1
|
Semin BK, Seibert M. Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation. J Bioenerg Biomembr 2016; 48:227-40. [PMID: 26847716 DOI: 10.1007/s10863-016-9651-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.
Collapse
Affiliation(s)
- Boris K Semin
- BioEnergy Sciences & Technology Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Michael Seibert
- BioEnergy Sciences & Technology Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| |
Collapse
|
2
|
Asada M, Mino H. Location of the High-Affinity Mn(2+) Site in Photosystem II Detected by PELDOR. J Phys Chem B 2015. [PMID: 26203770 DOI: 10.1021/acs.jpcb.5b03994] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The location of the high-affinity Mn(2+) site in apo-photosystem (PS) II was investigated by pulsed EPR. The electron-electron magnetic dipole interaction of 1.7 MHz between the YD(•) radical and Mn(2+) ion was observed using the pulsed electron-electron double resonance (PELDOR) technique, and the Mn(2+) ion was bound to one apo-PS II in the absence and presence of Ca(2+). PELDOR signals were calculated using the previously determined spin distribution on the YD(•) radical and its known position in the crystal structure, assuming that the specific Mn(2+) site was located in the oxygen evolving complex. The results show that the high-affinity Mn(2+) site is located at the position denoted by Mn4(A) in the native crystal structure. The Mn(2+) is coordinated with axial ligands Asp170 and Glu333 in the D1 polypeptide.
Collapse
Affiliation(s)
- Mizue Asada
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
3
|
Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W. The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 2012; 287:24721-33. [PMID: 22549771 PMCID: PMC3397899 DOI: 10.1074/jbc.m112.365288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.
Collapse
Affiliation(s)
- Thomas Lohmiller
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Nicholas Cox
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Ji-Hu Su
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Johannes Messinger
- the Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå,
Sweden
| | - Wolfgang Lubitz
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| |
Collapse
|
4
|
Bondarava N, Beyer P, Krieger-Liszkay A. Function of the 23 kDa extrinsic protein of Photosystem II as a manganese binding protein and its role in photoactivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:63-70. [PMID: 15949984 DOI: 10.1016/j.bbabio.2005.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 01/02/2005] [Accepted: 01/13/2005] [Indexed: 11/21/2022]
Abstract
The function of the extrinsic 23 kDa protein of Photosystem II (PSII) was studied with respect to Mn binding and its ability to supply Mn to PSII during photoactivation, i.e. the light-dependent assembly of the tetramanganese cluster. The extrinsic proteins and the Mn cluster were removed by TRIS treatment from PSII-enriched membrane fragments and purified by anion exchange chromatography. Room temperature EPR spectra of the purified 23 kDa protein demonstrated the presence of Mn. Photoactivation was successful with low Mn concentrations when the 23 kDa protein was present, while in its absence a higher Mn concentration was needed to reach the same level of oxygen evolution activity. In addition, the rate of photoactivation was significantly accelerated in the presence of the 23 kDa protein. It is proposed that the 23 kDa protein plays an important role in providing Mn during the process of PSII assembly and that it acquires Mn during the light-induced turnover of D1 in the PSII damage-repair cycle and delivers Mn to repaired PSII.
Collapse
Affiliation(s)
- Natallia Bondarava
- Institut für Biologie II, Biochemie der Pflanzen, Universität Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | | | |
Collapse
|
5
|
van Gorkom HJ, Yocum CF. The Calcium and Chloride Cofactors. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2005. [DOI: 10.1007/1-4020-4254-x_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Ananyev GM, Zaltsman L, Vasko C, Dismukes GC. The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:52-68. [PMID: 11115624 DOI: 10.1016/s0005-2728(00)00215-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
At the request of the organizer of this special edition, we have attempted to do several things in this manuscript: (1) we present a mini-review of recent, selected, works on the light-induced inorganic biogenesis (photoactivation), composition and structure of the inorganic core responsible for photosynthetic water oxidation; (2) we summarize a new proposal for the evolutionary origin of the water oxidation catalyst which postulates a key role for bicarbonate in formation of the inorganic core; (3) we summarize published studies and present new results on what has been learned from studies of 'inorganic mutants' in which the endogenous cofactors (Mn(n+), Ca2+, Cl-) are substituted; (4) the first DeltapH changes measured during the photoactivation process are reported and used to develop a model for the stepwise photo-assembly process; (5) a comparative analysis is given of data in the literature on the kinetics of substrate water exchange and peroxide binding/dismutation which support a mechanistic model for water oxidation in general; (6) we discuss alternative interpretations of data in the literature with a view to forecast new avenues where progress is needed.
Collapse
Affiliation(s)
- G M Ananyev
- Princeton University Department of Chemistry, Hoyt Laboratory, Princeton, NJ 09544, USA
| | | | | | | |
Collapse
|
7
|
Robblee JH, Cinco RM, Yachandra VK. X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:7-23. [PMID: 11115621 PMCID: PMC3950273 DOI: 10.1016/s0005-2728(00)00217-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mechanism by which the Mn-containing oxygen evolving complex (OEC) produces oxygen from water has been of great interest for over 40 years. This review focuses on how X-ray spectroscopy has provided important information about the structure of this Mn complex and its intermediates, or S-states, in the water oxidation cycle. X-ray absorption near-edge structure spectroscopy and high-resolution Mn Kbeta X-ray emission spectroscopy experiments have identified the oxidation states of the Mn in the OEC in each of the intermediate S-states, while extended X-ray absorption fine structure experiments have shown that 2.7 A Mn-Mn di-mu-oxo and 3.3 A Mn-Mn mono-mu-oxo motifs are present in the OEC. X-ray spectroscopy has also been used to probe the two essential cofactors in the OEC, Ca2+ and Cl-, and has shown that Ca2+ is an integral component of the OEC and is proximal to Mn. In addition, dichroism studies on oriented PS II membranes have provided angular information about the Mn-Mn and Mn-Ca vectors. Based on these X-ray spectroscopy data, refined models for the structure of the OEC and a mechanism for oxygen evolution by the OEC are presented.
Collapse
Affiliation(s)
- John H. Robblee
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Roehl M. Cinco
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Ono T. Effects of lanthanide substitution at Ca2+-site on the properties of the oxygen evolving center of photosystem II. J Inorg Biochem 2000; 82:85-91. [PMID: 11132643 DOI: 10.1016/s0162-0134(00)00144-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional calcium present in a photosynthetic oxygen evolving center (OEC) was replaced by lanthanides. To this end, sample membranes depleted of Ca2+ as well as 16 and 24 kDa extrinsic proteins were prepared and the effects of lanthanides substitution on OEC were studied. The lanthanides inhibited Ca2+-dependent restoration of oxygen evolution but the presence of Ca2+ during the treatment protected OEC from this inhibition, which occurred within 1 min at 20 degrees C but required much longer time at 0 degrees C. Kinetic analysis suggests that lanthanides function as a mixed-type competitor for Ca2+. Lanthanides with ionic radii smaller than Ca2+ show higher affinity for the Ca2+ site than those with larger radii. A lanthanide-substituted OEC displayed a thermoluminescence (TL) band arising from S2Q(A)- charge recombination, indicating that the Mn cluster is oxidized to the S2 state. However, the peak temperature of the TL band varied depending on lanthanide species. The results indicate that the oxidation potential of the Mn cluster is modified in various ways in a substituted OEC. Furthermore, the threshold temperature for the S1 to S2 transition in the lanthanide-substituted OEC was markedly upshifted to the temperature coincident with that found in Ca2+-depleted but 24 kDa protein preserved OEC. Changes in the OEC induced by the binding of lanthanides to the Ca2+-site are discussed based on these results.
Collapse
Affiliation(s)
- T Ono
- Laboratory for Photo-Biology, RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, Aoba, Sendai, Japan.
| |
Collapse
|
9
|
Semin BK, Ivanov LI, Rubin AB, Carpentier R. pH-Dependent Extraction of Ca 2+ from Photosystem II Membranes and Thylakoid Membranes: Indication of a Ca 2+-Sensitive Site on the Acceptor Side of Photosystem II. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb02511.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|