneously, inhibitory GABAergic signalling contributes to the "synaptic arrest" of excitatory action potential firing through a pathway dependent on mitochondrial depression of ROS generation. While many pathways are implicated in mitochondrial oxygen sensing in turtles, such as those of adenosine, ATP turnover, and gaseous transmitters, an apparent point of intersection is the mitochondria. In this review we will explore how an organelle that was critical for organismal complexity in an oxygenated world has also become a potentially important oxygen sensor.
Collapse
Affiliation(s)
- Peter John Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Alexander Morley Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Leslie Thomas Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
8
|
Juhaszova M, Kobrinsky E, Zorov DB, Nuss HB, Yaniv Y, Fishbein KW, de Cabo R, Montoliu L, Gabelli SB, Aon MA, Cortassa S, Sollott SJ. ATP Synthase K +- and H +-fluxes Drive ATP Synthesis and Enable Mitochondrial K +-"Uniporter" Function: II. Ion and ATP Synthase Flux Regulation. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac001. [PMID: 35187492 PMCID: PMC8850977 DOI: 10.1093/function/zqac001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
We demonstrated that ATP synthase serves the functions of a primary mitochondrial K+ "uniporter," i.e., the primary way for K+ to enter mitochondria. This K+ entry is proportional to ATP synthesis, regulating matrix volume and energy supply-vs-demand matching. We show that ATP synthase can be upregulated by endogenous survival-related proteins via IF1. We identified a conserved BH3-like domain of IF1 which overlaps its "minimal inhibitory domain" that binds to the β-subunit of F1. Bcl-xL and Mcl-1 possess a BH3-binding-groove that can engage IF1 and exert effects, requiring this interaction, comparable to diazoxide to augment ATP synthase's H+ and K+ flux and ATP synthesis. Bcl-xL and Mcl-1, but not Bcl-2, serve as endogenous regulatory ligands of ATP synthase via interaction with IF1 at this BH3-like domain, to increase its chemo-mechanical efficiency, enabling its function as the recruitable mitochondrial KATP-channel that can limit ischemia-reperfusion injury. Using Bayesian phylogenetic analysis to examine potential bacterial IF1-progenitors, we found that IF1 is likely an ancient (∼2 Gya) Bcl-family member that evolved from primordial bacteria resident in eukaryotes, corresponding to their putative emergence as symbiotic mitochondria, and functioning to prevent their parasitic ATP consumption inside the host cell.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), 28049 Madrid, Spain
| | - Sandra B Gabelli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
9
|
Juhaszova M, Kobrinsky E, Zorov DB, Nuss HB, Yaniv Y, Fishbein KW, de Cabo R, Montoliu L, Gabelli SB, Aon MA, Cortassa S, Sollott SJ. ATP Synthase K +- and H +-Fluxes Drive ATP Synthesis and Enable Mitochondrial K +-"Uniporter" Function: I. Characterization of Ion Fluxes. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab065. [PMID: 35229078 PMCID: PMC8867323 DOI: 10.1093/function/zqab065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
ATP synthase (F1Fo) synthesizes daily our body's weight in ATP, whose production-rate can be transiently increased several-fold to meet changes in energy utilization. Using purified mammalian F1Fo-reconstituted proteoliposomes and isolated mitochondria, we show F1Fo can utilize both ΔΨm-driven H+- and K+-transport to synthesize ATP under physiological pH = 7.2 and K+ = 140 mEq/L conditions. Purely K+-driven ATP synthesis from single F1Fo molecules measured by bioluminescence photon detection could be directly demonstrated along with simultaneous measurements of unitary K+ currents by voltage clamp, both blocked by specific Fo inhibitors. In the presence of K+, compared to osmotically-matched conditions in which this cation is absent, isolated mitochondria display 3.5-fold higher rates of ATP synthesis, at the expense of 2.6-fold higher rates of oxygen consumption, these fluxes being driven by a 2.7:1 K+: H+ stoichiometry. The excellent agreement between the functional data obtained from purified F1Fo single molecule experiments and ATP synthase studied in the intact mitochondrion under unaltered OxPhos coupling by K+ presence, is entirely consistent with K+ transport through the ATP synthase driving the observed increase in ATP synthesis. Thus, both K+ (harnessing ΔΨm) and H+ (harnessing its chemical potential energy, ΔμH) drive ATP generation during normal physiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), 28049, Madrid, Spain
| | - Sandra B Gabelli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA,Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
10
|
Krylova IB, Selina EN, Bulion VV, Rodionova OM, Evdokimova NR, Belosludtseva NV, Shigaeva MI, Mironova GD. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Sci Rep 2021; 11:16999. [PMID: 34417540 PMCID: PMC8379228 DOI: 10.1038/s41598-021-96562-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The effect of uridine on the myocardial ischemic and reperfusion injury was investigated. A possible mechanism of its cardioprotective action was established. Two rat models were used: (1) acute myocardial ischemia induced by occlusion of the left coronary artery for 60 min; and (2) myocardial ischemia/reperfusion with 30-min ischemia and 120-min reperfusion. In both models, treatment with uridine (30 mg/kg) prevented a decrease in cell energy supply and in the activity of the antioxidant system, as well as an increase in the level of lipid hydroperoxides and diene conjugates. This led to a reduction of the necrosis zone in the myocardium and disturbances in the heart rhythm. The blocker of the mitochondrial ATP-dependent potassium (mitoKATP) channel 5-hydroxydecanoate limited the positive effects of uridine. The data indicate that the cardioprotective action of uridine may be related to the activation of the mitoKATP channel. Intravenously injected uridine was more rapidly eliminated from the blood in hypoxia than in normoxia, and the level of the mitoKATP channel activator UDP in the myocardium after uridine administration increased. The results suggest that the use of uridine can be a potentially effective approach to the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Irina B Krylova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376.
| | - Elena N Selina
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Valentina V Bulion
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Olga M Rodionova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Natalia R Evdokimova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Natalia V Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Maria I Shigaeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Galina D Mironova
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
11
|
Mitochondrial ATP-Sensitive K+ Channel Opening Increased the Airway Smooth Muscle Cell Proliferation by Activating the PI3K/AKT Signaling Pathway in a Rat Model of Asthma. Can Respir J 2021; 2021:8899878. [PMID: 34336047 PMCID: PMC8289566 DOI: 10.1155/2021/8899878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022] Open
Abstract
Abnormal proliferation of airway smooth muscle cells (ASMCs) leads to airway remodeling and the development of asthma. This study aimed to assess whether mitochondrial ATP-sensitive K+ (mitoKATP) channels regulated the proliferation of ASMCs by regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway in asthmatic rats. Forty-eight Sprague Dawley rats were immunized with ovalbumin-containing alum to establish the asthma models. The ASMCs were isolated and identified by phase-contrast microscopic images and immunohistochemical staining for α-smooth muscle actin. The ASMCs were treated with a potent activator of mitoKATP, diazoxide, or an inhibitor of mitoKATP, 5-hydroxydecanoate (5-HD). Rhodamine-123 (R-123) was used for detecting the mitochondrial membrane potential (Δψm). The proliferation of ASMCs was examined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The protein and mRNA expressions of AKT and p-AKT were detected using western blotting and quantitative real-time PCR. The results showed that diazoxide enhanced the mitoKATP channel opening in ASMCs in the rat model of asthma, while 5-HD impeded it. Diazoxide also increased ASMC proliferation in the rat model of asthma, whereas 5-HD alleviated it. However, LY294002, a PI3K/AKT pathway inhibitor, reversed the functional roles of diazoxide in the proliferation ability of ASMCs in the rat model of asthma. Furthermore, treatment with diazoxide induced the phosphorylation of AKT, and treatment with 5-HD decreased the phosphorylation of AKT in ASMCs in the rat model of asthma. In conclusion, the mitoKATP channel opening increased the proliferation of ASMCs by activating the PI3K/AKT signaling pathway in a rat model of asthma.
Collapse
|
12
|
Cosgun M, Coskun R, Celik A. Effects of Adenosine Triphosphate on Vandetanib-Induced Heart Damage in Rats. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.122.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Lukowski R, Cruz Santos M, Kuret A, Ruth P. cGMP and mitochondrial K + channels-Compartmentalized but closely connected in cardioprotection. Br J Pharmacol 2021; 179:2344-2360. [PMID: 33991427 DOI: 10.1111/bph.15536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The 3',5'-cGMP pathway triggers cytoprotective responses and improves cardiomyocyte survival during myocardial ischaemia and reperfusion (I/R) injury. These beneficial effects were attributed to NO-sensitive GC induced cGMP production leading to activation of cGMP-dependent protein kinase I (cGKI). cGKI in turn phosphorylates many substrates, which eventually facilitate opening of mitochondrial ATP-sensitive potassium channels (mitoKATP ) and Ca2+ -activated potassium channels of the BK type (mitoBK). Accordingly, agents activating mitoKATP or mitoBK provide protection against I/R-induced damages. Here, we provide an up-to-date summary of the infarct-limiting actions exhibited by the GC/cGMP axis and discuss how mitoKATP and mitoBK, which are present at the inner mitochondrial membrane, confer mito- and cytoprotective effects on cardiomyocytes exposed to I/R injury. In view of this, we believe that the functional connection between the cGMP cascade and mitoK+ channels should be exploited further as adjunct to reperfusion therapy in myocardial infarction.
Collapse
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
14
|
Torregroza C, Yueksel B, Ruske R, Stroethoff M, Raupach A, Heinen A, Hollmann MW, Huhn R, Feige K. Combination of Cyclosporine A and Levosimendan Induces Cardioprotection under Acute Hyperglycemia. Int J Mol Sci 2021; 22:ijms22094517. [PMID: 33926009 PMCID: PMC8123582 DOI: 10.3390/ijms22094517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Prognosis of patients with myocardial infarction is detrimentally affected by comorbidities like diabetes mellitus. In the experimental setting, not only diabetes mellitus but also acute hyperglycemia is shown to hamper cardioprotective properties by multiple pharmacological agents. For Levosimendan-induced postconditioning, a strong infarct size reducing effect is demonstrated in healthy myocardium. However, acute hyperglycemia is suggested to block this protective effect. In the present study, we investigated whether (1) Levosimendan-induced postconditioning exerts a concentration-dependent effect under hyperglycemic conditions and (2) whether a combination with the mitochondrial permeability transition pore (mPTP) blocker cyclosporine A (CsA) restores the cardioprotective properties of Levosimendan under hyperglycemia. For this experimental investigation, hearts of male Wistar rats were randomized and mounted onto a Langendorff system, perfused with Krebs-Henseleit buffer with a constant pressure of 80 mmHg. All isolated hearts were subjected to 33 min of global ischemia and 60 min of reperfusion under hyperglycemic conditions. (1) Hearts were perfused with various concentrations of Levosimendan (Lev) (0.3–10 μM) for 10 min at the onset of reperfusion, in order to investigate a concentration–response relationship. In the second set of experiments (2), 0.3 μM Levosimendan was administered in combination with the mPTP blocker CsA, to elucidate the underlying mechanism of blocked cardioprotection under hyperglycemia. Infarct size was determined by tetrazolium chloride (TTC) staining. (1) Control (Con) hearts showed an infarct size of 52 ± 12%. None of the administered Levosimendan concentrations reduced the infarct size (Lev0.3: 49 ± 9%; Lev1: 57 ± 9%; Lev3: 47 ± 11%; Lev10: 50 ± 7%; all ns vs. Con). (2) Infarct size of Con and Lev0.3 hearts were 53 ± 4% and 56 ± 2%, respectively. CsA alone had no effect on infarct size (CsA: 50 ± 10%; ns vs. Con). The combination of Lev0.3 and CsA (Lev0.3 ± CsA) induced a significant infarct size reduction compared to Lev0.3 (Lev0.3+CsA: 35 ± 4%; p < 0.05 vs. Lev0.3). We demonstrated that (1) hyperglycemia blocks the infarct size reducing effects of Levosimendan-induced postconditioning and cannot be overcome by an increased concentration. (2) Furthermore, cardioprotection under hyperglycemia can be restored by combining Levosimendan and the mPTP blocker CsA.
Collapse
Affiliation(s)
- Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Birce Yueksel
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Raphael Ruske
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Martin Stroethoff
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - Annika Raupach
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| | - André Heinen
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
- Correspondence:
| | - Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (B.Y.); (R.R.); (M.S.); (A.R.); (K.F.)
| |
Collapse
|
15
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
16
|
Morisaki Y, Nakagawa I, Ogawa Y, Yokoyama S, Furuta T, Saito Y, Nakase H. Ischemic Postconditioning Reduces NMDA Receptor Currents Through the Opening of the Mitochondrial Permeability Transition Pore and K ATP Channel in Mouse Neurons. Cell Mol Neurobiol 2020; 42:1079-1089. [PMID: 33159622 DOI: 10.1007/s10571-020-00996-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
Ischemic postconditioning (PostC) is known to reduce cerebral ischemia/reperfusion (I/R) injury; however, whether the opening of mitochondrial ATP-dependent potassium (mito-KATP) channels and mitochondrial permeability transition pore (mPTP) cause the depolarization of the mitochondrial membrane that remains unknown. We examined the involvement of the mito-KATP channel and the mPTP in the PostC mechanism. Ischemic PostC consisted of three cycles of 15 s reperfusion and 15 s re-ischemia, and was started 30 s after the 7.5 min ischemic load. We recorded N-methyl-D-aspartate receptors (NMDAR)-mediated currents and measured cytosolic Ca2+ concentrations, and mitochondrial membrane potentials in mouse hippocampal pyramidal neurons. Both ischemic PostC and the application of a mito-KATP channel opener, diazoxide, reduced NMDAR-mediated currents, and suppressed cytosolic Ca2+ elevations during the early reperfusion period. An mPTP blocker, cyclosporine A, abolished the reducing effect of PostC on NMDAR currents. Furthermore, both ischemic PostC and the application of diazoxide potentiated the depolarization of the mitochondrial membrane potential. These results indicate that ischemic PostC suppresses Ca2+ influx into the cytoplasm by reducing NMDAR-mediated currents through mPTP opening. The present study suggests that depolarization of the mitochondrial membrane potential by opening of the mito-KATP channel is essential to the mechanism of PostC in neuroprotection against anoxic injury.
Collapse
Affiliation(s)
- Yudai Morisaki
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan.
| | - Yoichi Ogawa
- Department of Neurophysiology, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Takanori Furuta
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| |
Collapse
|
17
|
Shemarova IV, Korotkov SM, Nesterov VP. Ca2+-Dependent
Mitochondrial Mechanisms of Cardioprotection. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s002209302004002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5732956. [PMID: 32509147 PMCID: PMC7244977 DOI: 10.1155/2020/5732956] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases.
Collapse
|
19
|
Diazoxide Preconditioning of Nonhuman Primate Pancreas Improves Islet Isolation Outcomes by Mitochondrial Protection. Pancreas 2020; 49:706-713. [PMID: 32433410 DOI: 10.1097/mpa.0000000000001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Previously, we showed that diazoxide (DZ), an effective ischemic preconditioning agent, protected rodent pancreas against ischemia-reperfusion injury. Here, we further investigate whether DZ supplementation to University of Wisconsin (UW) solution during pancreas procurement and islet isolation has similar cytoprotection in a preclinical nonhuman primate model. METHODS Cynomolgus monkey pancreata were flushed with UW or UW + 150 μM DZ during procurement and preserved for 8 hours before islet isolation. RESULTS First, a significantly higher islet yield was observed in UW + DZ than in UW (57,887 vs 23,574 IEq/pancreas and 5396 vs 1646 IEq/g). Second, the DZ treated islets had significantly lower apoptotic cells per islet (1.64% vs 9.85%). Third, DZ significantly inhibited ROS surge during reperfusion with a dose-response manner. Fourth, DZ improved in vitro function of isolated islets determined by mitochondrial potentials and calcium influx in responses to glucose and KCI. Fifth, the DZ treated islets had much higher cure rate and better glycemia control in diabetic mice transplant model. CONCLUSIONS This study showed a strong mitochondrial protection of DZ on nonhuman primate islets against ischemia-reperfusion injury that provides strong evidence for its clinical application in islet and pancreas transplantation.
Collapse
|
20
|
“Funny” channels in cardiac mitochondria modulate membrane potential and oxygen consumption. Biochem Biophys Res Commun 2020; 524:1030-1036. [DOI: 10.1016/j.bbrc.2020.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/20/2022]
|
21
|
Xia P, Cao K, Hu X, Liu L, Yu D, Dong S, Du J, Xu Y, Liu B, Yang Y, Gao F, Sun X, Liu H. K ATP Channel Blocker Glibenclamide Prevents Radiation-Induced Lung Injury and Inhibits Radiation-Induced Apoptosis of Vascular Endothelial Cells by Increased Ca 2+ Influx and Subsequent PKC Activation. Radiat Res 2019; 193:171-185. [PMID: 31877256 DOI: 10.1667/rr15381.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced lung injury (RILI) is a common and severe side effect of thoracic radiotherapy, which compromises patients' quality of life. Recent studies revealed that early vascular injury, especially microvascular damage, played a central role in the development of RILI. For this reason, early vascular protection is essential for RILI therapy. The ATP-sensitive K+ (KATP) channel is an ATP-dependent K+ channel with multiple subunits. The protective role of the KATP channel in vascular injury has been demonstrated in some published studies. In this work, we investigated the effect of KATP channel on RILI. Our findings confirmed that the KATP channel blocker glibenclamide, rather than the KATP channel opener pinacidil, remitted RILI, and in particular, provided protection against radiation-induced vascular injury. Cytology experiments verified that glibenclamide enhanced cell viability, increased the potential of proliferation after irradiation and attenuated radiation-induced apoptosis. Involved mechanisms included increased Ca2+ influx and PKC activation, which were induced by glibenclamide pretreatment. In conclusion, the KATP channel blocker glibenclamide remitted RILI and inhibited the radiation-induced apoptosis of vascular endothelial cells by increased Ca2+ influx and subsequent PKC activation.
Collapse
Affiliation(s)
- Penglin Xia
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xuguang Hu
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai, P.R. China
| | - Lei Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Danyang Yu
- Ophthalmology Department of Kunming General Hospital of Chengdu Military Area Command, Kunming, Yunnan, China
| | - Suhe Dong
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yang Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Bin Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xuejun Sun
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Yang M, Mao G, Ouyang L, Shi C, Hu P, Huang S. Crocetin alleviates myocardial ischemia/reperfusion injury by regulating inflammation and the unfolded protein response. Mol Med Rep 2019; 21:641-648. [PMID: 31974615 PMCID: PMC6947891 DOI: 10.3892/mmr.2019.10891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Crocetin, a natural compound, has been demonstrated to exhibit beneficial effects in cardiovascular diseases. Previous studies demonstrated that crocetin reduced ischemia/reperfusion (I/R) injury by attenuating cytotoxicity and cellular apoptosis. However, the previous mechanistic studies did not fully elucidate its pharmacological effects on cardiac damage, especially I/R injury. The present study verified its cardioprotective effects in a Langendorff perfusion system, an ex vivo model of I/R. It was demonstrated that crocetin significantly attenuated the activities of pro-inflammatory cytokines and nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 signaling. The present study provided novel insight that crocetin regulated the unfolded protein response (UPR) and decreased associated protein levels to protect the heart. Furthermore, it was identified that Nrf2 played a key role in the cardioprotective effect of crocetin by attenuating inflammation and the UPR.
Collapse
Affiliation(s)
- Ming Yang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Genxiang Mao
- Department of Geriatrics, Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Lili Ouyang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Chenhui Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Shuwei Huang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
23
|
Live cell imaging of signaling and metabolic activities. Pharmacol Ther 2019; 202:98-119. [DOI: 10.1016/j.pharmthera.2019.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
|
24
|
Frankenreiter S, Groneberg D, Kuret A, Krieg T, Ruth P, Friebe A, Lukowski R. Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase. Cardiovasc Res 2019; 114:822-829. [PMID: 29438488 DOI: 10.1093/cvr/cvy039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/08/2018] [Indexed: 01/21/2023] Open
Abstract
Aims It has been suggested that the nitric oxide-sensitive guanylyl cyclase (NO-GC)/cyclic guanosine monophosphate (cGMP)-dependent signalling pathway affords protection against cardiac damage during acute myocardial infarction (AMI). It is, however, not clear whether the NO-GC/cGMP system confers its favourable effects through a mechanism located in cardiomyocytes (CMs). The aim of this study was to evaluate the infarct-limiting effects of the endogenous NO-GC in CMs in vivo. Methods and results Ischemia/reperfusion (I/R) injury was evaluated in mice with a CM-specific deletion of NO-GC (CM NO-GC KO) and in control siblings (CM NO-GC CTR) subjected to an in vivo model of AMI. Lack of CM NO-GC resulted in a mild increase in blood pressure but did not affect basal infarct sizes after I/R. Ischemic postconditioning (iPost), administration of the phosphodiesterase-5 inhibitors sildenafil and tadalafil as well as the NO-GC activator cinaciguat significantly reduced the amount of infarction in control mice but not in CM NO-GC KO littermates. Interestingly, NS11021, an opener of the large-conductance and Ca2+-activated potassium channel (BK), an important downstream effector of cGMP/cGKI in the cardiovascular system, protects I/R-exposed hearts of CM NO-GC proficient and deficient mice. Conclusions These findings demonstrate an important role of CM NO-GC for the cardioprotective signalling following AMI in vivo. CM NO-GC function is essential for the beneficial effects on infarct size elicited by iPost and pharmacological elevation of cGMP; however, lack of CM NO-GC does not seem to disrupt the cardioprotection mediated by the BK opener NS11021.
Collapse
Affiliation(s)
- Sandra Frankenreiter
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Dieter Groneberg
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Friebe
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Karkhanis A, Leow JWH, Hagen T, Chan ECY. Dronedarone-Induced Cardiac Mitochondrial Dysfunction and Its Mitigation by Epoxyeicosatrienoic Acids. Toxicol Sci 2019; 163:79-91. [PMID: 29385569 DOI: 10.1093/toxsci/kfy011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dronedarone and amiodarone are structurally similar antiarrhythmic drugs. Dronedarone worsens cardiac adverse effects with unknown causes while amiodarone has no cardiac adversity. Dronedarone induces preclinical mitochondrial toxicity in rat liver and exhibits clinical hepatotoxicity. Here, we further investigated the relative potential of the antiarrhythmic drugs in causing mitochondrial injury in cardiomyocytes. Differentiated rat H9c2 cardiomyocytes were treated with dronedarone, amiodarone, and their respective metabolites namely N-desbutyldronedarone (NDBD) and N-desethylamiodarone (NDEA). Intracellular ATP content, mitochondrial membrane potential (Δψm), and inhibition of carnitine palmitoyltransferase I (CPT1) activity and arachidonic acid (AA) metabolism were measured in H9c2 cells. Inhibition of electron transport chain (ETC) activities and uncoupling of ETC were further studied in isolated rat heart mitochondria. Dronedarone, amiodarone, NDBD and NDEA decreased intracellular ATP content significantly (IC50 = 0.49, 1.84, 1.07, and 0.63 µM, respectively) and dissipated Δψm potently (IC50 = 0.5, 2.94, 12.8, and 7.38 µM, respectively). Dronedarone, NDBD, and NDEA weakly inhibited CPT1 activity while amiodarone (IC50 > 100 µM) yielded negligible inhibition. Only dronedarone inhibited AA metabolism to its regioisomeric epoxyeicosatrienoic acids (EETs) consistently and potently. NADH-supplemented ETC activity was inhibited by dronedarone, amiodarone, NDBD and NDEA (IC50 = 3.07, 5.24, 11.94, and 16.16 µM, respectively). Cytotoxicity, ATP decrease and Δψm disruption were ameliorated via exogenous pre-treatment of H9c2 cells with 11, 12-EET and 14, 15-EET. Our study confirmed that dronedarone causes mitochondrial injury in cardiomyocytes by perturbing Δψm, inhibiting mitochondrial complex I, uncoupling ETC and dysregulating AA-EET metabolism. We postulate that cardiac mitochondrial injury is one potential contributing factor to dronedarone-induced cardiac failure exacerbation.
Collapse
Affiliation(s)
- Aneesh Karkhanis
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
| | - Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
- Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, National University of Singapore, Singapore 117609
| |
Collapse
|
26
|
Lee SE, Nguyen C, Xie Y, Deng Z, Zhou Z, Li D, Chang HJ. Recent Advances in Cardiac Magnetic Resonance Imaging. Korean Circ J 2018; 49:146-159. [PMID: 30468040 PMCID: PMC6351278 DOI: 10.4070/kcj.2018.0246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023] Open
Abstract
Cardiac magnetic resonance (CMR) imaging provides accurate anatomic information and advanced soft contrast, making it the reference standard for assessing cardiac volumes and systolic function. In this review, we summarize the recent advances in CMR sequences. New technical development has widened the use of CMR imaging beyond the simple characterization of myocardial scars and assessment of contractility. These novel CMR sequences offer comprehensive assessments of coronary plaque characterization, myocardial fiber orientation, and even metabolic activity, and they can be readily applied in clinical settings. CMR imaging is able to provide new insights into understanding the pathophysiologic process of underlying cardiac disease, and it can help physicians choose the best treatment strategies. Although several limitations, including the high cost and time-consuming process, have limited the widespread clinical use of CMR imaging so far, recent advances in software and hardware technologies have made the future more promising.
Collapse
Affiliation(s)
- Sang Eun Lee
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.,Integrative Cardiovascular Imaging Center, Yonsei University Health System, Seoul, Korea.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christopher Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zixin Deng
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhengwei Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyuk Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.,Integrative Cardiovascular Imaging Center, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
27
|
Lopes TR, Sabino-Carvalho JL, Ferreira THN, Succi JE, Silva AC, Silva BM. Effect of Ischemic Preconditioning on the Recovery of Cardiac Autonomic Control From Repeated Sprint Exercise. Front Physiol 2018; 9:1465. [PMID: 30416451 PMCID: PMC6212507 DOI: 10.3389/fphys.2018.01465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Repeated sprint exercise (RSE) acutely impairs post-exercise heart rate (HR) recovery (HRR) and time-domain heart rate variability (i. e., RMSSD), likely in part, due to lactic acidosis-induced reduction of cardiac vagal reactivation. In contrast, ischemic preconditioning (IPC) mediates cardiac vagal activation and augments energy metabolism efficiency during prolonged ischemia followed by reperfusion. Therefore, we investigated whether IPC could improve recovery of cardiac autonomic control from RSE partially via improved energy metabolism responses to RSE. Fifteen men team-sport practitioners (mean ± SD: 25 ± 5 years) were randomly exposed to IPC in the legs (3 × 5 min at 220 mmHg) or control (CT; 3 × 5 min at 20 mmHg) 48 h, 24 h, and 35 min before performing 3 sets of 6 shuttle running sprints (15 + 15 m with 180° change of direction and 20 s of active recovery). Sets 1 and 2 were followed by 180 s and set 3 by 360 s of inactive recovery. Short-term HRR was analyzed after all sets via linear regression of HR decay within the first 30 s of recovery (T30) and delta from peak HR to 60 s of recovery (HRR60s). Long-term HRR was analyzed throughout recovery from set 3 via first-order exponential regression of HR decay. Moreover, RMSSD was calculated using 30-s data segments throughout recovery from set 3. Energy metabolism responses were inferred via peak pulmonary oxygen uptake (V˙O2peak), peak carbon dioxide output (V˙O2peak), peak respiratory exchange ratio (RERpeak), first-order exponential regression of V˙O2 decay within 360 s of recovery and blood lactate concentration ([Lac-]). IPC did not change T30, but increased HRR60s after all sets (condition main effect: P = 0.03; partial eta square (η2p) = 0.27, i.e., large effect size). IPC did not change long-term HRR and RMSSD throughout recovery, nor did IPC change any energy metabolism parameter. In conclusion, IPC accelerated to some extent the short-term recovery, but did not change the long-term recovery of cardiac autonomic control from RSE, and such accelerator effect was not accompanied by any IPC effect on surrogates of energy metabolism responses to RSE.
Collapse
Affiliation(s)
- Thiago R Lopes
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Exercise Physiology, Olympic Center of Training and Research, São Paulo, Brazil.,São Paulo Association for Medicine Development, São Paulo, Brazil.,Postgraduate Program in Translational Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jeann L Sabino-Carvalho
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil.,Postgraduate Program in Translational Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Thiago H N Ferreira
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil.,Postgraduate Program in Translational Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - José E Succi
- Department of Surgery, Federal University of São Paulo, São Paulo, Brazil
| | - Antônio C Silva
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Exercise Physiology, Olympic Center of Training and Research, São Paulo, Brazil
| | - Bruno M Silva
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Exercise Physiology, Olympic Center of Training and Research, São Paulo, Brazil.,Postgraduate Program in Translational Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Guerrero Orriach JL, Escalona Belmonte JJ, Ramirez Aliaga M, Ramirez Fernandez A, Raigón Ponferrada A, Rubio Navarro M, Cruz Mañas J. Anesthetic-induced Myocardial Conditioning: Molecular Fundamentals and Scope. Curr Med Chem 2018; 27:2147-2160. [PMID: 30259804 DOI: 10.2174/0929867325666180926161427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The pre- and post-conditioning effects of halogenated anesthetics make them most suitable for cardiac surgery. Several studies have demonstrated that the mechanism of drug-induced myocardial conditioning is enzyme-mediated via messenger RNA and miRNA regulation. The objective of this study was to investigate the role that miRNAs play in the cardioprotective effect of halogenated anesthetics. For such purpose, we reviewed the literature to determine the expression profile of miRNAs in ischemic conditioning and in the complications prevented by these phenomena. METHODS A review was conducted of more than 100 studies to identify miRNAs involved in anesthetic-induced myocardial conditioning. Our objective was to determine the miRNAs that play a relevant role in ischemic disease, heart failure and arrhythmogenesis, which expression is modulated by the perioperative administration of halogenated anesthetics. So far, no studies have been performed to assess the role of miRNAs in anesthetic-induced myocardial conditioning. The potential of miRNAs as biomarkers and miRNAs-based therapies involving the synthesis, inhibition or stimulation of miRNAs are a promising avenue for future research in the field of cardiology. RESULTS Each of the cardioprotective effects of myocardial conditioning is related to the expression of several (not a single) miRNAs. The cumulative evidence on the role of miRNAs in heart disease and myocardial conditioning opens new therapeutic and diagnostic opportunities. CONCLUSION Halogenated anesthetics regulate the expression of miRNAs involved in heart conditions. Further research is needed to determine the expression profile of miRNAs after the administration of halogenated drugs. The results of these studies would contribute to the development of new hypnotics for cardiac surgery patients.
Collapse
Affiliation(s)
- Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga [IBIMA], Malaga, Spain.,Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain.,Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga, Spain
| | | | - Marta Ramirez Aliaga
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | | | - Aida Raigón Ponferrada
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Manuel Rubio Navarro
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Jose Cruz Mañas
- Department of Cardio- Anaesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
| |
Collapse
|
29
|
Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy. Front Physiol 2018; 9:1177. [PMID: 30197602 PMCID: PMC6117399 DOI: 10.3389/fphys.2018.01177] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.
Collapse
Affiliation(s)
- Amaal E. Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gilles F. H. Diercks
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Douwe J. Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Ohkubo S, Dalla Via L, Grancara S, Kanamori Y, García-Argáez AN, Canettieri G, Arcari P, Toninello A, Agostinelli E. The antioxidant, aged garlic extract, exerts cytotoxic effects on wild-type and multidrug-resistant human cancer cells by altering mitochondrial permeability. Int J Oncol 2018; 53:1257-1268. [PMID: 29956777 DOI: 10.3892/ijo.2018.4452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 11/06/2022] Open
Abstract
Aged garlic extract (AGE) has been shown to possess therapeutic properties in cancer; however its mechanisms of action are unclear. In this study, we demonstrate by MTT assay that AGE exerts an anti-proliferative effect on a panel of both sensitive and multidrug-resistant (MDR) human cancer cell lines and enhances the effects of hyperthermia (42˚C) on M14 melanoma cells. The evaluation of the mitochondrial activity in whole cancer cells treated with AGE, performed by cytofluorimetric analysis in the presence of the lipophilic cationic fluorochrome JC-1, revealed the occurrence of dose-dependent mitochondrial membrane depolarization. Membrane potential was measured by the TPP+ selective electrode. In order to shed light on its mechanisms of action, the effects of AGE on isolated rat liver mitochondria were also examined. In this regard, AGE induced a mitochondrial membrane hyperpolarization of approximately 15 mV through a mechanism that was similar to that observed with the ionophores, nigericin or salinomycin, by activating an exchange between endogenous K+ with exogenous H+. The prolonged incubation of the mitochondria with AGE induced depolarization and matrix swelling, indicative of mitochondrial permeability transition induction that, however, occurs through a different mechanism from the well-known one. In particular, the transition pore opening induced by AGE was due to the rearrangement of the mitochondrial membranes following the increased activity of the K+/H+ exchanger. On the whole, the findings of this study indicate that AGE exerts cytotoxic effects on cancer cells by altering mitochondrial permeability. In particular, AGE in the mitochondria activates K+/H+ exchanger, causes oxidative stress and induces mitochondrial permeability transition (MPT).
Collapse
Affiliation(s)
- Shinji Ohkubo
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Silvia Grancara
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Yuta Kanamori
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Aída Nelly García-Argáez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine - Sapienza University of Rome, 00161 Rome, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80138 Naples, Italy
| | - Antonio Toninello
- Department of Biomedical Sciences, University of Padua, I-35131 Padua, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| |
Collapse
|
31
|
Colareda GA, Consolini AE. Low-flow ischaemia and reperfusion in rat hearts: energetic of stunning and cardioprotection of genistein. J Pharm Pharmacol 2018; 70:1174-1187. [DOI: 10.1111/jphp.12945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/19/2018] [Indexed: 01/04/2023]
Abstract
Abstract
Objectives
Low-flow ischemia (LFI) is consequent to coronary disease and produces cardiac stunning during reperfusion (R). Energetic performance and mechanisms of Ca2+ handling during LFI/R are not known. Moreover, cardioprotection of the phytoestrogen genistein (Gen) remains to be demonstrated in LFI/R. The aim was to study the mechanisms of the stunning consequent to LFI/R and the effects of Gen on both sexes.
Methods
Rat ventricles were perfused inside a calorimeter to measure maximal pressure development (P) and total heat rate (Ht) before and during exposition to LFI/R. The mechanisms of stunning were evaluated with selective drugs.
Key findings
Female hearts (FH) developed higher postischemic contractile recovery (PICR) and muscle economy (P/Ht) than males (MH). Cardioprotection was sensitive to blockade of mKATP channels, UCam and NOS. Perfusion of 20 μmol/l Gen reduced PICR and P/Ht during LFI/R in FH, and dysfunction was increased by mNCX blockade with mPTP opening. However, intraperitoneal 5 mg/kg Gen (Gen-ip) was cardioprotective in both sexes, and the beneficial effect of Gen-ip was blocked by 100 μmol/l 5-HD.
Conclusions
FH are more protected than MH against the LFI/R dysfunction, which involves mitochondrial Ca2+ loss; Gen-ip was more cardioprotective in MH than in FH, mainly by activation of the mKATP channels.
Collapse
Affiliation(s)
- Germán A Colareda
- Grupo de Farmacología Experimental y Energética Cardíaca, Cátedra de Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Alicia E Consolini
- Grupo de Farmacología Experimental y Energética Cardíaca, Cátedra de Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
32
|
Possible role of mitochondrial K-ATP channel and nitric oxide in protection of the neonatal rat heart. Mol Cell Biochem 2018; 450:35-42. [PMID: 29802596 PMCID: PMC6328520 DOI: 10.1007/s11010-018-3370-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Cardioprotective effect of ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) in adult hearts is mediated by mitochondrial-K-ATP channels and nitric oxide (NO). During early developmental period, rat hearts exhibit higher resistance to ischemia–reperfusion (I/R) injury and their resistance cannot be further increased by IPC or IPoC. Therefore, we have speculated, whether mechanisms responsible for high resistance of neonatal heart may be similar to those of IPC and IPoC. To test this hypothesis, rat hearts isolated on days 1, 4, 7, and 10 of postnatal life were perfused according to Langendorff. Developed force (DF) of contraction was measured. Hearts were exposed to 40 min of global ischemia followed by reperfusion up to the maximum recovery of DF. IPoC was induced by 5 cycles of 10-s ischemia. Mito-K-ATP blocker (5-HD) was administered 5 min before ischemia and during first 20 min of reperfusion. Another group of hearts was isolated for biochemical analysis of 3-nitrotyrosine, and serum samples were taken to measure nitrate levels. Tolerance to ischemia did not change from day 1 to day 4 but decreased on days 7 and 10. 5-HD had no effect either on neonatal resistance to I/R injury or on cardioprotective effect of IPoC on day 10. Significant difference was found in serum nitrate levels between days 1 and 10 but not in tissue 3-nitrotyrosine content. It can be concluded that while there appears to be significant difference of NO production, mito-K-ATP and ROS probably do not play role in the high neonatal resistance to I/R injury.
Collapse
|
33
|
Pecoraro M, Ciccarelli M, Fiordelisi A, Iaccarino G, Pinto A, Popolo A. Diazoxide Improves Mitochondrial Connexin 43 Expression in a Mouse Model of Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2018. [PMID: 29518932 PMCID: PMC5877618 DOI: 10.3390/ijms19030757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Doxorubicin (DOXO) administration induces alterations in Connexin 43 (Cx43) expression and localization, thus, inducing alterations in chemical and electrical signal transmission between cardiomyocytes and in intracellular calcium homeostasis even evident after a single administration. This study was designed to evaluate if Diazoxide (DZX), a specific opener of mitochondrial KATP channels widely used for its cardioprotective effects, can fight DOXO-induced cardiotoxicity in a short-time mouse model. DZX (20 mg/kg i.p.) was administered 30 min before DOXO (10 mg/kg i.p.) in C57BL/6j female mice for 1–3 or seven days once every other day. A recovery of cardiac parameters, evaluated by Echocardiography, were observed in DZX+DOXO co-treated mice. Western blot analysis performed on heart lysates showed an increase in sarco/endoplasmic reticulum Ca2+-ATPase (SERCAII) and a reduction in phospholamban (PLB) amounts in DZX+DOXO co-treated mice. A contemporary recovery of intracellular Ca2+-signal, detected spectrofluorometrically by means of FURA-2AM, was observed in these mice. Cx43 expression and localization, analyzed by Western blot and confirmed by immunofluorescence analysis, showed that DZX co-treatement increases Cx43 amount both on sarcoplasmic membrane and on mitochondria. In conclusion, our data demonstrate that, in a short-time mouse model of DOXO-induced cardiotoxicity, DZX exerts its cardioprotective effects also by enhancing the amount Cx43.
Collapse
Affiliation(s)
- Michela Pecoraro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84084 Baronissi, Italy.
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, Federico II University, 80138 Naples, Italy.
| | - Guido Iaccarino
- Department of Medicine and Surgery, University of Salerno, 84084 Baronissi, Italy.
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| |
Collapse
|
34
|
Chen S, Lotz C, Roewer N, Broscheit JA. Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: molecular mechanisms and clinical aspects. Eur J Med Res 2018; 23:10. [PMID: 29458412 PMCID: PMC5819224 DOI: 10.1186/s40001-018-0308-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/12/2018] [Indexed: 12/17/2022] Open
Abstract
Volatile anesthetic-induced preconditioning (APC) has shown to have cardiac and cerebral protective properties in both pre-clinical models and clinical trials. Interestingly, accumulating evidences demonstrate that, except from some specific characters, the underlying molecular mechanisms of APC-induced protective effects in myocytes and neurons are very similar; they share several major intracellular signaling pathways, including mediating mitochondrial function, release of inflammatory cytokines and cell apoptosis. Among all the experimental results, cortical spreading depolarization is a relative newly discovered cellular mechanism of APC, which, however, just exists in central nervous system. Applying volatile anesthetic preconditioning to clinical practice seems to be a promising cardio-and neuroprotective strategy. In this review, we also summarized and discussed the results of recent clinical research of APC. Despite all the positive experimental evidences, large-scale, long-term, more precisely controlled clinical trials focusing on the perioperative use of volatile anesthetics for organ protection are still needed.
Collapse
Affiliation(s)
- Shasha Chen
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany.
| | - Christopher Lotz
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| | - Norbert Roewer
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| | - Jens-Albert Broscheit
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str.6, 97080, Wuerzburg, Germany
| |
Collapse
|
35
|
Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle. Int J Mol Sci 2018; 19:ijms19020417. [PMID: 29385043 PMCID: PMC5855639 DOI: 10.3390/ijms19020417] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/14/2018] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion (IR), present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS). Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activation of the mitochondrial permeability transition pore. Elevated ROS levels can also decrease myofibrillar Ca2+ sensitivity, thereby compromising muscle contractile function. Low levels of ROS can act as signaling molecules involved in the protective pathways of ischemic preconditioning (IPC). By scavenging ROS, antioxidant therapies aim to prevent IR injuries with positive treatment outcomes. Novel therapies such as postconditioning and pharmacological interventions that target IPC pathways hold great potential in attenuating IR injuries. Factors such as aging and diabetes could have a significant impact on the severity of IR injuries. The current paper aims to provide a comprehensive review on the multifaceted roles of ROS in IR injuries, with a focus on cardiac and skeletal muscle, as well as recent advancement in ROS-related therapies.
Collapse
Affiliation(s)
- Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Evan R Prather
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Davis E Garrison
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Shemarova IV, Nesterov VP, Korotkov SM, Sylkin YA. Evolutionary Aspects of Cardioprotection. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Shemarova IV, Nesterov VP, Korotkov SM, Sobol’ KV. Involvement of Ca2+ in the development of ischemic disorders of myocardial contractile function. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017050027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Ragone MI, Bonazzola P, Colareda GA, Lazarte ML, Bruno F, Consolini AE. Cardioprotection of stevioside on stunned rat hearts: A mechano-energetical study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 35:18-26. [PMID: 28991641 DOI: 10.1016/j.phymed.2017.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 07/12/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The sweetener and hypoglycemic properties of stevioside (STV) are well known, as the main component of the plant Stevia rebaudiana. Given its extensive use in diabetic patients, it was of interest to evaluate its effects on the most frequent cardiovascular disease, the coronary insufficiency. PURPOSE To study whether STV could be cardioprotective against ischemia-reperfusion (I/R) in a model of "stunning" in rat hearts. STUDY DESIGN A preclinical study was performed in isolated hearts from rats in the following groups: non-treated rats whose hearts were perfused with STV 0.3 mg/ml and their controls (C) exposed to either moderate stunning (20 min I/45 min R) or severe stunning (30 min I/45 min R), and a group of rats orally treated with STV 25 mg/kg/day in the drink water during 1 week before the experiment of severe stunning in the isolated hearts were done. METHODS The mechano-calorimetrical performance of isolated beating hearts was recorded during stabilization period with control Krebs perfusion inside a calorimeter, with or without 0.3 mg/ml STV before the respective period of I/R. The left ventricular maximal developed pressure (P) and total heat rate (Ht) were continuously measured. RESULTS Both, orally administered and perfused STV improved the post-ischemic contractile recovery (PICR, as % of initial control P) and the total muscle economy (P/Ht) after the severe stunning, but only improved P/Ht in moderate stunning. However, STV increased the diastolic pressure (LVEDP) during I/R in both stunning models. For studying the mechanism of action, ischemic hearts were reperfused with 10 mM caffeine-36 mM Na+-Krebs to induce a contracture dependent on sarcorreticular Ca2+ content, whose relaxation mainly depends on mitochondrial Ca2+ uptake. STV at 0.3 mg/ml increased the area-under-curve of the caffeine-dependent contracture (AUC-LVP). Moreover, at room temperature STV increased the mitochondrial Ca2+ uptake measured by Rhod-2 fluorescence in rat cardiomyocytes, but prevented the [Ca2+]m overload assessed by caffeine-dependent SR release. CONCLUSIONS Results suggest that STV is cardioprotective against I/R under oral administration or direct perfusion in hearts. The mechanism includes the regulation of the myocardial calcium homeostasis and the energetic during I/R in several sites, mainly reducing mitochondrial Ca2+ overload and increasing the sarcorreticular Ca2+ store.
Collapse
Affiliation(s)
- María I Ragone
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Patricia Bonazzola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Germán A Colareda
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - María Lara Lazarte
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Fiorella Bruno
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Alicia E Consolini
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
| |
Collapse
|
39
|
Impact of levosimendan on platelet function. Thromb Res 2017; 159:76-81. [PMID: 28987709 DOI: 10.1016/j.thromres.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/22/2017] [Accepted: 10/01/2017] [Indexed: 11/22/2022]
Abstract
Levosimendan has been developed for treatment of severe heart failure. The favorable hemodynamic effect of levosimendan is related to its unique dual mechanism of action - increase of the contractile force of the myocardium caused by enhanced sensitivity of myofilaments to calcium combined with vasodilatation caused by the opening of adenosine triphosphate - dependent potassium channels. Due to the structural similarities to phosphodiesterase inhibitors it may partly exert its action via inhibition of phosphodiesterase inhibitors III. Inhibition of the phosphodiesterase inhibitors III leads to an increase of intracellular concentration of cyclic adenosine monophosphate causing an anti-aggregatory effect. There are some contradictory or indirect and inconclusive reports related to the impact of levosimendan on platelet function. The aim of this systematic review was to critically discuss the impact of levosimendan on platelet function according to currently available knowledge based on the findings of experimental as well as observational and randomized clinical studies.
Collapse
|
40
|
Abstract
BACKGROUND ATP-sensitive K+ (KATP) channels couple metabolic state to cellular excitability. Activation of neuronal and astrocytic mitochondrial KATP (mitoKATP) channels regulates a variety of neuronal functions. However, less is known about the impact of mitoKATP on tonic γ-aminobutyric acid (GABA) inhibition. Tonic GABA inhibition is mediated by the binding of ambient GABA on extrasynaptic GABA A-type receptors (GABAARs) and is involved in regulating neuronal excitability. METHODS We determined the impact of activation of KATP channels with diazoxide (DIZ) on tonic inhibition and recorded tonic current from rat cortical layer 5 pyramidal cells by patch-clamp recordings. RESULTS We found that neonatal tonic current increased with an increase in GABA concentration, which was partially mediated by the GABA A-type receptor (GABAAR) α5, and likely the δ subunits. Activation of KATP channels resulted in decreased tonic current in newborns, but there was increased tonic current during the second postnatal week. CONCLUSIONS These findings suggest that activation of KATP channels with DIZ regulates GABAergic transmission in neocortical pyramidal cells during development.
Collapse
|
41
|
Tan XH, Zheng XM, Yu LX, He J, Zhu HM, Ge XP, Ren XL, Ye FQ, Bellusci S, Xiao J, Li XK, Zhang JS. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling. J Cell Mol Med 2017; 21:2909-2925. [PMID: 28544332 PMCID: PMC5661260 DOI: 10.1111/jcmm.13203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/23/2017] [Indexed: 12/13/2022] Open
Abstract
Ischaemia‐reperfusion injury (I/RI) is a common cause of acute kidney injury (AKI). The molecular basis underlying I/RI‐induced renal pathogenesis and measures to prevent or reverse this pathologic process remains to be resolved. Basic fibroblast growth factor (FGF2) is reported to have protective roles of myocardial infarction as well as in several other I/R related disorders. Herein we present evidence that FGF2 exhibits robust protective effect against renal histological and functional damages in a rat I/RI model. FGF2 treatment greatly alleviated I/R‐induced acute renal dysfunction and largely blunted I/R‐induced elevation in serum creatinine and blood urea nitrogen, and also the number of TUNEL‐positive tubular cells in the kidney. Mechanistically, FGF2 substantially ameliorated renal I/RI by mitigating several mitochondria damaging parameters including pro‐apoptotic alteration of Bcl2/Bax expression, caspase‐3 activation, loss of mitochondrial membrane potential and KATP channel integrity. Of note, the protective effect of FGF2 was significantly compromised by the KATP channel blocker 5‐HD. Interestingly, I/RI alone resulted in mild activation of FGFR, whereas FGF2 treatment led to more robust receptor activation. More significantly, post‐I/RI administration of FGF2 also exhibited robust protection against I/RI by reducing cell apoptosis, inhibiting the release of damage‐associated molecular pattern molecule HMBG1 and activation of its downstream inflammatory cytokines such as IL‐1α, IL‐6 and TNF α. Taken together, our data suggest that FGF2 offers effective protection against I/RI and improves animal survival by attenuating mitochondrial damage and HMGB1‐mediated inflammatory response. Therefore, FGF2 has the potential to be used for the prevention and treatment of I/RI‐induced AKI.
Collapse
Affiliation(s)
- Xiao-Hua Tan
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Meng Zheng
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Xia Yu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian He
- Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Hong-Mei Zhu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Ping Ge
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Li Ren
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fa-Qing Ye
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saverio Bellusci
- Institute of Life Sciences, Wenzhou University, Wenzhou, China.,Excellence Cluster Cardio-Pulmonary System, Justus-Liebig University, Giessen, Germany
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Kun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin-San Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
42
|
Sánchez-Duarte E, Trujillo X, Cortés-Rojo C, Saavedra-Molina A, Camargo G, Hernández L, Huerta M, Montoya-Pérez R. Nicorandil improves post-fatigue tension in slow skeletal muscle fibers by modulating glutathione redox state. J Bioenerg Biomembr 2017; 49:159-170. [DOI: 10.1007/s10863-016-9692-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
|
43
|
Pisarenko O, Shulzhenko V, Studneva I, Serebryakova L, Veselova O. 5-Hydroxydecanoate Abolishes Cardioprotective Effects of a Structural Analogue of Apelin-12 in Ischemia/Reperfusion Injury. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9565-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sci 2016; 165:43-55. [DOI: 10.1016/j.lfs.2016.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
|
45
|
Sahu MK, Das A, Malik V, Subramanian A, Singh SP, Hote M. Comparison of levosimendan and nitroglycerine in patients undergoing coronary artery bypass graft surgery. Ann Card Anaesth 2016; 19:52-8. [PMID: 26750674 PMCID: PMC4900377 DOI: 10.4103/0971-9784.173020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Levosimendan a calcium ion sensitizer improves both systolic and diastolic functions. This novel lusitropic drug has predictable antiischemic properties which are mediated via the opening of mitochondrial adenosine triphosphate-sensitive potassium channels. This action of levosimendan is beneficial in cardiac surgical patients as it improves myocardial contractility, decreases systemic vascular resistance (SVR), and increases cardiac index (CI) and is thought to be cardioprotective. We decided to study whether levosimendan has any impact on the outcomes such as the duration of ventilation, the length of Intensive Care Unit (ICU) stay, and the hospital stay when compared with the nitroglycerine (NTG), which is the current standard of care at our center. Materials and Methods: Forty-seven patients undergoing elective coronary artery bypass surgery were randomly assigned to two groups receiving either levosimendan or NTG. The medications were started before starting surgery and continued until 24 h in the postoperative period. Baseline hemodynamic parameters were evaluated before beginning of the operation and then postoperatively at 3 different time intervals. N-terminal fragment of pro-brain natriuretic peptide (NT-proBNP) levels were also measured in both groups. Results: In comparison to the NTG group, the duration of ventilation and length of ICU stay were significantly less in levosimendan group (P < 0.05, P = 0.02). NT-proBNP level analysis showed a slow rising pattern in both groups and a statistically significant rise in the levels was observed in NTG group (P = 0.03, P = 0.02) in postoperative period when compared to levosimendan group of patients. Conclusion: Levosimendan treatment in patients undergoing surgical revascularization resulted in improved CI, decreased SVR and lower heart rate. And, thereby the duration of ventilation and length of ICU stay were significantly less in this group of patients when compared with NTG group.
Collapse
Affiliation(s)
- Manoj K Sahu
- Department of Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
46
|
Identification of Yeast Mutants Exhibiting Altered Sensitivity to Valinomycin and Nigericin Demonstrate Pleiotropic Effects of Ionophores on Cellular Processes. PLoS One 2016; 11:e0164175. [PMID: 27711131 PMCID: PMC5053447 DOI: 10.1371/journal.pone.0164175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/21/2016] [Indexed: 01/04/2023] Open
Abstract
Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments.
Collapse
|
47
|
Girn HRS, Ahilathirunayagam S, Mavor AID, Homer-Vanniasinkam S. Reperfusion Syndrome: Cellular Mechanisms of Microvascular Dysfunction and Potential Therapeutic Strategies. Vasc Endovascular Surg 2016; 41:277-93. [PMID: 17704330 DOI: 10.1177/1538574407304510] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reperfusion injury is the paradoxical and complex phenomenon of exacerbation of cellular dysfunction and increase in cell death after the restoration of blood flow to previously ischemic tissues. It involves biochemical and cellular changes causing oxidant production and complement activation, which culminates in an inflammatory response, mediated by neutrophil and platelet cell interactions with the endothelium and among the cells themselves. The mounted inflammatory response has both local and systemic manifestations. Despite improvements in imaging, interventional techniques, and pharmacological agents, morbidity from reperfusion remains high. Extensive research has furthered the understanding of the various pathophysiological mechanisms involved and the development of potential therapeutic strategies. Preconditioning has emerged as a powerful method of ameliorating ischemia reperfusion injury to the myocardium and in transplant surgery. More recently, postconditioning has been shown to provide a therapeutic counter to vasoocclusive emergencies. More research and well-designed trials are needed to bridge the gap between experimental evidence and clinical implementation.
Collapse
|
48
|
Donnarumma E, Ali MJ, Rushing AM, Scarborough AL, Bradley JM, Organ CL, Islam KN, Polhemus DJ, Evangelista S, Cirino G, Jenkins JS, Patel RAG, Lefer DJ, Goodchild TT. Zofenopril Protects Against Myocardial Ischemia-Reperfusion Injury by Increasing Nitric Oxide and Hydrogen Sulfide Bioavailability. J Am Heart Assoc 2016; 5:JAHA.116.003531. [PMID: 27381758 PMCID: PMC5015391 DOI: 10.1161/jaha.116.003531] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Zofenopril, a sulfhydrylated angiotensin‐converting enzyme inhibitor (ACEI), reduces mortality and morbidity in infarcted patients to a greater extent than do other ACEIs. Zofenopril is a unique ACEI that has been shown to increase hydrogen sulfide (H2S) bioavailability and nitric oxide (NO) levels via bradykinin‐dependent signaling. Both H2S and NO exert cytoprotective and antioxidant effects. We examined zofenopril effects on H2S and NO bioavailability and cardiac damage in murine and swine models of myocardial ischemia/reperfusion (I/R) injury. Methods and Results Zofenopril (10 mg/kg PO) was administered for 1, 8, and 24 hours to establish optimal dosing in mice. Myocardial and plasma H2S and NO levels were measured along with the levels of H2S and NO enzymes (cystathionine β‐synthase, cystathionine γ‐lyase, 3‐mercaptopyruvate sulfur transferase, and endothelial nitric oxide synthase). Mice received 8 hours of zofenopril or vehicle pretreatment followed by 45 minutes of ischemia and 24 hours of reperfusion. Pigs received placebo or zofenopril (30 mg/daily orally) 7 days before 75 minutes of ischemia and 48 hours of reperfusion. Zofenopril significantly augmented both plasma and myocardial H2S and NO levels in mice and plasma H2S (sulfane sulfur) in pigs. Cystathionine β‐synthase, cystathionine γ‐lyase, 3‐mercaptopyruvate sulfur transferase, and total endothelial nitric oxide synthase levels were unaltered, while phospho‐endothelial nitric oxide synthase1177 was significantly increased in mice. Pretreatment with zofenopril significantly reduced myocardial infarct size and cardiac troponin I levels after I/R injury in both mice and swine. Zofenopril also significantly preserved ischemic zone endocardial blood flow at reperfusion in pigs after I/R. Conclusions Zofenopril‐mediated cardioprotection during I/R is associated with an increase in H2S and NO signaling.
Collapse
Affiliation(s)
- Erminia Donnarumma
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Murtuza J Ali
- Department of Cardiology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Amanda M Rushing
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Amy L Scarborough
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Jessica M Bradley
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Chelsea L Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Kazi N Islam
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - David J Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | | | - Giuseppe Cirino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | | | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Traci T Goodchild
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
49
|
Gonca E, Rapposelli S, Darıcı F, Digiacomo M, Yılmaz Z. Antiarrhythmic activity of a new spiro-cyclic benzopyran activator of the cardiac mitochondrial ATP dependent potassium channels. Arch Pharm Res 2016; 39:1212-22. [PMID: 27357534 DOI: 10.1007/s12272-016-0779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
Abstract
'Compound A' (4(ı)-(N-(4-acetamidobenzyl))-2,2-dimethyl-2,3-dihydro-5(ı)H-spiro[chromene-4,2(ı)-[1,4]oxazinan]-5(ı)-one) is a new spiro-cyclic benzopyran activator of the mitochondrial ATP-dependent potassium channels (mitoKATP). We researched the effect of compound A on ischemia/reperfusion (I/R)-induced ventricular arrhythmias. We also tested the hypothesis that the application of the activation of mitoKATP in combination with the inhibition of sarcolemmal ATP-dependent potassium channels (sarcKATP) may produce a stronger antiarrhythmic effect. In anesthetized rats, myocardial ischemia was performed by ligating the left main coronary artery followed by reperfusion. At a dose of 10 mg/kg, compound A significantly decreased arrhythmia scores and the total length of arrhythmias, whereas this was found to be ineffective at a dose of 3 mg/kg. Pre-treatment with 5-HD, a selective mitoKATP blocker, abolished the antiarrhythmic effect of compound A. Both diazoxide, a selective mitoKATP opener and HMR 1098, a selective sarcKATP blocker, significantly decreased the total length of arrhythmias. However, the combination of neither diazoxide nor compound A with HMR 1098 showed no additional therapeutic benefit. These results reveal that compound A may have a dose-dependent antiarrythmic effect, which is more pronounced than the antiarrhythmic effect of diazoxide. The antiarrhythmic effect of compound A may possibly depend on mitoKATP activation.
Collapse
Affiliation(s)
- Ersöz Gonca
- Department of Biology, Faculty of Art and Sciences, Bülent Ecevit University, Zonguldak, Turkey.
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Faruk Darıcı
- Department of Biology, Faculty of Art and Sciences, Bülent Ecevit University, Zonguldak, Turkey
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Zehra Yılmaz
- Department of Pharmacology, Faculty of Medicine, Harran University, Şanliurfa, Turkey
| |
Collapse
|
50
|
Onukwufor JO, Stevens D, Kamunde C. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction. ACTA ACUST UNITED AC 2016; 219:2743-51. [PMID: 27358470 DOI: 10.1242/jeb.140186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/26/2016] [Indexed: 12/19/2022]
Abstract
The mitochondrial ATP-sensitive K(+) (mitoKATP) channel plays a significant role in mitochondrial physiology and protects against ischemic reperfusion injury in mammals. Although fish frequently face oxygen fluctuations in their environment, the role of the mitoKATP channel in regulating the responses to oxygen stress is rarely investigated in this class of animals. To elucidate whether and how the mitoKATP channel protects against hypoxia-reoxygenation (H-R)-induced mitochondrial dysfunction in fish, we first determined the mitochondrial bioenergetic effects of two key modulators of the channel, diazoxide and 5-hydroxydecanoate (5-HD), using a wide range of doses. Subsequently, the effects of low and high doses of the modulators on mitochondrial bioenergetics and volume under normoxia and after H-R using buffers with and without magnesium and ATP (Mg-ATP) were tested. In the absence of Mg-ATP (mitoKATP channel open), both low and high doses of diazoxide improved mitochondrial coupling, but only the high dose of 5-HD reversed the post-H-R coupling-enhancing effect of diazoxide. In the presence of Mg-ATP (mitoKATP channel closed), diazoxide at the low dose improved coupling post-H-R, and this effect was abolished by 5-HD at the low dose. Interestingly, both low and high doses of diazoxide reversed H-R-induced swelling under mitoKATP channel open conditions, but this effect was not sensitive to 5-HD. Under mitoKATP channel closed conditions, diazoxide at the low dose protected the mitochondria from H-R-induced swelling and 5-HD at the low dose reversed this effect. In contrast, diazoxide at the high dose failed to reduce the swelling caused by H-R, and the addition of the high dose of 5-HD enhanced mitochondrial swelling. Overall, our study showed that in the presence of Mg-ATP, both opening of mitoKATP channels and bioenergetic effects of diazoxide were protective against H-R in fish mitochondria, while in the absence of Mg-ATP only the bioenergetic effect of diazoxide was protective.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3
| |
Collapse
|