1
|
Knox PP, Lukashev EP, Korvatovskiy BN, Strakhovskaya MG, Makhneva ZK, Bol'shakov MA, Paschenko VZ. Disproportionate effect of cationic antiseptics on the quantum yield and fluorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores. PHOTOSYNTHESIS RESEARCH 2022; 153:103-112. [PMID: 35277801 DOI: 10.1007/s11120-022-00909-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine. The most pronounced changes in the intensity and lifetime of fluorescence were observed with the addition of miramistin and octenidine. At the same concentration of antiseptics, the increase in fluorescence intensity was 2-3 times higher than the increase in its lifetime. It is concluded that the addition of antiseptics decreases the efficiency of the energy migration LH1 → RC and increases the fluorescence rate constant kfl. We associate the latter with a change in the polarization of the microenvironment of bacteriochlorophyll molecules upon the addition of charged antiseptic molecules. A possible mechanism of antiseptic action on R. rubrum chromatophores is considered. This work is a continuation of the study of the effect of antiseptics on the energy transfer and fluorescence intensity in chromatophores of purple bacteria published earlier in Photosynthesis Research (Strakhovskaya et al. in Photosyn Res 147:197-209, 2021).
Collapse
Affiliation(s)
- Peter P Knox
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Boris N Korvatovskiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Marina G Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234.
| | - Zoja K Makhneva
- Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", Pushchino, Russian Federation, 142290
| | - Maxim A Bol'shakov
- Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", Pushchino, Russian Federation, 142290
| | - Vladimir Z Paschenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| |
Collapse
|
2
|
Bourne Worster S, Feighan O, Manby FR. Reliable transition properties from excited-state mean-field calculations. J Chem Phys 2021; 154:124106. [DOI: 10.1063/5.0041233] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Susannah Bourne Worster
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Oliver Feighan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Frederick R. Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
3
|
Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NK, Knox PP, Paschenko VZ. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2021; 147:197-209. [PMID: 33389445 PMCID: PMC7778420 DOI: 10.1007/s11120-020-00807-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 μM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 μM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.
Collapse
Affiliation(s)
- Marina G Strakhovskaya
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russian Federation.
| | - Eugene P Lukashev
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Boris N Korvatovskiy
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Ekaterina G Kholina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Nuranija Kh Seifullina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Peter P Knox
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Vladimir Z Paschenko
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
4
|
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem Rev 2016; 117:249-293. [PMID: 27428615 DOI: 10.1021/acs.chemrev.6b00002] [Citation(s) in RCA: 628] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.
Collapse
Affiliation(s)
- Tihana Mirkovic
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Evgeny E Ostroumov
- Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania , 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign , 265 Morrill Hall, 505 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Gregory D Scholes
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Chenchiliyan M, Timpmann K, Jalviste E, Adams PG, Hunter CN, Freiberg A. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:634-42. [DOI: 10.1016/j.bbabio.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/24/2022]
|
6
|
Ohtani Y, Nishinaka H, Hoshino S, Shimada T, Takagi S. Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Caffarri S, Tibiletti T, Jennings RC, Santabarbara S. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 2015; 15:296-331. [PMID: 24678674 PMCID: PMC4030627 DOI: 10.2174/1389203715666140327102218] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/31/2023]
Abstract
Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting
light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter
process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low
levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem
II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to
catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are
highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron
transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity
regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure
are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of
the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as
obtained by structural, biochemical and spectroscopic investigations.
Collapse
Affiliation(s)
| | | | | | - Stefano Santabarbara
- Laboratoire de Génétique et de Biophysique des Plantes (LGBP), Aix-Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
8
|
Timpmann K, Chenchiliyan M, Jalviste E, Timney JA, Hunter CN, Freiberg A. Efficiency of light harvesting in a photosynthetic bacterium adapted to different levels of light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1835-46. [DOI: 10.1016/j.bbabio.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
9
|
Carey AM, Hacking K, Picken N, Honkanen S, Kelly S, Niedzwiedzki DM, Blankenship RE, Shimizu Y, Wang-Otomo ZY, Cogdell RJ. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1849-1860. [PMID: 25111749 DOI: 10.1016/j.bbabio.2014.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila.
Collapse
Affiliation(s)
- Anne-Marie Carey
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK.
| | - Kirsty Hacking
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Nichola Picken
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Suvi Honkanen
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Sharon Kelly
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | | - Robert E Blankenship
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130, USA; Department of Biology, Washington University, St. Louis, MO 63130, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Yuuki Shimizu
- Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan
| | | | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Scholes GD, Smyth C. Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting. J Chem Phys 2014; 140:110901. [DOI: 10.1063/1.4869329] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
11
|
Kwon SY, Jiang SN, Zheng JH, Choy HE, Min JJ. Rhodobacter sphaeroides, a novel tumor-targeting bacteria that emits natural near-infrared fluorescence. Microbiol Immunol 2014; 58:172-9. [DOI: 10.1111/1348-0421.12134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Seong Young Kwon
- Department of Nuclear Medicine; Chonnam National University Medical School; Jeonnam Korea
| | - Sheng-Nan Jiang
- Department of Nuclear Medicine; HaiKou People's Hospital; HaiKou China
| | - Jin Hai Zheng
- Department of Nuclear Medicine; Chonnam National University Medical School; Jeonnam Korea
| | - Hyon E. Choy
- Department of Microbiology; Chonnam National University Medical School; Jeonnam Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine; Chonnam National University Medical School; Jeonnam Korea
| |
Collapse
|
12
|
Electronic Excitation Energy Transfer Between Quasi-Zero-Dimensional Systems. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2014. [DOI: 10.1380/ejssnt.2014.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Leiger K, Reisberg L, Freiberg A. Fluorescence Micro-Spectroscopy Study of Individual Photosynthetic Membrane Vesicles and Light-Harvesting Complexes. J Phys Chem B 2013; 117:9315-26. [DOI: 10.1021/jp4014509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristjan Leiger
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
| | - Liis Reisberg
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
| | - Arvi Freiberg
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
- Institute
of Molecular and Cell
Biology, University of Tartu, Riia 23,
Tartu 51010, Estonia
| |
Collapse
|
14
|
Harvey PD, Stern C, Gros CP, Guilard R. Through space singlet energy transfers in light-harvesting systems and cofacial bisporphyrin dyads. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424610001702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent discoveries from our research groups on the photophysics of a few cofacial bisporphyrin dyads for through space singlet and triplet energy transfers raised several important investigations about the mechanism of energy transfers and energy migration in light-harvesting devices, notably LH II, in the heavily investigated purple photosynthetic bacteria. The key feature is that for face-to-face and slipped dyads with controlled structure using rigid spacers or spacers with limited flexibilities, our fastest rates for singlet energy transfer are in the 10 × 109 s -1 (i.e. 100 ps time scale) for donor-acceptor distances of ~3.5–3.6 Å. The time scale for energy transfers between different bacteriochlorophylls, notably B800*→B850, is in the ps despite the long Mg ⋯ Mg separation (~18 Å). This short rate drastically contrasts with the well-accepted Förster theory. This review focuses on the photophysical processes and dynamics in LH II and compares these parameters with our investigated model dyads build upon octa-etio-porphyrin chromophores and rigid and semi-rigid spacers. The recently discovered role of the rhodopin glucoside (carotenoid) will be analyzed as possible relay for energy transfers, including the possibility of uphill processes at room temperature. In this context the concept of energy migration may be complemented by parallel relays and uphill processes. It is also becoming more obvious that the irreversible electron transfer at the reaction center (electron transfer from the special pair to the phaeophytin) renders the rates for energy transfer and migration faster precluding all possibility of back transfers.
Collapse
Affiliation(s)
- Pierre D. Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Christine Stern
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR 5260), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Claude P. Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR 5260), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Roger Guilard
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR 5260), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| |
Collapse
|
15
|
|
16
|
Pflock TJ, Oellerich S, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. I. Isolated, Non-Interacting LH2 Complexes. J Phys Chem B 2011; 115:8813-20. [DOI: 10.1021/jp202353c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias J. Pflock
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Silke Oellerich
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - G. Matthias Ullmann
- Computational Biochemistry/Bioinformatics, University of Bayreuth, D-95440 Bayreuth
| | - Jürgen Köhler
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
17
|
de Rivoyre M, Ginet N, Bouyer P, Lavergne J. Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1780-94. [PMID: 20655292 DOI: 10.1016/j.bbabio.2010.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 11/30/2022]
Abstract
Photosynthetic membranes accommodate densely packed light-harvesting complexes which absorb light and convey excitation to the reaction center (RC). The relationship between the fluorescence yield (phi) and the fraction (x) of closed RCs is informative about the probability for an excitation reaching a closed RC to be redirected to another RC. In this work, we have examined in this respect membranes from various bacteria and searched for a correlation with the arrangement of the light-harvesting complexes as known from atomic force or electron microscopies. A first part of the paper is devoted to a theoretical study analyzing the phi(x) relationship in various models: monomeric or dimeric RC-LH1 core complexes, with or without the peripheral LH2 complexes. We show that the simple "homogeneous" kinetic treatment used here agrees well with more detailed master equation calculations. We also discuss the agreement between information derived from the present technique and from singlet annihilation experiments. The experimental results show that the enhancement of the cross section of open RCs due to excitation transfer from closed units varies from 1.5 to 3 depending on species. The ratio of the core to core transfer rate (including the indirect pathway via LH2) to the rate of trapping in open units is in the range of 0.5 to 4. It is about 1 in Rhodobacter sphaeroides and does not increase significantly in mutants lacking LH2-despite the more numerous contacts between the dimeric core complexes expected in this case. The connectivity in this bacterium is due in good part to the fast transfer between the two partners of the dimeric (RC-LH1-PufX)(2) complex. The connectivity is however increased in the carotenoidless and LH2-less strain R26, which we ascribe to an anomalous LH1. A relatively high connectivity was found in Rhodospirillum photometricum, although not as high as predicted in the calculations of Fassioli et al. (2010). This illustrates a more general discrepancy between the measured efficiency of core to core excitation transfer and theoretical estimates. We argue that the limited core to core connectivity found in purple bacteria may reflect a trade-off between light-harvesting efficiency and the hindrance to quinone diffusion that would result from too tightly packed LH complexes.
Collapse
Affiliation(s)
- Matthieu de Rivoyre
- Laboratoire de Bioénergétique Cellulaire (CEA/DSV/IBEB; UMR 6191 CNRS/CEA) Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | | | | | | |
Collapse
|
18
|
Kocsis P, Asztalos E, Gingl Z, Maróti P. Kinetic bacteriochlorophyll fluorometer. PHOTOSYNTHESIS RESEARCH 2010; 105:73-82. [PMID: 20454858 DOI: 10.1007/s11120-010-9556-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/25/2010] [Indexed: 05/29/2023]
Abstract
A pump and probe fluorometer with a laser diode as single light source has been constructed for measurement of fast induction and relaxation of the fluorescence yield in intact cells, chromatophores and isolated reaction centers of photosynthetic bacteria. The time resolution of the fluorometer is limited by the repetition time of the probing flashes to 20 micros. The apparatus offers high sensitivity, excellent performance and can become a versatile device for a range of demanding applications. Some of them are demonstrated here including fast and easy investigation of the (1) organization and redox state of the photosynthetic apparatus of the intact cells of different bacterial strains and mutants and (2) electron transfer reactions on donor and acceptor sides of isolated reaction centers. The compact design of the mechanics, optics, electronics, and data processing makes the device easy to use as outdoor instrument or to integrate into larger measuring systems.
Collapse
Affiliation(s)
- Péter Kocsis
- Department of Experimental Physics, University of Szeged, Rerrich Béla tér 1, Szeged 6720, Hungary
| | | | | | | |
Collapse
|
19
|
Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis. Biophys J 2010; 97:2464-73. [PMID: 19883589 DOI: 10.1016/j.bpj.2009.08.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/21/2022] Open
Abstract
In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.
Collapse
|
20
|
Bina D, Litvin R, Vacha F. Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. PHOTOSYNTHESIS RESEARCH 2009; 99:115-125. [PMID: 19199074 DOI: 10.1007/s11120-009-9408-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/14/2009] [Indexed: 05/27/2023]
Abstract
The light-induced electron transport in purple bacterium Rhodobacter sphaeroides was studied in vivo by means of kinetic difference absorption spectroscopy and kinetics of bacteriochlorophyll fluorescence yield. Measurements of redox state of the oxidised primary donor and cytochrome c and the membrane potential revealed a complex pattern of changes of the electron flow. Effects of the membrane potential on the fluorescence yield were also analysed, and a model for the fluorescence induction curve is presented. The data indicate substantial positive effect of the membrane potential on the fluorescence emission in vivo. Moreover, light-induced changes in light scattering were observed, which suggests occurrence of structural changes on the level of the photosynthetic membrane.
Collapse
Affiliation(s)
- David Bina
- Biology Centre of AVCR, v.v.i, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | | | | |
Collapse
|
21
|
Kangur L, Timpmann K, Freiberg A. Stability of Integral Membrane Proteins under High Hydrostatic Pressure: The LH2 and LH3 Antenna Pigment−Protein Complexes from Photosynthetic Bacteria. J Phys Chem B 2008; 112:7948-55. [DOI: 10.1021/jp801943w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liina Kangur
- Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia, and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Kõu Timpmann
- Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia, and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia, and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| |
Collapse
|
22
|
Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum. Biophys J 2008; 95:3349-57. [PMID: 18502793 DOI: 10.1529/biophysj.108.133835] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intact core antenna-reaction center (LH1-RC) core complex of thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum is peculiar in its long-wavelength LH1-Q(y) absorption (915 nm). We have attempted comparative studies on the excitation dynamics of bacteriochlorophyll (BChl) and carotenoid (Car) between the intact core complex and the EDTA-treated one with the Q(y) absorption at 889 nm. For both spectral forms, the overall Car-to-BChl excitation energy transfer efficiency is determined to be approximately 20%, which is considerably lower than the reported values, e.g., approximately 35%, for other photosynthetic purple bacteria containing the same kind of Car (spirilloxanthin). The RC trapping time constants are found to be 50 approximately 60 ps (170 approximately 200 ps) for RC in open (closed) state irrespective to the spectral forms and the wavelengths of Q(y) excitation. Despite the low-energy LH1-Q(y) absorption, the RC trapping time are comparable to those reported for other photosynthetic bacteria with normal LH1-Q(y) absorption at 880 nm. Selective excitation to Car results in distinct differences in the Q(y)-bleaching dynamics between the two different spectral forms. This, together with the Car band-shift signals in response to Q(y) excitation, reveals the presence of two major groups of BChls in the LH1 of Tch. tepidum with a spectral heterogeneity of approximately 240 cm(-1), as well as an alteration in BChl-Car geometry in the 889-nm preparation with respect to the native one.
Collapse
|
23
|
Fujii R, Shimonaka S, Uchida N, Gardiner AT, Cogdell RJ, Sugisaki M, Hashimoto H. Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1. PHOTOSYNTHESIS RESEARCH 2008; 95:327-337. [PMID: 17926141 DOI: 10.1007/s11120-007-9260-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 05/25/2023]
Abstract
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.
Collapse
Affiliation(s)
- Ritsuko Fujii
- Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Harvey PD, Stern C, Gros CP, Guilard R. Comments on the through-space singlet energy transfers and energy migration (exciton) in the light harvesting systems. J Inorg Biochem 2007; 102:395-405. [PMID: 18160130 DOI: 10.1016/j.jinorgbio.2007.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/20/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
Abstract
Recent findings on the photophysical investigations of several cofacial bisporphyrin dyads for through space singlet and triplet energy transfers raised several serious questions about the mechanism of the energy transfers and energy migration in the light harvesting devices, notably LH II, in the heavily studied purple photosynthetic bacteria. The key issue is that for simple cofacial or slipped dyads with controlled geometry using rigid spacers or spacers with limited flexibilities, the fastest possible rates for singlet energy transfer for three examples are in the 10 x 10(9)s(-1) (i.e. just in the 100 ps time scale) for donor-acceptor distances approaching 3.5-3.6 A. The reported time scale for energy transfers between different bacteriochlorophylls, notably B800*-->B850, is in the picosecond time scale despite the long Mg...Mg separation of approximately 18 A. Such a short rate drastically contrasts with the well accepted Förster theory. This article reviews the modern knowledge of the structure, bacteriochlorophyll a transition moments, and photophysical processes and dynamics in LH II, and compares these parameters with the recently investigated model bisporphyrin dyads build upon octa-etio-porphyrin chromophores and rigid and semi-rigid spacers. The recently discovered role of the rhodopin glucoside residue called carotenoid will be commented as the possible relay for energy transfer, including the possibility of uphill processes at room temperature. In this context, the concept of energy migration, called exciton, may also be affected by relays and uphill processes. Also, it is becoming more and more apparent that the presence of an irreversible electron transfer reaction at the reaction center, i.e. electron transfer from the special pair to the phyophytin macrocycle and so on, renders the rates for energy transfer and migration more rapid precluding all possibility of back transfers.
Collapse
Affiliation(s)
- Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, Canada J1K 2R1.
| | | | | | | |
Collapse
|
25
|
Galinato MGI, Niedzwiedzki D, Deal C, Birge RR, Frank HA. Cation radicals of xanthophylls. PHOTOSYNTHESIS RESEARCH 2007; 94:67-78. [PMID: 17638112 DOI: 10.1007/s11120-007-9218-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 06/29/2007] [Indexed: 05/16/2023]
Abstract
Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | | | | | | | | |
Collapse
|
26
|
Richter MF, Baier J, Cogdell RJ, Köhler J, Oellerich S. Single-molecule spectroscopic characterization of light-harvesting 2 complexes reconstituted into model membranes. Biophys J 2007; 93:183-91. [PMID: 17416626 PMCID: PMC1914413 DOI: 10.1529/biophysj.106.103606] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spectroscopic properties of the light-harvesting 2 complexes (LH2) from the purple bacterium Rhodopseudomonas acidophila (strain 10050) in detergent micelles and reconstituted into lipid membranes have been studied by single-molecule spectroscopy. When LH2 complexes are solubilized from their host biological membranes by nondenaturing detergents, such as LDAO, there is a small 2-nm spectral shift of the B850 absorption band in the ensemble spectrum. This is reversed when the LH2 complexes are put back into phospholipid vesicles, i.e., into a more native-like environment. The spectroscopic properties on the single-molecule level of the detergent-solubilized LH2 complexes were compared with those reconstituted into the lipid membranes to see if their detailed spectroscopic behavior was influenced by these small changes in the position of the B850 absorption band. A detailed analysis of the low-temperature single-molecule fluorescence-excitation spectra of the LH2 complexes in these two different conditions showed no significant differences. In particular, the distribution of the spectral splitting between the circular k = +/-1 exciton states of the B850 absorption band and the distribution of the mutual angle between the k = +/-1 exciton states are identical in both cases. It can be concluded, therefore, that the LH2 complexes from Rps. acidophila are equally stable when solubilized in detergent micelles as they are when membrane reconstituted. Moreover, when they are solubilized in a suitable detergent and spin coated onto a surface for the single-molecule experiments they do not display any more structural disorder than when in a phospholipid membrane.
Collapse
Affiliation(s)
- Martin F Richter
- Lehrstuhl für Experimentalphysik IV and Bayreuther Institut für Makromolekülforschung, Universität Bayreuth, Bayreuth, Germany
| | | | | | | | | |
Collapse
|
27
|
Kiang NY, Siefert J, Blankenship RE. Spectral signatures of photosynthesis. I. Review of Earth organisms. ASTROBIOLOGY 2007; 7:222-51. [PMID: 17407409 DOI: 10.1089/ast.2006.0105] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Why do plants reflect in the green and have a "red edge" in the red, and should extrasolar photosynthesis be the same? We provide (1) a brief review of how photosynthesis works, (2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges, (3) a synthesis of photosynthetic surface spectral signatures, and (4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. We found the "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for (in order) snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants. The red edge is weak or sloping in lichens. Purple bacteria exhibit possibly a sloping edge in the NIR. More studies are needed on pigment-protein complexes, membrane composition, and measurements of bacteria before firm conclusions can be drawn about the role of the NIR reflectance. Pigment absorbance features are strongly correlated with features of atmospheric spectral transmittance: P680 in Photosystem II with the peak surface incident photon flux density at approximately 685 nm, just before an oxygen band at 687.5 nm; the NIR end of the red edge with water absorbance bands and the oxygen A-band at 761 nm; and bacteriochlorophyll reaction center wavelengths with local maxima in atmospheric and water transmittance spectra. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: (1) the wavelength of peak incident photon flux; (2) the longest available wavelength for core antenna or reaction center pigments; and (3) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.
Collapse
Affiliation(s)
- Nancy Y Kiang
- NASA Goddard Institute for Space Studies, New York, New York 10025, USA.
| | | | | |
Collapse
|
28
|
Kiang NY, Segura A, Tinetti G, Blankenship RE, Cohen M, Siefert J, Crisp D, Meadows VS. Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. ASTROBIOLOGY 2007; 7:252-74. [PMID: 17407410 DOI: 10.1089/ast.2006.0108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 microm, 1.1-1.4 microm, 1.5-1.8 microm, and 1.8-2.5 microm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 microm and more likely below 1.1 microm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 microm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 microm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 microm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.
Collapse
Affiliation(s)
- Nancy Y Kiang
- NASA Goddard Institute for Space Studies, New York, New York 10025, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wilhelm C, Jakob T. Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. PHOTOSYNTHESIS RESEARCH 2006; 87:323-9. [PMID: 16416051 DOI: 10.1007/s11120-005-9002-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 06/16/2005] [Indexed: 05/06/2023]
Abstract
From the algal genus Ostrobium two species are known which express a chlorophyll antenna absorbing between 710 and 725 nm to a different extent. In a comparative study with these two species it is shown that quanta absorbed by this long wavelength antenna can be transferred to PS II leading to significant PS II-related electron transfer. It is documented that under monochromatic far red light illumination growth continues with rather high efficiency. The data show that the uphill-energy transfer to PS II reduces the quantum yield under white light significantly. It is discussed that this strategy of energy conversion might play a role in special environments where far red light is the predominant energy source.
Collapse
Affiliation(s)
- Christian Wilhelm
- Biology I / Plant Physiology, University of Leipzig, Johannisallee 21--23, 04103, Leipzig, Germany.
| | | |
Collapse
|
30
|
Comayras F, Jungas C, Lavergne J. Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center.antenna complexes. J Biol Chem 2005; 280:11203-13. [PMID: 15632164 DOI: 10.1074/jbc.m412088200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to gain information on the functional consequences of the supramolecular organization of the photosynthetic apparatus in the bacterium Rhodobacter sphaeroides. Isolated complexes of the reaction center (RC) with its core antenna ring (light-harvesting complex 1 (LH1)) were studied in their dimeric (native) form or as monomers with respect to excitation transfer and distribution of the quinone pool. Similar issues were examined in chromatophore membranes. The relationship between the fluorescence yield and the amount of closed centers is indicative of a very efficient excitation transfer between the two monomers in isolated dimeric complexes. A similar dependence was observed in chromatophores, suggesting that excitation transfer in vivo from a closed RC.LH1 unit is also essentially directed to its partner in the dimer. The isolated complexes were found to retain 25-30% of the endogenous quinone acceptor pool, and the distribution of this pool among the complexes suggests a cooperative character for the association of quinones with the protein complexes. In chromatophores, the decrease in the amount of photoreducible quinones when inhibiting a fraction of the centers implies a confinement of the quinone pool over small domains, including one to six reaction centers. We suggest that the crowding of membrane proteins may not be the sole reason for quinone confinement and that a quinone-rich region is formed around the RC.LH1 complexes.
Collapse
Affiliation(s)
- Frédéric Comayras
- Unité Mixte de Recherche 6191 CNRS-Commissariat à l'Energie Atomique-Aix Marseille II, Département d'Ecophysiologie Végétale et de Microbiologie, Commissariat à l'Energie Atomique Cadarache, 13108 Saint Paul-lez-Durance Cedex, France
| | | | | |
Collapse
|
31
|
Trissl HW. Modeling the Excitation Energy Capture in Thylakoid Membranes. PHOTOSYNTHESIS IN ALGAE 2003. [DOI: 10.1007/978-94-007-1038-2_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
|
33
|
Ritz T, Park S, Schulten K. Kinetics of Excitation Migration and Trapping in the Photosynthetic Unit of Purple Bacteria. J Phys Chem B 2001. [DOI: 10.1021/jp011032r] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thorsten Ritz
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
| | - Sanghyun Park
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
| |
Collapse
|
34
|
Permentier HP, Neerken S, Schmidt KA, Overmann J, Amesz J. Energy transfer and charge separation in the purple non-sulfur bacterium Roseospirillum parvum. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:338-45. [PMID: 11106774 DOI: 10.1016/s0005-2728(00)00200-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The antenna reaction centre system of the recently described purple non-sulfur bacterium Roseospirillum parvum strain 930I was studied with various spectroscopic techniques. The bacterium contains bacteriochlorophyll (BChl) a, 20% of which was esterified with tetrahydrogeranylgeraniol. In the near-infrared, the antenna showed absorption bands at 805 and 909 nm (929 nm at 6 K). Fluorescence bands were located at 925 and 954 nm, at 300 and 6 K, respectively. Fluorescence excitation spectra and time resolved picosecond absorbance difference spectroscopy showed a nearly 100% efficient energy transfer from BChl 805 to BChl 909, with a time constant of only 2.6 ps. This and other evidence indicate that both types of BChl belong to a single LH1 complex. Flash induced difference spectra show that the primary electron donor absorbs at 886 nm, i.e. at 285 cm(-1) higher energy than the long wavelength antenna band. Nevertheless, the time constant for trapping in the reaction centre was the same as for almost all other purple bacteria: 55+/-5 ps. The shape as well as the amplitude of the absorbance difference spectrum of the excited antenna indicated exciton interaction and delocalisation of the excited state over the BChl 909 ring, whereas BChl 805 appeared to have a monomeric nature.
Collapse
Affiliation(s)
- H P Permentier
- Department of Biophysics, Huygens Laboratory, Leiden University, The Netherlands.
| | | | | | | | | |
Collapse
|