1
|
Mendoza-Hoffmann F, Yang L, Buratto D, Brito-Sánchez J, Garduño-Javier G, Salinas-López E, Uribe-Álvarez C, Ortega R, Sotelo-Serrano O, Cevallos MÁ, Ramírez-Silva L, Uribe-Carvajal S, Pérez-Hernández G, Celis-Sandoval H, García-Trejo JJ. Inhibitory to non-inhibitory evolution of the ζ subunit of the F 1F O-ATPase of Paracoccus denitrificans and α-proteobacteria as related to mitochondrial endosymbiosis. Front Mol Biosci 2023; 10:1184200. [PMID: 37664184 PMCID: PMC10469736 DOI: 10.3389/fmolb.2023.1184200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: The ζ subunit is a potent inhibitor of the F1FO-ATPase of Paracoccus denitrificans (PdF1FO-ATPase) and related α-proteobacteria different from the other two canonical inhibitors of bacterial (ε) and mitochondrial (IF1) F1FO-ATPases. ζ mimics mitochondrial IF1 in its inhibitory N-terminus, blocking the PdF1FO-ATPase activity as a unidirectional pawl-ratchet and allowing the PdF1FO-ATP synthase turnover. ζ is essential for the respiratory growth of P. denitrificans, as we showed by a Δζ knockout. Given the vital role of ζ in the physiology of P. denitrificans, here, we assessed the evolution of ζ across the α-proteobacteria class. Methods: Through bioinformatic, biochemical, molecular biology, functional, and structural analyses of several ζ subunits, we confirmed the conservation of the inhibitory N-terminus of ζ and its divergence toward its C-terminus. We reconstituted homologously or heterologously the recombinant ζ subunits from several α-proteobacteria into the respective F-ATPases, including free-living photosynthetic, facultative symbiont, and intracellular facultative or obligate parasitic α-proteobacteria. Results and discussion: The results show that ζ evolved, preserving its inhibitory function in free-living α-proteobacteria exposed to broad environmental changes that could compromise the cellular ATP pools. However, the ζ inhibitory function was diminished or lost in some symbiotic α-proteobacteria where ζ is non-essential given the possible exchange of nutrients and ATP from hosts. Accordingly, the ζ gene is absent in some strictly parasitic pathogenic Rickettsiales, which may obtain ATP from the parasitized hosts. We also resolved the NMR structure of the ζ subunit of Sinorhizobium meliloti (Sm-ζ) and compared it with its structure modeled in AlphaFold. We found a transition from a compact ordered non-inhibitory conformation into an extended α-helical inhibitory N-terminus conformation, thus explaining why the Sm-ζ cannot exert homologous inhibition. However, it is still able to inhibit the PdF1FO-ATPase heterologously. Together with the loss of the inhibitory function of α-proteobacterial ε, the data confirm that the primary inhibitory function of the α-proteobacterial F1FO-ATPase was transferred from ε to ζ and that ζ, ε, and IF1 evolved by convergent evolution. Some key evolutionary implications on the endosymbiotic origin of mitochondria, as most likely derived from α-proteobacteria, are also discussed.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jorge Brito-Sánchez
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Gilberto Garduño-Javier
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Emiliano Salinas-López
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Cristina Uribe-Álvarez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Oliver Sotelo-Serrano
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Leticia Ramírez-Silva
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Salvador Uribe-Carvajal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| | - Heliodoro Celis-Sandoval
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - José J. García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| |
Collapse
|
2
|
Turina P. Modulation of the H +/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Front Mol Biosci 2022; 9:1023031. [PMID: 36275634 PMCID: PMC9583940 DOI: 10.3389/fmolb.2022.1023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
F-type ATP synthases are transmembrane enzymes, which play a central role in the metabolism of all aerobic and photosynthetic cells and organisms, being the major source of their ATP synthesis. Catalysis occurs via a rotary mechanism, in which the free energy of a transmembrane electrochemical ion gradient is converted into the free energy of ATP phosphorylation from ADP and Pi, and vice versa. An ADP, tightly bound to one of the three catalytic sites on the stator head, is associated with catalysis inhibition, which is relieved by the transmembrane proton gradient and by ATP. By preventing wasteful ATP hydrolysis in times of low osmotic energy and low ATP/ADP ratio, such inhibition constitutes a classical regulatory feedback effect, likely to be an integral component of in vivo regulation. The present miniview focuses on an additional putative regulatory phenomenon, which has drawn so far little attention, consisting in a substrate-induced tuning of the H+/ATP coupling ratio during catalysis, which might represent an additional key to energy homeostasis in the cell. Experimental pieces of evidence in support of such a phenomenon are reviewed.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
García JJ, Capaldi RA. Unisite catalysis without rotation of the gamma-epsilon domain in Escherichia coli F1-ATPase. J Biol Chem 1998; 273:15940-5. [PMID: 9632641 DOI: 10.1074/jbc.273.26.15940] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unisite [gamma-32P]ATP hydrolysis was studied in ECF1 from the mutant betaE381C after generating a single disulfide bond between beta and gamma subunits to prevent the rotation of the gamma/epsilon domain. The single beta-gamma cross-link was obtained by removal of the delta subunit from F1 and then treating with CuCl2 as described previously (Aggeler, R., Haughton, M. A., and Capaldi, R. A. (1996) J. Biol. Chem. 270, 9185-9191). The mutant enzyme, betaE381C, had an increased overall rate of unisite hydrolysis of [gamma-32P]ATP compared with the wild type ECF1 due to increases in the rate of ATP binding (k+1), Pi release (k+3), and ADP release (k+4). Release of bound substrate ([gamma-32P]ATP) was also increased in the betaE381C mutant. Cross-linking between Cys-381 and the intrinsic Cys-87 of gamma caused a further increase in the rate of unisite catalysis, mainly by additional effects on nucleotide binding in the high affinity catalytic site (k+1 and k+4). In delta-subunit-free ECF1 from wild type or betaE381C F1, addition of an excess of ATP accelerated unisite catalysis. After cross-linking, unisite catalysis of betaE381C was not enhanced by the cold chase. The covalent linkage of gamma to beta increased the rate of unisite catalysis to that obtained by cold chase of ATP of the noncross-linked enzyme. It is concluded that the conversion of Glu-381 of beta to Cys induces an activated conformation of the high affinity catalytic site with low affinity for substrate and products. This state is stabilized by cross-linking the Cys at beta381 to Cys-87 of gamma. We infer from the data that rotation of the gamma/epsilon rotor in ECF1 is not linked to unisite hydrolysis of ATP at the high affinity catalytic site but to ATP binding to a second or third catalytic site on the enzyme.
Collapse
Affiliation(s)
- J J García
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|