1
|
Kamei Y, Koushi M, Aoyama Y, Asakai R. The yeast mitochondrial permeability transition is regulated by reactive oxygen species, endogenous Ca 2+ and Cpr3, mediating cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1313-1326. [PMID: 30031690 DOI: 10.1016/j.bbabio.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/29/2022]
Abstract
We investigated the properties of the permeability transition pore (PTP) in Saccharomyces cerevisiae in agar-embedded mitochondria (AEM) and agar-embedded cells (AEC) and its role in yeast death. In AEM, ethanol-induced pore opening, as indicated by the release of calcein and mitochondrial membrane depolarization, can be inhibited by CsA, by Cpr3 deficiency, and by the antioxidant glutathione. Notably, the pore opening is inhibited, when mitochondria are preloaded by EGTA or Fluo3 to chelate matrix Ca2+, or are pretreated with 4-Br A23187 to extract matrix Ca2+, prior to agar-embedding, or when pore opening is induced in the presence of EGTA; opened pores are re-closed by sequential treatment with CsA, 4-Br A23187 plus EGTA and NADH, indicating endogenous matrix Ca2+ involvement. CsA also inhibits the pore opening with low conductance triggered by exogenous Ca2+ transport with ETH129. In AEC, the treatment of tert-butylhydroperoxide, a pro-oxidant that triggers transient pore opening in high conductance in AEM, induces yeast death, which is also dependent on CsA and Cpr3. Furthermore, AEMs from mutants lacking three ADP/ATP carrier (AAC) isoforms and with defective ATP synthase dimerization exhibit high and low conductance pore openings with CsA sensitivity, respectively. Collectively, these data show that the yeast PTP is regulated by Cpr3, endogenous matrix Ca2+, and reactive oxygen species, and that it is involved in yeast death; furthermore, ATP synthase dimers play a key role in CsA-sensitive pore formation, while AACs are dispensable.
Collapse
Affiliation(s)
- Yoshiko Kamei
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Masami Koushi
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Yasunori Aoyama
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Rei Asakai
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan.
| |
Collapse
|
2
|
Carraro M, Bernardi P. Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium 2016; 60:102-7. [PMID: 26995056 DOI: 10.1016/j.ceca.2016.03.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/28/2023]
Abstract
Mitochondria-dependent programmed cell death (PCD) in yeast shares many features with the intrinsic apoptotic pathway of mammals. With many stimuli, increased cytosolic [Ca(2+)] and ROS generation are the triggering signals that lead to mitochondrial permeabilization and release of proapoptotic factors, which initiates yeast PCD. While in mammals the permeability transition pore (PTP), a high-conductance inner membrane channel activated by increased matrix Ca(2+) and oxidative stress, is recognized as part of this signaling cascade, whether a similar process occurs in yeast is still debated. The potential role of the PTP in yeast PCD has generally been overlooked because yeast mitochondria lack the Ca(2+) uniporter, which in mammals allows rapid equilibration of cytosolic Ca(2+) with the matrix. In this short review we discuss the nature of the yeast permeability transition and reevaluate its potential role in the effector phase of yeast PCD triggered by Ca(2+) and oxidative stress.
Collapse
Affiliation(s)
- Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
3
|
Cabrera-Orefice A, Ibarra-García-Padilla R, Maldonado-Guzmán R, Guerrero-Castillo S, Luévano-Martínez LA, Pérez-Vázquez V, Gutiérrez-Aguilar M, Uribe-Carvajal S. The Saccharomyces cerevisiae mitochondrial unselective channel behaves as a physiological uncoupling system regulated by Ca2+, Mg2+, phosphate and ATP. J Bioenerg Biomembr 2015; 47:477-91. [PMID: 26530988 DOI: 10.1007/s10863-015-9632-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
It is proposed that the Saccharomyces cerevisiae the Mitochondrial Unselective Channel ((Sc)MUC) is tightly regulated constituting a physiological uncoupling system that prevents overproduction of reactive oxygen species (ROS). Mg(2+), Ca(2+) or phosphate (Pi) close (Sc)MUC, while ATP or a high rate of oxygen consumption open it. We assessed (Sc)MUC activity by measuring in isolated mitochondria the respiratory control, transmembrane potential (ΔΨ), swelling and production of ROS. At increasing [Pi], less [Ca(2+)] and/or [Mg(2+)] were needed to close (Sc)MUC or increase ATP synthesis. The Ca(2+)-mediated closure of (Sc)MUC was prevented by high [ATP] while the Mg(2+) or Pi effect was not. When Ca(2+) and Mg(2+) were alternatively added or chelated, (Sc)MUC opened and closed reversibly. Different effects of Ca(2+) vs Mg(2+) effects were probably due to mitochondrial Mg(2+) uptake. Our results suggest that (Sc)MUC activity is dynamically controlled by both the ATP/Pi ratio and divalent cation fluctuations. It is proposed that the reversible opening/closing of (Sc)MUC leads to physiological uncoupling and a consequent decrease in ROS production.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo Ibarra-García-Padilla
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocío Maldonado-Guzmán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Luis A Luévano-Martínez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Salvador Uribe-Carvajal, Department of Molecular Genetics, Instituto de Fisiología Celular, UNAM, Apdo. postal 70-242, 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Gutiérrez-Aguilar M, Uribe-Carvajal S. The mitochondrial unselective channel in Saccharomyces cerevisiae. Mitochondrion 2015; 22:85-90. [PMID: 25889953 DOI: 10.1016/j.mito.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
Abstract
Opening of the mitochondrial permeability transition (MPT) pore mediates the increase in the unselective permeability to ions and small molecules across the inner mitochondrial membrane. MPT results from the opening of channels of unknown identity in mitochondria from plants, animals and yeast. However, the effectors and conditions required for MPT to occur in different species are remarkably disparate. Here we critically review previous and recent findings concerning the mitochondrial unselective channel of the yeast Saccharomyces cerevisiae to determine if it can be considered a counterpart of the mammalian MPT pore.
Collapse
Affiliation(s)
- Manuel Gutiérrez-Aguilar
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | |
Collapse
|
5
|
Gutiérrez-Aguilar M, López-Carbajal HM, Uribe-Alvarez C, Espinoza-Simón E, Rosas-Lemus M, Chiquete-Félix N, Uribe-Carvajal S. Effects of ubiquinone derivatives on the mitochondrial unselective channel of Saccharomyces cerevisiae. J Bioenerg Biomembr 2014; 46:519-27. [DOI: 10.1007/s10863-014-9595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
6
|
Bradshaw PC, Pfeiffer DR. Loss of NAD(H) from swollen yeast mitochondria. BMC BIOCHEMISTRY 2006; 7:3. [PMID: 16433924 PMCID: PMC1395316 DOI: 10.1186/1471-2091-7-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/24/2006] [Indexed: 11/10/2022]
Abstract
BACKGROUND The mitochondrial electron transport chain oxidizes matrix space NADH as part of the process of oxidative phosphorylation. Mitochondria contain shuttles for the transport of cytoplasmic NADH reducing equivalents into the mitochondrial matrix. Therefore for a long time it was believed that NAD(H) itself was not transported into mitochondria. However evidence has been obtained for the transport of NAD(H) into and out of plant and mammalian mitochondria. Since Saccharomyces cerevisiae mitochondria can directly oxidize cytoplasmic NADH, it remained questionable if mitochondrial NAD(H) transport occurs in this organism. RESULTS NAD(H) was lost more extensively from the matrix space of swollen than normal, condensed isolated yeast mitochondria from Saccharomyces cerevisiae. The loss of NAD(H) in swollen organelles caused a greatly decreased respiratory rate when ethanol or other matrix space NAD-linked substrates were oxidized. Adding NAD back to the medium, even in the presence of a membrane-impermeant NADH dehydrogenase inhibitor, restored the respiratory rate of swollen mitochondria oxidizing ethanol, suggesting that NAD is transported into the matrix space. NAD addition did not restore the decreased respiratory rate of swollen mitochondria oxidizing the combination of malate, glutamate, and pyruvate. Therefore the loss of matrix space metabolites is not entirely specific for NAD(H). However, during NAD(H) loss the mitochondrial levels of most other nucleotides were maintained. Either hypotonic swelling or colloid-osmotic swelling due to opening of the yeast mitochondrial unspecific channel (YMUC) in a mannitol medium resulted in decreased NAD-linked respiration. However, the loss of NAD(H) from the matrix space was not mediated by the YMUC, because YMUC inhibitors did not prevent decreased NAD-linked respiration during swelling and YMUC opening without swelling did not cause decreased NAD-linked respiration. CONCLUSION Loss of endogenous NAD(H) from isolated yeast mitochondria is greatly stimulated by matrix space expansion. NAD(H) loss greatly limits NAD-linked respiration in swollen mitochondria without decreasing the NAD-linked respiratory rate in normal, condensed organelles. NAD addition can totally restore the decreased respiration in swollen mitochondria. In live yeast cells mitochondrial swelling has been observed prior to mitochondrial degradation and cell death. Therefore mitochondrial swelling may stimulate NAD(H) transport to regulate metabolism during these conditions.
Collapse
Affiliation(s)
| | - Douglas R Pfeiffer
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Ma L, Vaz FM, Gu Z, Wanders RJA, Greenberg ML. The Human TAZ Gene Complements Mitochondrial Dysfunction in the Yeast taz1Δ Mutant. J Biol Chem 2004; 279:44394-9. [PMID: 15304507 DOI: 10.1074/jbc.m405479200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Barth syndrome is a genetic disorder that is caused by different mutations in the TAZ gene G4.5. The yeast gene TAZ1 is highly homologous to human TAZ, and the taz1Delta mutant has phospholipid defects similar to those observed in Barth syndrome cells, including aberrant cardiolipin species and decreased cardiolipin levels. Subcellular fractionation studies revealed that Taz1p is localized exclusively in mitochondria, which supports the theory that tafazzins are involved in cardiolipin remodeling. Because cardiolipin plays an important role in respiratory function, we measured the energy transformation and osmotic properties of isolated mitochondria from the taz1Delta mutant. Energy coupling in taz1Delta mitochondria was dependent on the rate of oxidative phosphorylation, as coupling was diminished when NADH was used as a respiratory substrate but was unaffected when ethanol was the substrate. Membrane stability was compromised in taz1Delta mitochondria exposed to increased temperature and hypotonic conditions. Mitochondria from taz1Delta also displayed decreased swelling in response to ATP, which induces the yeast mitochondrial unspecific channel, and to alamethicin, a membrane-disrupting agent. Coupling was measured in taz1Delta cells containing different splice variants of the human TAZ gene. Only the variant that restores wild type cardiolipin synthesis (lacking exon 5) restored coupling in hypotonic conditions and at elevated temperature. These findings may shed light on the mitochondrial deficiencies observed in Barth syndrome.
Collapse
Affiliation(s)
- Lining Ma
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
8
|
Garlid KD, Paucek P. Mitochondrial potassium transport: the K(+) cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:23-41. [PMID: 14507425 DOI: 10.1016/s0005-2728(03)00108-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Potassium transport plays three distinct roles in mitochondria. Volume homeostasis to prevent excess matrix swelling is a housekeeping function that is essential for maintaining the structural integrity of the organelle. This function is mediated by the K(+)/H(+) antiporter and was first proposed by Peter Mitchell. Volume homeostasis to prevent excess matrix contraction is a recently discovered function that maintains a fully expanded matrix when diffusive K(+) influx declines due to membrane depolarization caused by high rates of electron transport. Maintaining matrix volume under these conditions is important because matrix contraction inhibits electron transport and also perturbs the structure-function of the intermembrane space (IMS). This volume regulation is mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Cell signaling functions to protect the cell from ischemia-reperfusion injury and also to trigger transcription of genes required for cell growth. This function depends on the ability of mitoK(ATP) opening to trigger increased mitochondrial production of reactive oxygen species (ROS). This review discusses the properties of the mitochondrial K(+) cycle that help to understand the basis of these diverse effects.
Collapse
Affiliation(s)
- Keith D Garlid
- Department of Biology, Portland State University, 1719 SW 10th Avenue, PO Box 751, Portland, OR 97207, USA.
| | | |
Collapse
|
9
|
Koshkin V, Greenberg ML. Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochem J 2002; 364:317-22. [PMID: 11988106 PMCID: PMC1222575 DOI: 10.1042/bj3640317] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role of cardiolipin in mitochondrial function was studied by comparing the energy-transforming and osmotic properties of mitochondria isolated from the Saccharomyces cerevisiae cardiolipin synthase-null mutant crd1Delta, which has no cardiolipin, and the isogenic wild type. The results indicated that the importance of cardiolipin for energetic coupling strongly depends on the rate of oxidative phosphorylation, which was set by using NADH (maximal rate limited by coupling mechanism) or ethanol (moderate rate limited by electron supply) as a respiratory substrate, or by modulating the steady-state rate of NADH supply. The absence of cardiolipin resulted in only a small effect on oxidative phosphorylation proceeding at a moderate rate, but led to significant uncoupling (decreased ADP/O and increased state 4 respiration) at the maximal rate of respiration. This indicates that cardiolipin prevents rate-dependent uncoupling in the energy-transforming apparatus. This role of cardiolipin may derive from its strong interaction with, and modulation of the function of, respiratory complexes, and from its effects on the physical properties of the membrane. The importance of cardiolipin for mitochondrial osmotic properties was determined by comparing oxidative phosphorylation, release of matrix enzyme, shrinking ability and volume dynamics upon hypotonically induced swelling in crd1Delta and wild-type mitochondria. Opening of the yeast mitochondrial unspecific channel (YMUC) in the wild-type and mutant mitochondria was also tested. It was found that the lack of cardiolipin strongly undermines the osmotic stability of the mitochondrial membrane.
Collapse
Affiliation(s)
- Vasilij Koshkin
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, U.S.A
| | | |
Collapse
|