1
|
Thiyagarajan R, Taub M. Studies with Human-Induced Pluripotent Stem Cells Reveal That CTNS Mutations Can Alter Renal Proximal Tubule Differentiation. Int J Mol Sci 2023; 24:17004. [PMID: 38069326 PMCID: PMC10707122 DOI: 10.3390/ijms242317004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cystinosis is an autosomal recessive disease resulting from mutations in ctns, which encodes for cystinosin, a proton-coupled cystine transporter that exports cystine from lysosomes. The major clinical form, infantile cystinosis, is associated with renal failure due to the malfunctioning of the renal proximal tubule (RPT). To examine the hypothesis that the malfunctioning of the cystinotic RPT arises from defective differentiation, human-induced pluripotent stem cells (hiPSCs) were generated from human dermal fibroblasts from an individual with infantile cystinosis, as well as a normal individual. The results indicate that both the cystinotic and normal hiPSCs are pluripotent and can form embryoid bodies (EBs) with the three primordial germ layers. When the normal hiPSCs were subjected to a differentiation regime that induces RPT formation, organoids containing tubules with lumens emerged that expressed distinctive RPT proteins, including villin, the Na+/H+ Exchanger (NHE) isoform 3 (NHE3), and the NHE Regulatory Factor 1 (NHERF1). The formation of tubules with lumens was less pronounced in organoids derived from cystinotic hiPSCs, although the organoids expressed villin, NHE3, and NHERF1. These observations can be attributed to an impairment in differentiation and/or by other defects which cause cystinotic RPTs to have an increased propensity to undergo apoptosis or other types of programmed cell death.
Collapse
Affiliation(s)
- Ramkumar Thiyagarajan
- Division of Geriatric Medicine, University of Kansas Medical Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Mary Taub
- Biochemistry Department, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Ostrovsky MA, Smitienko OA, Bochenkova AV, Feldman TB. Similarities and Differences in Photochemistry of Type I and Type II Rhodopsins. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1528-1543. [PMID: 38105022 DOI: 10.1134/s0006297923100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023]
Abstract
The diversity of the retinal-containing proteins (rhodopsins) in nature is extremely large. Fundamental similarity of the structure and photochemical properties unites them into one family. However, there is still a debate about the origin of retinal-containing proteins: divergent or convergent evolution? In this review, based on the results of our own and literature data, a comparative analysis of the similarities and differences in the photoconversion of the rhodopsin of types I and II is carried out. The results of experimental studies of the forward and reverse photoreactions of the bacteriorhodopsin (type I) and visual rhodopsin (type II) rhodopsins in the femto- and picosecond time scale, photo-reversible reaction of the octopus rhodopsin (type II), photovoltaic reactions, as well as quantum chemical calculations of the forward photoreactions of bacteriorhodopsin and visual rhodopsin are presented. The issue of probable convergent evolution of type I and type II rhodopsins is discussed.
Collapse
Affiliation(s)
- Mikhail A Ostrovsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| | | | - Tatiana B Feldman
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| |
Collapse
|
3
|
Camponeschi I, Montanari A, Mazzoni C, Bianchi MM. Light Stress in Yeasts: Signaling and Responses in Creatures of the Night. Int J Mol Sci 2023; 24:ijms24086929. [PMID: 37108091 PMCID: PMC10139380 DOI: 10.3390/ijms24086929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Living organisms on the surface biosphere are periodically yet consistently exposed to light. The adaptive or protective evolution caused by this source of energy has led to the biological systems present in a large variety of organisms, including fungi. Among fungi, yeasts have developed essential protective responses against the deleterious effects of light. Stress generated by light exposure is propagated through the synthesis of hydrogen peroxide and mediated by regulatory factors that are also involved in the response to other stressors. These have included Msn2/4, Crz1, Yap1, and Mga2, thus suggesting that light stress is a common factor in the yeast environmental response.
Collapse
Affiliation(s)
- Ilaria Camponeschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Mazzoni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Michele Maria Bianchi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Cherqui S. [Cystinosis: From the gene identification to the first gene therapy clinical trial]. Med Sci (Paris) 2023; 39:253-261. [PMID: 36943122 PMCID: PMC10629270 DOI: 10.1051/medsci/2023025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Cystinosis is an autosomal recessive metabolic disease characterized by lysosomal accumulation of cystine in all the cells of the body. Infantile cystinosis begins in infancy by a renal Fanconi syndrome and eventually leads to multi-organ failure, including the kidney, eye, thyroid, muscle, and pancreas, eventually causing premature death in early adulthood. The current treatment is the drug cysteamine that only delays the progression of the disease. We identified the gene involved, CTNS, and showed that the encoded protein, cystinosin, is a proton-driven cystine transporter. We generated a mouse model of cystinosis, the Ctns-/- mice, that recapitulates the main disease complications. The goal was next to develop a gene therapy approach for cystinosis. We used bone marrow stem cells as a vehicle to bring the healthy CTNS gene to tissues, and we showed that wild-type hematopoietic stem and progenitor cell (HSPC) transplantation led to abundant tissue integration of bone marrow-derived cells, significant decrease of tissue cystine accumulation and long-term kidney, eye and thyroid preservation. We then developed an autologous transplantation approach of HSPCs modified ex vivo using a lentiviral vector to introduce a functional CTNS cDNA, and showed its efficacy in Ctns-/- mice. We conducted the pharmacology/toxicology studies, developed the manufacturing process using human CD34+ cells, and design the clinical trial. We received Food and Drug Administration (FDA)-clearance to start a phase 1/2 clinical trial for cystinosis in December 2018. Six patients have been treated so far. In this review, we describe the path to go from the gene to a gene therapy approach for cystinosis.
Collapse
Affiliation(s)
- Stéphanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, États-Unis
| |
Collapse
|
5
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
6
|
Cheung PY, Harrison PT, Davidson AJ, Hollywood JA. In Vitro and In Vivo Models to Study Nephropathic Cystinosis. Cells 2021; 11:6. [PMID: 35011573 PMCID: PMC8750259 DOI: 10.3390/cells11010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation in the lysosomes. Immortalised cell lines have been established using different gene constructs and have revealed a wealth of knowledge concerning the molecular mechanisms that underlie cystinosis. More recently, the generation of induced pluripotent stem cells, kidney organoids and tubuloids have helped bridge the gap between in vitro and in vivo model systems. The development of genetically modified mice and rats have made it possible to explore the cystinotic phenotype in an in vivo setting. All of these models have helped shape our understanding of cystinosis and have led to the conclusion that cystine accumulation is not the only pathology that needs targeting in this multisystemic disease. This review provides an overview of the in vitro and in vivo models available to study cystinosis, how well they recapitulate the disease phenotype, and their limitations.
Collapse
Affiliation(s)
- Pang Yuk Cheung
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| | - Patrick T. Harrison
- Department of Physiology, BioSciences Institute, University College Cork, T12 XF62 Cork, Ireland;
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| | - Jennifer A. Hollywood
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| |
Collapse
|
7
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
8
|
Konno M, Yamauchi Y, Inoue K, Kandori H. Expression analysis of microbial rhodopsin-like genes in Guillardia theta. PLoS One 2020; 15:e0243387. [PMID: 33270796 PMCID: PMC7714340 DOI: 10.1371/journal.pone.0243387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
The Cryptomonad Guillardia theta has 42 genes encoding microbial rhodopsin-like proteins in their genomes. Light-driven ion-pump activity has been reported for some rhodopsins based on heterologous E. coli or mammalian cell expression systems. However, neither their physiological roles nor the expression of those genes in native cells are known. To reveal their physiological roles, we investigated the expression patterns of these genes under various growth conditions. Nitrogen (N) deficiency induced color change in exponentially growing G. theta cells from brown to green. The 29 rhodopsin-like genes were expressed in native cells. We found that the expression of 6 genes was induced under N depletion, while that of another 6 genes was reduced under N depletion.
Collapse
Affiliation(s)
- Masae Konno
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
- * E-mail: (HK); (MK)
| | - Yumeka Yamauchi
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Keiichi Inoue
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
- * E-mail: (HK); (MK)
| |
Collapse
|
9
|
Amick J, Tharkeshwar AK, Talaia G, Ferguson SM. PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation. J Cell Biol 2020; 219:132798. [PMID: 31851326 PMCID: PMC7039192 DOI: 10.1083/jcb.201906076] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
This study reveals that PQLC2, a lysosomal transporter of cationic amino acids, coordinates cellular responses to cationic amino acid availability via the regulated recruitment of a heterotrimeric protein complex containing C9orf72, SMCR8, and WDR41 to the surface of lysosomes. The C9orf72 protein is required for normal lysosome function. In support of such functions, C9orf72 forms a heterotrimeric complex with SMCR8 and WDR41 that is recruited to lysosomes when amino acids are scarce. These properties raise questions about the identity of the lysosomal binding partner of the C9orf72 complex and the amino acid–sensing mechanism that regulates C9orf72 complex abundance on lysosomes. We now demonstrate that an interaction with the lysosomal cationic amino acid transporter PQLC2 mediates C9orf72 complex recruitment to lysosomes. This is achieved through an interaction between PQLC2 and WDR41. The interaction between PQLC2 and the C9orf72 complex is negatively regulated by arginine, lysine, and histidine, the amino acids that PQLC2 transports across the membrane of lysosomes. These results define a new role for PQLC2 in the regulated recruitment of the C9orf72 complex to lysosomes and reveal a novel mechanism that allows cells to sense and respond to changes in the availability of cationic amino acids within lysosomes.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Arun Kumar Tharkeshwar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Gabriel Talaia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
10
|
Medrano-Soto A, Ghazi F, Hendargo KJ, Moreno-Hagelsieb G, Myers S, Saier MH. Expansion of the Transporter-Opsin-G protein-coupled receptor superfamily with five new protein families. PLoS One 2020; 15:e0231085. [PMID: 32320418 PMCID: PMC7176098 DOI: 10.1371/journal.pone.0231085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Here we provide bioinformatic evidence that the Organo-Arsenical Exporter (ArsP), Endoplasmic Reticulum Retention Receptor (KDELR), Mitochondrial Pyruvate Carrier (MPC), L-Alanine Exporter (AlaE), and the Lipid-linked Sugar Translocase (LST) protein families are members of the Transporter-Opsin-G Protein-coupled Receptor (TOG) Superfamily. These families share domains homologous to well-established TOG superfamily members, and their topologies of transmembranal segments (TMSs) are compatible with the basic 4-TMS repeat unit characteristic of this Superfamily. These repeat units tend to occur twice in proteins as a result of intragenic duplication events, often with subsequent gain/loss of TMSs in many superfamily members. Transporters within the ArsP family allow microbial pathogens to expel toxic arsenic compounds from the cell. Members of the KDELR family are involved in the selective retrieval of proteins that reside in the endoplasmic reticulum. Proteins of the MPC family are involved in the transport of pyruvate into mitochondria, providing the organelle with a major oxidative fuel. Members of family AlaE excrete L-alanine from the cell. Members of the LST family are involved in the translocation of lipid-linked glucose across the membrane. These five families substantially expand the range of substrates of transport carriers in the superfamily, although KDEL receptors have no known transport function. Clustering of protein sequences reveals the relationships among families, and the resulting tree correlates well with the degrees of sequence similarity documented between families. The analyses and programs developed to detect distant relatedness, provide insights into the structural, functional, and evolutionary relationships that exist between families of the TOG superfamily, and should be of value to many other investigators.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Faezeh Ghazi
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | | - Scott Myers
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yamauchi Y, Konno M, Yamada D, Yura K, Inoue K, Béjà O, Kandori H. Engineered Functional Recovery of Microbial Rhodopsin Without Retinal-Binding Lysine. Photochem Photobiol 2019; 95:1116-1121. [PMID: 31066906 DOI: 10.1111/php.13114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Definition of rhodopsin is the retinal-binding membrane protein with the Schiff base linkage at a lysine on the 7th transmembrane helix. However, ~ 600 microbial rhodopsins lack retinal-binding lysine at the corresponding position (Rh-noK) among ~ 5500 known microbial rhodopsins, suggesting that Rh-noK has each functional role without chromophore. Here, we report successful functional recovery of Rh-noK. Two Rh-noKs from bacteria were heterologously expressed in Escherichia coli, which exhibited no color. When retinal-binding lysine was introduced, one of them gained visible color. Additional mutation of the Schiff base counterion further gained proton-pumping activity. Successful engineered functional recovery such as visible color and proton-pump activity suggests that the Rh-noK protein forms a characteristic structure of microbial rhodopsins.
Collapse
Affiliation(s)
- Yumeka Yamauchi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Aichi, Japan
| | - Masae Konno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Aichi, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Aichi, Japan
| | - Daichi Yamada
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Aichi, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.,Center for Simulation Science and Informational Biology, Ochanomizu University, Tokyo, Japan.,School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Aichi, Japan.,The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Oded Béjà
- Technion - Israel Institute of Technology, Haifa, Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Aichi, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Aichi, Japan
| |
Collapse
|
12
|
Affiliation(s)
- David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
13
|
Ruggiero C, Fragassi G, Grossi M, Picciani B, Di Martino R, Capitani M, Buccione R, Luini A, Sallese M. A Golgi-based KDELR-dependent signalling pathway controls extracellular matrix degradation. Oncotarget 2016; 6:3375-93. [PMID: 25682866 PMCID: PMC4413660 DOI: 10.18632/oncotarget.3270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/12/2014] [Indexed: 12/24/2022] Open
Abstract
We recently identified an endomembrane-based signalling cascade that is activated by the KDEL receptor (KDELR) on the Golgi complex. At the Golgi, the KDELR acts as a traffic sensor (presumably via binding to chaperones that leave the ER) and triggers signalling pathways that balance membrane fluxes between ER and Golgi. One such pathway relies on Gq and Src. Here, we examine if KDELR might control other cellular modules through this pathway. Given the central role of Src in extracellular matrix (ECM) degradation, we investigated the impact of the KDELR-Src pathway on the ability of cancer cells to degrade the ECM. We find that activation of the KDELR controls ECM degradation by increasing the number of the degradative structures known as invadopodia. The KDELR induces Src activation at the invadopodia and leads to phosphorylation of the Src substrates cortactin and ASAP1, which are required for basal and KDELR-stimulated ECM degradation. This study furthers our understanding of the regulatory circuitry underlying invadopodia-dependent ECM degradation, a key phase in metastases formation and invasive growth.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy.,Current address: Institut de Pharmacologie Moléculaire et Cellulaire CNRS and Associated International Laboratory (LIA) NEOGENEX CNRS and University of Nice-Sophia-Antipolis, Valbonne, France
| | - Giorgia Fragassi
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Mauro Grossi
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Benedetta Picciani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Rosaria Di Martino
- Institute of Protein Biochemistry National Research Council, Naples, Italy
| | - Mirco Capitani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Roberto Buccione
- Laboratory of Tumour Cell Invasion, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry National Research Council, Naples, Italy
| | - Michele Sallese
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| |
Collapse
|
14
|
Luini A, Parashuraman S. Signaling at the Golgi: sensing and controlling the membrane fluxes. Curr Opin Cell Biol 2016; 39:37-42. [PMID: 26908115 DOI: 10.1016/j.ceb.2016.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 11/16/2022]
Abstract
Over the past few decades, it has emerged that the Golgi (and other secretory stations) is host to a variety of signaling molecules and can act as a signaling hub that receives, emits and elaborates signals. This endomembrane-based signaling apparatus appears to have more than one purpose. Its most fundamental function appears to be the auto-regulation of the biosynthetic apparatus to maintain and/or optimize its own activities and to coordinate such activities with those of other cellular modules.(1) This is achieved by dedicated control devices that provide stability, robustness, precision, sensitivity and complexity to cellular behaviors.
Collapse
Affiliation(s)
- Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy; Istituto di Ricovero e Cura a Carattere Scientifico SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy.
| | - Seetharaman Parashuraman
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
15
|
Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 2015; 44:D372-9. [PMID: 26546518 PMCID: PMC4702804 DOI: 10.1093/nar/gkv1103] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/11/2015] [Indexed: 11/16/2022] Open
Abstract
The Transporter Classification Database (TCDB; http://www.tcdb.org) is a freely accessible reference database for transport protein research, which provides structural, functional, mechanistic, evolutionary and disease/medical information about transporters from organisms of all types. TCDB is the only transport protein classification database adopted by the International Union of Biochemistry and Molecular Biology (IUBMB). It consists of more than 10 000 non-redundant transport systems with more than 11 000 reference citations, classified into over 1000 transporter families. Transporters in TCDB can be single or multi-component systems, categorized in a functional/phylogenetic hierarchical system of classes, subclasses, families, subfamilies and transport systems. TCDB also includes updated software designed to analyze the distinctive features of transport proteins, extending its usefulness. Here we present a comprehensive update of the database contents and features and summarize recent discoveries recorded in TCDB.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Vamsee S Reddy
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA Department of Medical Sciences, Boston University School of Medicine, 72 E Concord St., Boston, MA 02118, USA
| | - Brian V Tsu
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Muhammad Saad Ahmed
- Department of Biological Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chun Li
- Department of Biological Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Gabriel Moreno-Hagelsieb
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, Canada N2L 3C5
| |
Collapse
|
16
|
Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, Wang AHJ. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 2015; 290:29567-77. [PMID: 26483542 PMCID: PMC4705956 DOI: 10.1074/jbc.m115.685065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/23/2022] Open
Abstract
Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping.
Collapse
Affiliation(s)
- Min-Feng Hsu
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| | - Hsu-Yuan Fu
- the Department of Biochemical Science and Technology, College of Life Science, Yen Tjing Ling Industrial Research Institute, and
| | - Chun-Jie Cai
- the Department of Biochemical Science and Technology, College of Life Science
| | - Hsiu-Pin Yi
- the Department of Biochemical Science and Technology, College of Life Science
| | - Chii-Shen Yang
- the Department of Biochemical Science and Technology, College of Life Science, Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Andrew H-J Wang
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| |
Collapse
|
17
|
Shalaeva DN, Galperin MY, Mulkidjanian AY. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol Direct 2015; 10:63. [PMID: 26472483 PMCID: PMC4608122 DOI: 10.1186/s13062-015-0091-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Abstract Microbial rhodopsins and G-protein coupled receptors (GPCRs, which include animal rhodopsins) are two distinct (super) families of heptahelical (7TM) membrane proteins that share obvious structural similarities but no significant sequence similarity. Comparison of the recently solved high-resolution structures of the sodium-translocating bacterial rhodopsin and various Na+-binding GPCRs revealed striking similarity of their sodium-binding sites. This similarity allowed us to construct a structure-guided sequence alignment for the two (super)families, which highlighted their evolutionary relatedness. Our analysis supports a common underlying molecular mechanism for both families that involves a highly conserved aromatic residue playing a pivotal role in rotation of the 6th transmembrane helix. Reviewers This article was reviewed by Oded Beja, G. P. S. Raghava and L. Aravind. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0091-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
18
|
Prohibitin: A Novel Molecular Player in KDEL Receptor Signalling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:319454. [PMID: 26064897 PMCID: PMC4442004 DOI: 10.1155/2015/319454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/14/2015] [Indexed: 01/25/2023]
Abstract
The KDEL receptor (KDELR) is a seven-transmembrane-domain protein involved in retrograde transport of protein chaperones from the Golgi complex to the endoplasmic reticulum. Our recent findings have shown that the Golgi-localised KDELR acts as a functional G-protein-coupled receptor by binding to and activating Gs and Gq. These G proteins induce activation of PKA and Src and regulate retrograde and anterograde Golgi trafficking. Here we used an integrated coimmunoprecipitation and mass spectrometry approach to identify prohibitin-1 (PHB) as a KDELR interactor. PHB is a multifunctional protein that is involved in signal transduction, cell-cycle control, and stabilisation of mitochondrial proteins. We provide evidence that depletion of PHB induces intense membrane-trafficking activity at the ER–Golgi interface, as revealed by formation of GM130-positive Golgi tubules, and recruitment of p115, β-COP, and GBF1 to the Golgi complex. There is also massive recruitment of SEC31 to endoplasmic-reticulum exit sites. Furthermore, absence of PHB decreases the levels of the Golgi-localised KDELR, thus preventing KDELR-dependent activation of Golgi-Src and inhibiting Golgi-to-plasma-membrane transport of VSVG. We propose a model whereby in analogy to previous findings (e.g., the RAS-RAF signalling pathway), PHB can act as a signalling scaffold protein to assist in KDELR-dependent Src activation.
Collapse
|
19
|
Lee Y, Nishizawa T, Yamashita K, Ishitani R, Nureki O. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nat Commun 2015; 6:6112. [PMID: 25598322 PMCID: PMC4309421 DOI: 10.1038/ncomms7112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023] Open
Abstract
SWEET family proteins mediate sugar transport across biological membranes and play crucial roles in plants and animals. The SWEETs and their bacterial homologues, the SemiSWEETs, are related to the PQ-loop family, which is characterized by highly conserved proline and glutamine residues (PQ-loop motif). Although the structures of the bacterial SemiSWEETs were recently reported, the conformational transition and the significance of the conserved motif in the transport cycle have remained elusive. Here we report crystal structures of SemiSWEET from Escherichia coli, in the both inward-open and outward-open states. A structural comparison revealed that SemiSWEET undergoes an intramolecular conformational change in each protomer. The conserved PQ-loop motif serves as a molecular hinge that enables the 'binder clip-like' motion of SemiSWEET. The present work provides the framework for understanding the overall transport cycles of SWEET and PQ-loop family proteins.
Collapse
Affiliation(s)
- Yongchan Lee
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomohiro Nishizawa
- 1] Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan [2] Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
20
|
Cancino J, Capalbo A, Di Campli A, Giannotta M, Rizzo R, Jung JE, Di Martino R, Persico M, Heinklein P, Sallese M, Luini A. Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi. Dev Cell 2014; 30:280-94. [PMID: 25117681 DOI: 10.1016/j.devcel.2014.06.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
Abstract
A fundamental property of cellular processes is to maintain homeostasis despite varying internal and external conditions. Within the membrane transport apparatus, variations in membrane fluxes from the endoplasmic reticulum (ER) to the Golgi complex are balanced by opposite fluxes from the Golgi to the ER to maintain homeostasis between the two organelles. Here we describe a molecular device that balances transport fluxes by integrating transduction cascades with the transport machinery. Specifically, ER-to-Golgi transport activates the KDEL receptor at the Golgi, which triggers a cascade that involves Gs and adenylyl cyclase and phosphodiesterase isoforms and then PKA activation and results in the phosphorylation of transport machinery proteins. This induces retrograde traffic to the ER and balances transport fluxes between the ER and Golgi. Moreover, the KDEL receptor activates CREB1 and other transcription factors that upregulate transport-related genes. Thus, a Golgi-based control system maintains transport homeostasis through both signaling and transcriptional networks.
Collapse
Affiliation(s)
- Jorge Cancino
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Quillota 980, Viña del Mar 2520000, Chile.
| | - Anita Capalbo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Antonella Di Campli
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Monica Giannotta
- Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | - Riccardo Rizzo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Juan E Jung
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerca Diagnostica e Nucleare (SDN), 80143 Napoli, Italy
| | - Rosaria Di Martino
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Persico
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerca Diagnostica e Nucleare (SDN), 80143 Napoli, Italy
| | - Petra Heinklein
- Institut für Biochemie Charité, Universitätsmedizin Berlin, CrossOver Charitéplatz 1/Sitz, Virchowweg 6, 10117 Berlin, Germany
| | - Michele Sallese
- Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | - Alberto Luini
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
21
|
Luini A, Mavelli G, Jung J, Cancino J. Control systems and coordination protocols of the secretory pathway. F1000PRIME REPORTS 2014; 6:88. [PMID: 25374666 PMCID: PMC4191269 DOI: 10.12703/p6-88] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or “coordination protocols”. These regulatory devices are of fundamental importance for optimal function; however, they are generally “hidden” at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.
Collapse
Affiliation(s)
- Alberto Luini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biochimica delle Proteine (IBP)Via Pietro Castellino 111, 80131 NapoliItaly
- Telethon Institute of Genetics and Medicine (TIGEM)Via Pietro Castellino 111, 80131 NapoliItaly
| | - Gabriella Mavelli
- Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti, Consiglio Nazionale delle RicercheViale Manzoni 30, 00185 RomaItaly
| | - Juan Jung
- Istituto di Ricovero e Cura a Carattere Scientifico-SDN80143 NapoliItaly
| | - Jorge Cancino
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biochimica delle Proteine (IBP)Via Pietro Castellino 111, 80131 NapoliItaly
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés BelloQuillota 980, 2520000 Viña del MarChile
| |
Collapse
|
22
|
Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 2014; 515:448-452. [PMID: 25186729 DOI: 10.1038/nature13670] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/10/2014] [Indexed: 01/15/2023]
Abstract
SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 × 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general.
Collapse
|
23
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
24
|
Abstract
Amino acid (AA) transporters may act as sensors, as well as carriers, of tissue nutrient supplies. This review considers recent advances in our understanding of the AA-sensing functions of AA transporters in both epithelial and nonepithelial cells. These transporters mediate AA exchanges between extracellular and intracellular fluid compartments, delivering substrates to intracellular AA sensors. AA transporters on endosomal (eg, lysosomal) membranes may themselves function as intracellular AA sensors. AA transporters at the cell surface, particularly those for large neutral AAs such as leucine, interact functionally with intracellular nutrient-signaling pathways that regulate metabolism: for example, the mammalian target of rapamycin complex 1 (mTORC1) pathway, which promotes cell growth, and the general control non-derepressible (GCN) pathway, which is activated by AA starvation. Under some circumstances, upregulation of AA transporter expression [notably a leucine transporter, solute carrier 7A5 (SLC7A5)] is required to initiate AA-dependent activation of the mTORC1 pathway. Certain AA transporters may have dual receptor-transporter functions, operating as "transceptors" to sense extracellular (or intracellular) AA availability upstream of intracellular signaling pathways. New opportunities for nutritional therapy may include targeting of AA transporters (or mechanisms that upregulate their expression) to promote protein-anabolic signals for retention or recovery of lean tissue mass.
Collapse
Affiliation(s)
- Peter M Taylor
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
25
|
Yee DC, Shlykov MA, Västermark A, Reddy VS, Arora S, Sun EI, Saier MH. The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J 2013; 280:5780-800. [PMID: 23981446 DOI: 10.1111/febs.12499] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/27/2023]
Abstract
Visual rhodopsins are recognized members of the large and diverse family of G protein-coupled receptors (GPCRs), but their evolutionary origin and relationships to other proteins are not known. In a previous paper [Shlykov MA, Zheng WH, Chen JS & Saier MH Jr (2012) Biochim Biophys Acta 1818, 703-717], we characterized the 4-toluene sulfonate uptake permease (TSUP) family of transmembrane proteins, and showed that these 7-transmembrane segment (TMS) or 8-TMS proteins arose by intragenic duplication of a gene encoding a 4-TMS protein, sometimes followed by loss of a terminal TMS. In this study, we show that the TSUP, GPCR and microbial rhodopsin families are related to each other and to six other currently recognized transport protein families. We designate this superfamily the transporter/opsin/G protein-coupled receptor (TOG) superfamily. Despite their 8-TMS origins, the members of most constituent families exhibit 7-TMS topologies that are well conserved, and these arose by loss of either the N-terminal TMS (more frequent) or the C-terminal TMS (less frequent), depending on the family. Phylogenetic analyses revealed familial relationships within the superfamily and protein relationships within each of the nine families. The results of the statistical analyses leading to the conclusion of homology were confirmed using hidden Markov models, Pfam and 3D superimpositions. Proteins functioning by dissimilar mechanisms (channels, primary active transporters, secondary active transporters, group translocators and receptors) are interspersed on a phylogenetic tree of the TOG superfamily, suggesting that changes in the transport and energy-coupling mechanisms occurred multiple times during evolution of this superfamily.
Collapse
Affiliation(s)
- Daniel C Yee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Saier MH. Microcompartments and protein machines in prokaryotes. J Mol Microbiol Biotechnol 2013; 23:243-69. [PMID: 23920489 DOI: 10.1159/000351625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prokaryotic cell was once thought of as a 'bag of enzymes' with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, nonrandom collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (1) the bacterial cytoskeleton and the apparati allowing DNA segregation during cell division; (2) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis; (3) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces; (4) machines of protein folding, secretion and degradation; (5) metabolosomes carrying out specific chemical reactions; (6) 24-hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle, and (7) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bound prokaryotic organelles were considered in a recent Journal of Molecular Microbiology and Biotechnology written symposium concerned with membranous compartmentalization in bacteria [J Mol Microbiol Biotechnol 2013;23:1-192]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple noncompartmentalized cell.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, Calif. 92093-0116, USA.
| |
Collapse
|
27
|
Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc Natl Acad Sci U S A 2012; 109:E3434-43. [PMID: 23169667 DOI: 10.1073/pnas.1211198109] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cystinosin, the lysosomal cystine exporter defective in cystinosis, is the founding member of a family of heptahelical membrane proteins related to bacteriorhodopsin and characterized by a duplicated motif termed the PQ loop. PQ-loop proteins are more frequent in eukaryotes than in prokaryotes; except for cystinosin, their molecular function remains elusive. In this study, we report that three yeast PQ-loop proteins of unknown function, Ypq1, Ypq2, and Ypq3, localize to the vacuolar membrane and are involved in homeostasis of cationic amino acids (CAAs). We also show that PQLC2, a mammalian PQ-loop protein closely related to yeast Ypq proteins, localizes to lysosomes and catalyzes a robust, electrogenic transport that is selective for CAAs and strongly activated at low extracytosolic pH. Heterologous expression of PQLC2 at the yeast vacuole rescues the resistance phenotype of an ypq2 mutant to canavanine, a toxic analog of arginine efficiently transported by PQLC2. Finally, PQLC2 transports a lysine-like mixed disulfide that serves as a chemical intermediate in cysteamine therapy of cystinosis, and PQLC2 gene silencing trapped this intermediate in cystinotic cells. We conclude that PQLC2 and Ypq1-3 proteins are lysosomal/vacuolar exporters of CAAs and suggest that small-molecule transport is a conserved feature of the PQ-loop protein family, in agreement with its distant similarity to SWEET sugar transporters and to the mitochondrial pyruvate carrier. The elucidation of PQLC2 function may help improve cysteamine therapy. It may also clarify the origin of CAA abnormalities in Batten disease.
Collapse
|
28
|
Liu B, Du H, Rutkowski R, Gartner A, Wang X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 2012; 337:351-4. [PMID: 22822152 PMCID: PMC3432903 DOI: 10.1126/science.1220281] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Defective catabolite export from lysosomes results in lysosomal storage diseases in humans. Mutations in the cystine transporter gene CTNS cause cystinosis, but other lysosomal amino acid transporters are poorly characterized at the molecular level. Here, we identified the Caenorhabditis elegans lysosomal lysine/arginine transporter LAAT-1. Loss of laat-1 caused accumulation of lysine and arginine in enlarged, degradation-defective lysosomes. In mutants of ctns-1 (C. elegans homolog of CTNS), LAAT-1 was required to reduce lysosomal cystine levels and suppress lysosome enlargement by cysteamine, a drug that alleviates cystinosis by converting cystine to a lysine analog. LAAT-1 also maintained availability of cytosolic lysine/arginine during embryogenesis. Thus, LAAT-1 is the lysosomal lysine/arginine transporter, which suggests a molecular explanation for how cysteamine alleviates a lysosomal storage disease.
Collapse
Affiliation(s)
- Bin Liu
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, China
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Hongwei Du
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, Chinese Academy of Sciences, Beijing, 100039, China
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Rachael Rutkowski
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Anton Gartner
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| |
Collapse
|
29
|
Saudek V. Cystinosin, MPDU1, SWEETs and KDELR belong to a well-defined protein family with putative function of cargo receptors involved in vesicle trafficking. PLoS One 2012; 7:e30876. [PMID: 22363504 PMCID: PMC3281891 DOI: 10.1371/journal.pone.0030876] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/22/2011] [Indexed: 12/26/2022] Open
Abstract
Classification of proteins into families based on remote homology often helps prediction of their biological function. Here we describe prediction of protein cargo receptors involved in vesicle formation and protein trafficking. Hidden Markov model profile-to-profile searches in protein databases using endoplasmic reticulum lumen protein retaining receptors (KDEL, Erd2) as query reveal a large and diverse family of proteins with seven transmembrane helices and common topology and, most likely, similar function. Their coding genes exist in all eukaryota and in several prokaryota. Some are responsible for metabolic diseases (cystinosis, congenital disorder of glycosylation), others are candidate genes for genetic disorders (cleft lip and palate, certain forms of cancer) or solute uptake and efflux (SWEETs) and many have not yet been assigned a function. Comparison with the properties of KDEL receptors suggests that the family members could be involved in protein trafficking and serve as cargo receptors. This prediction sheds new light on a range of biologically, medically and agronomically important proteins and could open the way to discovering the function of many genes not yet annotated. Experimental testing is suggested.
Collapse
Affiliation(s)
- Vladimir Saudek
- University of Cambridge Metabolic Research Labs, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
30
|
Mechanism of proton/substrate coupling in the heptahelical lysosomal transporter cystinosin. Proc Natl Acad Sci U S A 2012; 109:E210-7. [PMID: 22232659 DOI: 10.1073/pnas.1115581109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Secondary active transporters use electrochemical gradients provided by primary ion pumps to translocate metabolites or drugs "uphill" across membranes. Here we report the ion-coupling mechanism of cystinosin, an unusual eukaryotic, proton-driven transporter distantly related to the proton pump bacteriorhodopsin. In humans, cystinosin exports the proteolysis-derived dimeric amino acid cystine from lysosomes and is impaired in cystinosis. Using voltage-dependence analysis of steady-state and transient currents elicited by cystine and neutralization-scanning mutagenesis of conserved protonatable residues, we show that cystine binding is coupled to protonation of a clinically relevant aspartate buried in the membrane. Deuterium isotope substitution experiments are consistent with an access of this aspartate from the lysosomal lumen through a deep proton channel. This aspartate lies in one of the two PQ-loop motifs shared by cystinosin with a set of eukaryotic membrane proteins of unknown function and is conserved in about half of them, thus suggesting that other PQ-loop proteins may translocate protons.
Collapse
|
31
|
Shlykov MA, Zheng WH, Chen JS, Saier MH. Bioinformatic characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:703-17. [PMID: 22192777 DOI: 10.1016/j.bbamem.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/26/2011] [Accepted: 12/06/2011] [Indexed: 11/29/2022]
Abstract
The ubiquitous sequence diverse 4-Toluene Sulfonate Uptake Permease (TSUP) family contains few characterized members and is believed to catalyze the transport of several sulfur-based compounds. Prokaryotic members of the TSUP family outnumber the eukaryotic members substantially, and in prokaryotes, but not eukaryotes, extensive lateral gene transfer occurred during family evolution. Despite unequal representation, homologues from the three taxonomic domains of life share well-conserved motifs. We show that the prototypical eight TMS topology arose from an intragenic duplication of a four transmembrane segment (TMS) unit. Possibly, a two TMS α-helical hairpin structure was the precursor of the 4 TMS repeat unit. Genome context analyses confirmed the proposal of a sulfur-based compound transport role for many TSUP homologues, but functional outliers appear to be prevalent as well. Preliminary results suggest that the TSUP family is a member of a large novel superfamily that includes rhodopsins, integral membrane chaperone proteins, transmembrane electron flow carriers and several transporter families. All of these proteins probably arose via the same pathway: 2→4→8 TMSs followed by loss of a TMS either at the N- or C-terminus, depending on the family, to give the more frequent 7 TMS topology.
Collapse
|
32
|
Fan Y, Solomon P, Oliver RP, Brown LS. Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1457-66. [PMID: 21791197 DOI: 10.1016/j.bbabio.2011.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/09/2023]
Abstract
Eukaryotic microbial rhodopsins are widespread bacteriorhodopsin-like proteins found in many lower eukaryotic groups including fungi. Many fungi contain multiple rhodopsins, some significantly diverged from the original bacteriorhodopsin template. Although few fungal rhodopsins have been studied biophysically, both fast-cycling light-driven proton pumps and slow-cycling photosensors have been found. The purpose of this study was to characterize photochemically a new subgroup of fungal rhodopsins, the so-called auxiliary group. The study used the two known rhodopsin genes from the fungal wheat pathogen, Phaeosphaeria nodorum. One of the genes is a member of the auxiliary group while the other is highly similar to previously characterized proton-pumping Leptosphaeria rhodopsin. Auxiliary rhodopsin genes from a range of species form a distinct group with a unique primary structure and are located in carotenoid biosynthesis gene cluster. Amino acid conservation pattern suggests that auxiliary rhodopsins retain the transmembrane core of bacteriorhodopsins, including all residues important for proton transport, but have unique polar intramembrane residues. Spectroscopic characterization of the two yeast-expressed Phaeosphaeria rhodopsins showed many similarities: absorption spectra, conformation of the retinal chromophore, fast photocycling, and carboxylic acid protonation changes. It is likely that both Phaeosphaeria rhodopsins are proton-pumping, at least in vitro. We suggest that auxiliary rhodopsins have separated from their ancestors fairly recently and have acquired the ability to interact with as yet unidentified transducers, performing a photosensory function without changing their spectral properties and basic photochemistry.
Collapse
Affiliation(s)
- Ying Fan
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | |
Collapse
|
33
|
Lam VH, Lee JH, Silverio A, Chan H, Gomolplitinant KM, Povolotsky TL, Orlova E, Sun EI, Welliver CH, Saier MH. Pathways of transport protein evolution: recent advances. Biol Chem 2011; 392:5-12. [PMID: 21194372 DOI: 10.1515/bc.2011.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We herein report recent advances in our understanding of transport protein evolution. Numerous families of complex transmembrane transport proteins are believed to have arisen from short channel-forming amphipathic or hydrophobic peptides by various types of intragenic duplication events. Distinct pathways distinguish families, demonstrating independent origins for some, and allowing assignment of others to superfamilies. Some families have diversified in topology, whereas others have remained uniform. An example of 'retroevolution' was discovered where a more complex carrier gave rise to a structurally and functionally simpler channel. The results described in this review article expand our understanding of protein evolution.
Collapse
Affiliation(s)
- Vincent H Lam
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Silverio ALF, Saier MH. Bioinformatic characterization of the trimeric intracellular cation-specific channel protein family. J Membr Biol 2011; 241:77-101. [PMID: 21519847 DOI: 10.1007/s00232-011-9364-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/26/2011] [Indexed: 12/29/2022]
Abstract
Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation-contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes.
Collapse
Affiliation(s)
- Abe L F Silverio
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
35
|
Estrada AF, Avalos J. Regulation and Targeted Mutation of opsA, Coding for the NOP-1 Opsin Orthologue in Fusarium fujikuroi. J Mol Biol 2009; 387:59-73. [DOI: 10.1016/j.jmb.2009.01.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 01/20/2009] [Accepted: 01/26/2009] [Indexed: 01/18/2023]
|
36
|
Larusso ND, Ruttenberg BE, Singh AK, Oakley TH. Type II Opsins: Evolutionary Origin by Internal Domain Duplication? J Mol Evol 2008; 66:417-23. [DOI: 10.1007/s00239-008-9076-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/18/2007] [Accepted: 01/25/2008] [Indexed: 11/28/2022]
|
37
|
Nagata T, Iizumi S, Satoh K, Kikuchi S. Comparative molecular biological analysis of membrane transport genes in organisms. PLANT MOLECULAR BIOLOGY 2008; 66:565-85. [PMID: 18293089 PMCID: PMC2268718 DOI: 10.1007/s11103-007-9287-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 05/04/2023]
Abstract
Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H(+) as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na(+) ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H(+) ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport.
Collapse
Affiliation(s)
- Toshifumi Nagata
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Shigemi Iizumi
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Kouji Satoh
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
38
|
Klare JP, Chizhov I, Engelhard M. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 2007; 45:73-122. [PMID: 17898961 DOI: 10.1007/400_2007_041] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Microbial rhodopsins have been intensively researched for the last three decades. Since the discovery of bacteriorhodopsin, the scope of microbial rhodopsins has been considerably extended, not only in view of the large number of family members, but also their functional properties as pumps, sensors, and channels. In this review, we give a short overview of old and newly discovered microbial rhodopsins, the mechanism of signal transfer and ion transfer, and we discuss structural and mechanistic aspects of phototaxis.
Collapse
Affiliation(s)
- Johann P Klare
- Fachbereich Physik, University Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| | | | | |
Collapse
|
39
|
Prado-Cabrero A, Estrada AF, Al-Babili S, Avalos J. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol Microbiol 2007; 64:448-60. [PMID: 17493127 DOI: 10.1111/j.1365-2958.2007.05665.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The synthesis of the acidic apo-carotenoid neurosporaxanthin by the fungus Fusarium fujikuroi depends on four enzyme activities: phytoene synthase and carotene cyclase, encoded by the bifunctional gene carRA, a carotene desaturase, encoded by carB, and a postulated cleaving enzyme converting torulene (C(40)) into neurosporaxanthin (C(35)). Based on sequence homology to carotenoid oxygenases, we identified the novel fungal enzyme CarT. Sequencing of the carT allele in a torulene-accumulating mutant of F. fujikuroi revealed a mutation affecting a highly conserved amino acid, and introduction of a heterologous carT gene in this mutant restored the ability to produce neurosporaxanthin, pointing to CarT as the enzyme responsible for torulene cleavage. Expression of carT in lycopene-accumulating E. coli cells resulted in the formation of minor amounts of apo-carotenoids, but no enzymatic activity was observed in beta-carotene-accumulating cells, indicating a preference for acyclic or monocyclic carotenes. The purified CarT enzyme efficiently cleaved torulene in vitro to produce beta-apo-4'-carotenal, the aldehyde corresponding to the acidic neurosporaxanthin, and was also active on other monocyclic synthetic substrates. In agreement with its role in carotenoid biosynthesis, the carT transcript levels are induced by light and upregulated in carotenoid-overproducing mutants, as already found for other car genes.
Collapse
Affiliation(s)
- Alfonso Prado-Cabrero
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
40
|
Sharma AK, Spudich JL, Doolittle WF. Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 2006; 14:463-9. [PMID: 17008099 DOI: 10.1016/j.tim.2006.09.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/28/2006] [Accepted: 09/12/2006] [Indexed: 11/19/2022]
Abstract
The type 1 (microbial) rhodopsins are a diverse group of photochemically reactive proteins that span the three domains of life. Their broad phylogenetic distribution has motivated conjecture that rhodopsin-like functionality was present in the last common ancestor of all life. Here, we discuss the evolution of the type 1 microbial rhodopsins and document five cases of lateral gene transfer (LGT) between domains. We suggest that, thanks to the functional versatility of these retinylidene proteins and the relative ease with which they can complement the existing energy-generating or photosensory repertoires of many organisms, LGT is in fact the principal force that determines their broad but patchy distribution.
Collapse
Affiliation(s)
- Adrian K Sharma
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | |
Collapse
|
41
|
Barabote RD, Tamang DG, Abeywardena SN, Fallah NS, Fu JYC, Lio JK, Mirhosseini P, Pezeshk R, Podell S, Salampessy ML, Thever MD, Saier MH. Extra domains in secondary transport carriers and channel proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1557-79. [PMID: 16905115 DOI: 10.1016/j.bbamem.2006.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/16/2006] [Accepted: 06/20/2006] [Indexed: 01/06/2023]
Abstract
"Extra" domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIA(Fru) and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane alpha-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.
Collapse
Affiliation(s)
- Ravi D Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Scherzinger D, Ruch S, Kloer D, Wilde A, Al-Babili S. Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase. Biochem J 2006; 398:361-9. [PMID: 16759173 PMCID: PMC1559462 DOI: 10.1042/bj20060592] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/01/2006] [Accepted: 06/07/2006] [Indexed: 11/17/2022]
Abstract
The sensory rhodopsin from Anabaena (Nostoc) sp. PCC7120 is the first cyanobacterial retinylidene protein identified. Here, we report on NosACO (Nostoc apo-carotenoid oxygenase), encoded by the ORF (open reading frame) all4284, as the candidate responsible for the formation of the required chromophore, retinal. In contrast with the enzymes from animals, NosACO converts beta-apo-carotenals instead of beta-carotene into retinal in vitro. The identity of the enzymatic products was proven by HPLC and gas chromatography-MS. NosACO exhibits a wide substrate specificity with respect to chain lengths and functional end-groups, converting beta-apo-carotenals, (3R)-3-hydroxy-beta-apo-carotenals and the corresponding alcohols into retinal and (3R)-3-hydroxyretinal respectively. However, kinetic analyses revealed very divergent Km and Vmax values. On the basis of the crystal structure of SynACO (Synechocystis sp. PCC6803 apo-carotenoid oxygenase), a related enzyme showing similar enzymatic activity, we designed a homology model of the native NosACO. The deduced structure explains the absence of beta-carotene-cleavage activity and indicates that NosACO is a monotopic membrane protein. Accordingly, NosACO could be readily reconstituted into liposomes. To localize SynACO in vivo, a Synechocystis knock-out strain was generated expressing SynACO as the sole carotenoid oxygenase. Western-blot analyses showed that the main portion of SynACO occurred in a membrane-bound form.
Collapse
Key Words
- carotenoid cleavage
- nostoc and synechocystis apo-carotenoid oxygenases (nosaco and synaco)
- cyanobacteria
- opsin
- retinal
- aba, abscisic acid
- asr, anabaena sensory rhodopsin
- 15,15′-bco (also bco i), β-β-carotene-15,15′-oxygenase
- ccd1, carotenoid cleavage dioxygenase 1
- dtt, dithiothreitol
- ei, electron impact
- gc-ms, gas chromatography–ms
- nist, national institute of standards and technology (gaithersburg, md, u.s.a.)
- nosaco, nostoc apo-carotenoid oxygenase
- orf, open reading frame
- rpe65, retinal pigment epithelium 65
- synaco, synechocystis apo-carotenoid oxygenase
- vp14, viviparous14
Collapse
Affiliation(s)
- Daniel Scherzinger
- *Albert-Ludwigs University of Freiburg, Institute of Biology II, Cell Biology, Schaenzlestrasse 1, D-79104 Freiburg, Federal Republic of Germany
| | - Sandra Ruch
- †Albert-Ludwigs University of Freiburg, Institute of Organic Chemistry and Biochemistry, Albertstrasse 1, D-79104 Freiburg, Federal Republic of Germany
| | - Daniel P. Kloer
- †Albert-Ludwigs University of Freiburg, Institute of Organic Chemistry and Biochemistry, Albertstrasse 1, D-79104 Freiburg, Federal Republic of Germany
| | - Annegret Wilde
- ‡Humboldt University Berlin, Institute of Biology, Plant Biochemistry, Chausseestrasse 117, D-10115 Berlin, Federal Republic of Germany
| | - Salim Al-Babili
- *Albert-Ludwigs University of Freiburg, Institute of Biology II, Cell Biology, Schaenzlestrasse 1, D-79104 Freiburg, Federal Republic of Germany
| |
Collapse
|
43
|
Debut AJ, Dumay QC, Barabote RD, Saier MH. The Iron/Lead Transporter Superfamily of Fe 3+/Pb 2+ Uptake Systems. J Mol Microbiol Biotechnol 2006; 11:1-9. [PMID: 16825785 DOI: 10.1159/000092814] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oxidase-dependent ferrous iron uptake transporters of the OFeT family and lead uptake transporters of the PbrT family comprise the iron/lead transporter (ILT) superfamily (transporter classification No. 9.A.10). All sequenced homologues of the ILT superfamily were multiply aligned, and conserved motifs, including fully conserved acidic residues in putative transmembrane segments (TMSs) 1 and 4, previously implicated in heavy metal binding, were identified. Topological analyses confirmed the presence of 7 conserved TMSs in a 3 + 3 + 1 arrangement where the two 3 TMS elements are internally repeated. Phylogenetic analyses revealed the presence of several sequence divergent clusters of orthologous proteins that group roughly according to the phylogenes of the organisms of origin. The results serve to characterize and provide evolutionary insight into a novel superfamily of heavy metal uptake transporters.
Collapse
Affiliation(s)
- Aurore J Debut
- Division of Biological Sciences, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | |
Collapse
|
44
|
Shimizu T, Mitsuke H, Noto K, Arai M. Internal gene duplication in the evolution of prokaryotic transmembrane proteins. J Mol Biol 2004; 339:1-15. [PMID: 15123416 DOI: 10.1016/j.jmb.2004.03.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 03/20/2004] [Accepted: 03/20/2004] [Indexed: 10/26/2022]
Abstract
We investigated the evolution of transmembrane (TM) topology by detecting partial sequence repeats in TM protein sequences and analyzing them in detail. A total of 377 sequences that seem to have evolved by internal gene duplication events were found among 38,124 predicted TM protein sequences (except for single-spannings) from 87 prokaryotic genomes. Various types of internal duplication patterns were identified in these sequences. The majority of them are diploid-type (including quasi-diploid-type) duplication in which a primordial protein sequence was duplicated internally to become an extant TM protein with twice as many TM segments as the primordial one, and the remaining ones are partial duplications including triploid-type. The diploid-type repeats are recognized in many 8-tms, 10-tms and 12-tms TM protein sequences, suggesting the diploid-type duplication was a principle mechanism in the evolutionary development of these types of TM proteins. The "positive-inside" rule is satisfied in whole sequences of both 10-tms and 8-tms TM proteins and in both halves of 10-tms proteins while not necessarily in the second half of 8-tms proteins, providing fit examples of "internal divergent topology evolution" likely occurred after a diploid-type internal duplication event. From analyzing the partial duplication patterns, several evolutionary pathways were recognized for 6-tms TM proteins, i.e. from primordial 2-tms, 3-tms and 4-tms TM proteins to extant 6-tms proteins. Similarly, the duplication pattern analysis revealed plausible evolution scenarios that 7-tms TM proteins have arisen from 3-tms, 4-tms and 5-tms TM protein precursors via partial internal gene duplications.
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Electronic and Information System Engineering, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan.
| | | | | | | |
Collapse
|
45
|
Prado MM, Prado-Cabrero A, Fernández-Martín R, Avalos J. A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr Genet 2004; 46:47-58. [PMID: 15133714 DOI: 10.1007/s00294-004-0508-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/23/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
Opsins are membrane photoreceptors closely related to the heat-shock proteins of the HSP30 family. Their functions include light-driven ion pumping in archaea and light detection in algae and animals, using the apocarotenoid retinal as a light-absorbing prosthetic group. We describe a gene of Fusarium fujikuroi, carO, coding for a polypeptide resembling opsins and HSP30-like proteins and contiguous to the genes of the carotenoid pathway, carRA and carB. Transcription of carO is induced by light and is deregulated in carotenoid-overproducing mutants. The same regulation pattern is exhibited by carRA and carB; and common conserved DNA elements are found in the three promoters. Heat shock resulted in a modest induction of carO transcription, similar to the one exhibited by carB, confirming a common regulation. Targeted mutagenesis of carO produced no apparent phenotypic modification, including no change in the photoinduction of carotenoid biosynthesis.
Collapse
Affiliation(s)
- Maria M Prado
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | | | | | | |
Collapse
|
46
|
Perálvarez-Marín A, Márquez M, Bourdelande JL, Querol E, Padrós E. Thr-90 plays a vital role in the structure and function of bacteriorhodopsin. J Biol Chem 2004; 279:16403-9. [PMID: 14757760 DOI: 10.1074/jbc.m313988200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of Thr-90 in the bacteriorhodopsin structure and function was investigated by its replacement with Ala and Val. The mutant D115A was also studied because Asp-115 in helix D forms a hydrogen bond with Thr-90 in helix C. Differential scanning calorimetry showed a decreased thermal stability of all three mutants, with T90A being the least stable. Light-dark adaptation of T90A was found to be abnormal and salt-dependent. Proton transport monitored using pyranine signals was approximately 10% of wild type for T90A, 20% for T90V, and 50% for D115A. At neutral or alkaline pH, the M rise of these mutants was faster than that of wild type, whereas M decay was slower in T90A. Overall, Fourier transform infrared (FTIR) difference spectra of T90A were strongly pH-dependent. Spectra recorded on films adjusted at the same pH at 243 or 277 K, dry or wet, showed similar features. The D115A and T90V FTIR spectra were closer to WT, showing minor structural differences. The band at 1734 cm(-1) of the deconvoluted FTIR spectrum, corresponding to the carboxylate of Asp-115, was absent in all mutants. In conclusion, Thr-90 plays a critical role in maintaining the operative location and structure of helix C through three complementary interactions, namely an interhelical hydrogen bond with Asp-115, an intrahelical hydrogen bond with the peptide carbonyl oxygen of Trp-86, and a steric contact with the retinal. The interactions established by Thr-90 emerge as a general feature of archaeal rhodopsin proteins.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Zhai YF, Heijne W, Saier MH. Molecular modeling of the bacterial outer membrane receptor energizer, ExbBD/TonB, based on homology with the flagellar motor, MotAB. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:201-10. [PMID: 12896813 DOI: 10.1016/s0005-2736(03)00176-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The MotA/MotB proteins serve as the motor that drives bacterial flagellar rotation in response to the proton motive force (pmf). They have been shown to comprise a transmembrane proton pathway. The ExbB/ExbD/TonB protein complex serves to energize transport of iron siderophores and vitamin B12 across the outer membrane of the Gram-negative bacterial cell using the pmf. These two protein complexes have the same topology and are homologous. Based on molecular data for the MotA/MotB proteins, we propose simple three-dimensional channel structures for both MotA/MotB and ExbB/ExbD/TonB using modeling methods. Features of the derived channels are discussed, and two possible proton transfer pathways for the ExbBD/TonB system are proposed. These analyses provide a guide for molecular studies aimed at elucidating the mechanism by which chemiosmotic energy can be transferred either between two adjacent membranes to energize outer membrane transport or to the bacterial flagellum to generate torque.
Collapse
Affiliation(s)
- Yu Feng Zhai
- Division of Biological Sciences 0116, University of California at San Diego, 9500 Gilam Drive, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
48
|
Ben-Shlomo I, Yu Hsu S, Rauch R, Kowalski HW, Hsueh AJW. Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE9. [PMID: 12815191 DOI: 10.1126/stke.2003.187.re9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intercellular communication in multicellular organisms requires the relay of extracellular signals by cell surface proteins to the interiors of cells. The availability of genome sequences from humans and several model organisms has facilitated the identification of several human plasma membrane receptor families and allowed the analysis of their phylogeny. This review provides a global categorization of most known signal transduction-associated receptors as enzymes, recruiters, and latent transcription factors. The evolution of known families of human plasma membrane signaling receptors was traced in current literature and validated by sequence relatedness. This global analysis reveals themes that recur during receptor evolution and allows the formulation of hypotheses for the origins of receptors. The human receptor families involved in signaling (with the exception of channels) are presented in the Human Plasma Membrane Receptome database.
Collapse
Affiliation(s)
- Izhar Ben-Shlomo
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5317, USA
| | | | | | | | | |
Collapse
|
49
|
Ben-Shlomo I, Yu Hsu S, Rauch R, Kowalski HW, Hsueh AJW. Signaling Receptome: A Genomic and Evolutionary Perspective of Plasma Membrane Receptors Involved in Signal Transduction. Sci Signal 2003. [DOI: 10.1126/scisignal.1872003re9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Abstract
We have conducted bioinformatic analyses of integral membrane transport proteins belonging to dozens of families. These families rarely include proteins that function in a capacity other than transport. Many transporters have arisen by intragenic duplication, triplication and quadruplication events, in which the numbers of transmembrane alpha-helical hydrophobic segments (TMSs) have increased. The elements multiplied may encode two, three, four, five, six, 10 or 12 TMSs and gave rise to proteins with four, six, seven, eight, nine, 10, 12, 20, 24 and 30 TMSs. Gene fusion, splicing, deletion and insertion events have also contributed to protein topological diversity. Amino acid substitutions have allowed membrane-embedded domains to become hydrophilic domains and vice versa. Some evidence suggests that amino acid substitutions occurring over evolutionary time may in some cases have drastically altered protein topology. The results summarized in this microreview establish the independent origins of many transporter families and allow postulation of the specific pathways taken for their appearance.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|