1
|
Advances in Liposome-Encapsulated Phthalocyanines for Photodynamic Therapy. Life (Basel) 2023; 13:life13020305. [PMID: 36836662 PMCID: PMC9965606 DOI: 10.3390/life13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
This updated review aims to describe the current status in the development of liposome-based systems for the targeted delivery of phthalocyanines for photodynamic therapy (PDT). Although a number of other drug delivery systems (DDS) can be found in the literature and have been studied for phthalocyanines or similar photosensitizers (PSs), liposomes are by far the closest to clinical practice. PDT itself finds application not only in the selective destruction of tumour tissues or the treatment of microbial infections, but above all in aesthetic medicine. From the point of view of administration, some PSs can advantageously be delivered through the skin, but for phthalocyanines, systemic administration is more suitable. However, systemic administration places higher demands on advanced DDS, active tissue targeting and reduction of side effects. This review focuses on the already described liposomal DDS for phthalocyanines, but also describes examples of DDS used for structurally related PSs, which can be assumed to be applicable to phthalocyanines as well.
Collapse
|
2
|
Dimitrov E, Toncheva-Moncheva N, Bakardzhiev P, Forys A, Doumanov J, Mladenova K, Petrova S, Trzebicka B, Rangelov S. Nucleic acid-based supramolecular structures: vesicular spherical nucleic acids from a non-phospholipid nucleolipid. NANOSCALE ADVANCES 2022; 4:3793-3803. [PMID: 36133345 PMCID: PMC9470030 DOI: 10.1039/d2na00527a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Vesicular spherical nucleic acids are dynamic nucleic acid-based supramolecular structures that are held together via non-covalent bonds. They have promising applications as drug and nucleic acid delivery materials, diagnostic and imaging tools and platforms for development of various therapeutic schemes. In this contribution, we report on vesicular spherical nucleic acids, constructed from a non-phospholipid nucleolipid - an original hybrid biomacromolecule, composed of a hydrophobic residue, resembling that of the naturally occurring phospholipids, and a DNA oligonucleotide strand. The nucleolipid was synthesized by coupling of dibenzocyclooctyne-functionalized oligonucleotide and azidated 1,3-dihexadecyloxy-propane-2-ol via an azide-alkyne click reaction. In aqueous solution it spontaneously self-associated into nanosized supramolecular structures, identified as unilamellar vesicles composed of a self-closed interdigitated bilayer. Vesicular structures were also formed upon intercalation of the nucleolipid via its lipid-mimetic residue in the phospholipid bilayer membrane of liposomes prepared from readily available and FDA-approved lipids (1,2-dipalmitoyl-rac-glycero-3-phosphocholine and cholesterol). The vesicular structures are thoroughly investigated by light scattering (dynamic, static, and electrophoretic) and cryogenic TEM and the physical characteristics, in particular, number of strands per particle, grafting density, and conformation of the strands, were compared to those of reference spherical nucleic acids. Finally, the vesicular structures were shown to exhibit cellular internalization with no need of transfection agents and enhanced colloidal and nuclease stability.
Collapse
Affiliation(s)
- Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences Akad. G. Bonchev St. 103A 1113 Sofia Bulgaria
| | | | - Pavel Bakardzhiev
- Institute of Polymers, Bulgarian Academy of Sciences Akad. G. Bonchev St. 103A 1113 Sofia Bulgaria
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences M. Curie-Sklodowskiej 34 Zabrze Poland
| | - Jordan Doumanov
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski Dragan Tsankov Blvd. 8 1164 Sofia Bulgaria
| | - Kirilka Mladenova
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski Dragan Tsankov Blvd. 8 1164 Sofia Bulgaria
| | - Svetla Petrova
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski Dragan Tsankov Blvd. 8 1164 Sofia Bulgaria
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences M. Curie-Sklodowskiej 34 Zabrze Poland
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences Akad. G. Bonchev St. 103A 1113 Sofia Bulgaria
| |
Collapse
|
3
|
Patras L, Ionescu AE, Munteanu C, Hajdu R, Kosa A, Porfire A, Licarete E, Rauca VF, Sesarman A, Luput L, Bulzu P, Chiroi P, Tranca RA, Meszaros MS, Negrea G, Barbu-Tudoran L, Potara M, Szedlacsek S, Banciu M. Trojan horse treatment based on PEG-coated extracellular vesicles to deliver doxorubicin to melanoma in vitro and in vivo. Cancer Biol Ther 2021; 23:1-16. [PMID: 34964693 PMCID: PMC8812761 DOI: 10.1080/15384047.2021.2003656] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tailoring extracellular vesicles (EVs) as targeted drug delivery systems to enhance the therapeutic efficacy showed superior advantage over liposomal therapies. Herein, we developed a novel nanotool for targeting B16.F10 murine melanoma, based on EVs stabilized with Polyethylene glycol (PEG) and loaded with doxorubicin (DOX). Small EVs were efficiently enriched from melanoma cells cultured under metabolic stress by ultrafiltration coupled with size exclusion chromatography (UF-SEC) and characterized by size, morphology, and proteome. To reduce their clearance in vivo, EVs were PEGylated and passively loaded with DOX (PEG-EV-DOX). Our data suggested that the low PEG coverage of EVs might still favor EV surface protein interactions with target proteins from intratumor cells, ensuring their use as "Trojan horses" to deliver DOX to the tumor tissue. Moreover, our results showed a superior antitumor activity of PEG-EV-DOX in B16.F10 murine melanoma models in vivo compared to that exerted by clinically applied liposomal DOX in the same tumor model. The PEG-EV-DOX administration in vivo reduced NF-κB activation and increased BAX expression, suggesting better prognosis of EV-based therapy than liposomal DOX treatment. Collectively, our results highlight the promising potential of EVs as optimal tools for systemic delivery of DOX to solid tumors.
Collapse
Affiliation(s)
- Laura Patras
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Aura Elena Ionescu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Cristian Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Renata Hajdu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Andreea Kosa
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Valentin Florian Rauca
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Paul Bulzu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Paul Chiroi
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Rares Andrei Tranca
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Marta-Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Giorgiana Negrea
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- "C.Craciun" Electron Microscopy Center, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Monica Potara
- Nanobiophotonics Center, Interdisciplinary Research Institute in Bio-Nano-Sciences and Faculty of Physics, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Stefan Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2019; 230:119646. [PMID: 31787335 DOI: 10.1016/j.biomaterials.2019.119646] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
In recent years, phospholipid-polyethylene glycol-derived functional conjugates have been widely employed to decorate different nanomaterials, due to their excellent biocompatibility, long blood circulation characteristics, and specific targeting capability. Numerous in vivo studies have demonstrated that nanomedicines peripherally engineered with phospholipid-polyethylene glycol-derived functional conjugates show significantly increased selective and efficient internalization by target cells/tissues. Targeting moieties including small-molecule ligands, peptides, proteins, and antibodies are generally conjugated onto PEGylated phospholipids to decorate liposomes, micelles, hybrid nanoparticles, nanocomplexes, and nanoemulsions for targeted delivery of diagnostic and therapeutic agents to diseased sites. In this review, the synthesis methods of phospholipid-polyethylene glycol-derived functional conjugates, biophysicochemical properties of nanomedicines decorated with these conjugates, factors dominating their targeting efficiency, as well as their applications for in vivo molecular imaging and targeted therapy were summarized and discussed.
Collapse
|
5
|
Kong L, Campbell F, Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. NANOSCALE HORIZONS 2019; 4:378-387. [PMID: 32254090 DOI: 10.1039/c8nh00417j] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To maximize drug targeting to solid tumors, cancer nanomedicines with prolonged circulation times are required. To this end, poly(ethylene glycol) (PEG) has been widely used as a steric shield of nanomedicine surfaces to minimize serum protein absorption (opsonisation) and subsequent recognition and clearance by cells of the mononuclear phagocyte system (MPS). However, PEG also inhibits interactions of nanomedicines with target cancer cells, limiting the effective drug dose that can be reached within the target tumor. To overcome this dilemma, nanomedicines with stimuli-responsive cleavable PEG functionality have been developed. These benefit from both long circulation lifetimes en route to the targeted tumor as well as efficient drug delivery to target cancer cells. In this review, various stimuli-responsive strategies to dePEGylate nanomedicines within the tumor microenvironment will be critically reviewed.
Collapse
Affiliation(s)
- Li Kong
- Leiden Institute of Chemistry - Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | | | | |
Collapse
|
6
|
Münter R, Kristensen K, Pedersbæk D, Larsen JB, Simonsen JB, Andresen TL. Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies. NANOSCALE 2018; 10:22720-22724. [PMID: 30488936 DOI: 10.1039/c8nr07755j] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Within nanomedicine, liposomes are investigated for their ability to deliver drug cargoes specifically into subcellular compartments of target cells. Such studies are often based on flow cytometry or microscopy, where researchers rely on fluorescently labeled lipids (FLLs) incorporated into the liposomal membrane to determine the localization of the liposomes within cells. These studies assume that the FLLs stay embedded in the liposomal membrane throughout the duration of the experiment. Here, we used size exclusion chromatography (SEC) to investigate the validity of this assumption by quantitatively determining the propensity of various widely used FLLs to dissociate from liposomes during incubation in human plasma. For certain commonly used off-the-shelf FLLs, up to 75% of the dye dissociated from the liposomes, while others dissociated less than 10%. To investigate the implications of this finding, we measured the peripheral blood leukocyte uptake of liposomes formulated with different FLLs using flow cytometry, and observed a significant difference in uptake correlating with the FLL's dissociation tendencies. Consequently, the choice of FLL can dramatically influence the conclusions drawn from liposome uptake and localization studies due to uptake of dissociated FLLs. The varying dissociation propensities for the FLLs were not reflected when incubating in buffer, showing that non-biological environments are unsuitable to mimic liposomal stability in a drug delivery context. Overall, our findings suggest that it is crucial for researchers to evaluate the stability of their FLL-labeled liposomes in biological environments, and the simplicity of the SEC assay put forward here makes it very applicable for the purpose.
Collapse
Affiliation(s)
- Rasmus Münter
- Department of Micro- and Nanotechnology (DTU Nanotech), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
7
|
Ho JK, White PJ, Pouton CW. Self-Crosslinking Lipopeptide/DNA/PEGylated Particles: A New Platform for DNA Vaccination Designed for Assembly in Aqueous Solution. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:504-517. [PMID: 30195787 PMCID: PMC6077166 DOI: 10.1016/j.omtn.2018.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/20/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Delivery of plasmids for gene expression in vivo is an inefficient process that requires improvement and optimization to unlock the clinical potential of DNA vaccines. With ease of manufacture and biocompatibility in mind, we explored condensation of DNA in aqueous solution with a self-crosslinking, endosome-escaping lipopeptide (LP), stearoyl-Cys-His-His-Lys-Lys-Lys-amide (stearoyl-CH2K3), to produce cationic LP/DNA complexes. To test whether poly(ethylene glycol) (PEG)-ylation of these cationic complexes to neutralize the surface charge would improve the distribution, gene expression, and immune responses poly(ethylene glycol), these LP/DNA complexes were combined with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000). Fluorescence imaging illustrated that the cationic complexes exhibited the highest degree of localization and lowest degree of dispersion throughout the injected muscle, suggesting impaired mobility of cationic particles upon administration. Nanoluciferase reporter assays over a 90-day period demonstrated that gene expression levels in muscle were highest for PEGylated particles, with over a 200-fold higher level of expression than the cationic particles observed at 30 days. Humoral and cell-mediated immune responses were evaluated in vivo after injection of an ovalbumin expression plasmid. PEGylation improved both immune responses to the DNA complexes in mice. Overall, this suggests that PEGylation of cationic lipopeptide complexes can significantly improve both the transgene expression and immunogenicity of intramuscular DNA vaccines.
Collapse
Affiliation(s)
- Joan K Ho
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, VIC, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, VIC, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Influence of stabilizing components on the integrity of antitumor liposomes loaded with lipophilic prodrug in the bilayer. Colloids Surf B Biointerfaces 2018. [DOI: 10.1016/j.colsurfb.2018.02.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Tretiakova DS, Onishchenko NR, Vostrova AG, Vodovozova EL. Interactions of liposomes carrying lipophilic prodrugs in the bilayer with blood plasma proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Kooijmans S, Fliervoet L, van der Meel R, Fens M, Heijnen H, van Bergen en Henegouwen P, Vader P, Schiffelers R. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 2016; 224:77-85. [DOI: 10.1016/j.jconrel.2016.01.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
|
11
|
Hadorn M, Boenzli E, Sørensen KT, De Lucrezia D, Hanczyc MM, Yomo T. Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15309-15319. [PMID: 24294899 DOI: 10.1021/la402621r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The technological aspects of artificial vesicles as prominent cell mimics are evolving toward higher-order assemblies of functional vesicles with tissuelike architectures. Here, we demonstrate the spatially controlled DNA-directed bottom-up synthesis of complex microassemblies and macroassemblies of giant unilamellar vesicles functionalized with a basic cellular machinery to express green fluorescent protein and specified neighbor-to-neighbor interactions. We show both that the local and programmable DNA pairing rules on the nanoscale are able to direct the microscale vesicles into macroscale soft matter assemblies and that the highly sensitive gene-expression machinery remains intact and active during multiple experimental steps. An in silico model recapitulates the experiments performed in vitro and covers additional experimental setups highlighting the parameters that control the DNA-directed bottom-up synthesis of higher-order self-assembled structures. The controlled assembly of a functional vesicle matrix may be useful not only as simplified natural tissue mimics but also as artificial scaffolds that could interact and support living cells.
Collapse
Affiliation(s)
- Maik Hadorn
- Center for Fundamental Living Technology (FLinT), Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Odense, Denmark
| | | | | | | | | | | |
Collapse
|
12
|
Li L, Wang R, Wilcox D, Sarthy A, Lin X, Huang X, Tian L, Dande P, Hubbard RD, Hansen TM, Wada C, Zhao X, Kohlbrenner WM, Fesik SW, Shen Y. Developing lipid nanoparticle-based siRNA therapeutics for hepatocellular carcinoma using an integrated approach. Mol Cancer Ther 2013; 12:2308-18. [PMID: 23943805 DOI: 10.1158/1535-7163.mct-12-0983-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Successful siRNA therapeutics requires the optimal integration of multiple components, including an efficient delivery system, a disease indication that is appropriate for siRNA-based therapy, and a potent and nontoxic siRNA against a robust therapeutic target. Although all currently available delivery systems have limitations, it is important to recognize that a careful selection of the disease indication, therapeutic target, and siRNA molecule could partially compensate for deficiencies associated with the delivery system and makes it possible to advance a therapeutic siRNA regimen. In this study, we present the development of siRNA therapeutics for hepatocellular carcinoma using an integrated approach, including the development of an efficient lipid nanoparticle delivery system, the identification of a robust therapeutic target that does not trigger liver toxicity upon target knockdown, and the selection of potent and nonimmunogenic siRNA molecules against the target. The resulting siRNA-containing lipid nanoparticles produced significant antitumor efficacy in orthotopic hepatocellular carcinoma models, and, thus, represent a promising starting point for the development of siRNA therapeutics for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Leiming Li
- Corresponding Author: Yu Shen, Cancer Research, Global Pharmaceutical and Analytical Sciences, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 20064.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim HK, Thompson DH, Jang HS, Chung YJ, Van den Bossche J. pH-responsive biodegradable assemblies containing tunable phenyl-substituted vinyl ethers for use as efficient gene delivery vehicles. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5648-5658. [PMID: 23772824 PMCID: PMC3740352 DOI: 10.1021/am400977t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Novel pH-responsive assemblies (PEG-lipid:DOPE liposomes) containing tunable and bifunctional phenyl-substituted vinyl ether (PIVE) cross-linkers were prepared. The assemblies consisted of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), acid-cleavable poly(ethylene glycol) (PEG)-conjugated lipids, pDNA, and protamine sulfate (PS). The PIVE linkage was designed to hydrolyze under acidic conditions, and the hydrolysis studies of PEG-lipid compounds containing PIVE at pH 4.2, 5.4, and 7.4 indicated that the hydrolysis rates of PIVE linker were influenced by the substitution of electron withdrawing or electron donating groups on the phenyl ring. Acid-catalyzed hydrolysis of PIVE leads to destabilization of the acid labile PEG-PIVE-lipid:DOPE liposomes via dePEGylation, thereby triggering content release. Content release assays showed that dePEGylation was highly pH-dependent and correlated with the PIVE proton affinity of the phenyl group. These results indicated that the dePEGylative triggering based on a new pH-sensitive PIVE linkage can be controlled. In vitro transfection studies on the pH-responsive assemblies containing mPEG-(MeO-PIVE)-conjugated 1,3-dioctadecyl-rac-glycerol lipids (mPEG-(MeO-PIVE])-DOG) showed higher transfection efficiency compared to that of polyethylenimine (PEI), a positive control, on HEK 293 and COS-7 cells. In addition, lower cytotoxicity of PEG-PIVE-lipid:DOPE liposomes/PS/DNA was observed in comparison to PEI. These results suggest that PEG-PIVE-lipid:DOPE liposomes can be considered as nonviral vehicles for drug and gene delivery applications.
Collapse
Affiliation(s)
- Hee-Kwon Kim
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | |
Collapse
|
14
|
Loew M, Forsythe JC, McCarley RL. Lipid nature and their influence on opening of redox-active liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6615-23. [PMID: 23698020 PMCID: PMC3778659 DOI: 10.1021/la304340e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The pathway for content release from reduction-sensitive liposomes based on a quinone-dioleoylphosphatidylethanolamine lipid conjugate (Q-DOPE) is outlined using results from fluorescent dye content release assays as well as single- and multiple-angle light scattering. Experimental observations are consistent with a shape/size change of the reduced liposomes prior to their aggregation, with subsequent near-quantitative content release achieved only when the lipid membrane experiences conditions favorable to a lamellar to an inverted hexagonal phase transition. Addition of poly(ethyleneglycol)-modified DOPE (PEG-DOPE) to the Q-DOPE liposomal formulation results in stabilization of the lipid bilayer, whereas incorporation of DOPE yields faster content release. At high DOPE concentrations, DOPE/PEG-DOPE/Q-DOPE liposomes exhibit larger content release, indicating a change in pathway for content release. The outcomes here provide a better understanding of the underlying principles of triggered liposomal content release and the potential utility of specific lipid properties for the rational design of drug delivery systems based on the novel Q-DOPE lipid.
Collapse
Affiliation(s)
| | | | - Robin L. McCarley
- CORRESPONDING AUTHOR: Telephone: (225) 578-3239. Facsimile: (225) 578-3458.
| |
Collapse
|
15
|
Sadasivam M, Avci P, Gupta GK, Lakshmanan S, Chandran R, Huang YY, Kumar R, Hamblin MR. Self-assembled liposomal nanoparticles in photodynamic therapy. EUROPEAN JOURNAL OF NANOMEDICINE 2013; 5. [PMID: 24348377 DOI: 10.1515/ejnm-2013-0010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT.
Collapse
Affiliation(s)
- Magesh Sadasivam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pinar Avci
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; and Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Gaurav K Gupta
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | - Rakkiyappan Chandran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; and Pathology Department, Guangxi Medical University, Nanning, Guangxi, China
| | - Raj Kumar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, MA, USA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
16
|
Shin J, Shum P, Grey J, Fujiwara SI, Malhotra GS, González-Bonet A, Hyun SH, Moase E, Allen TM, Thompson DH. Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics. Mol Pharm 2012; 9:3266-76. [PMID: 23030381 DOI: 10.1021/mp300326z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ∼100 nm liposomes containing these constructs in ≥90 mol % 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of time scales as a function of the electronic properties of the vinyl ether linkage, the solution pH, and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using (125)I-tyraminylinulin as a label. The pharmacokinetic profiles gave a t(1/2) of 7 and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produced faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles.
Collapse
Affiliation(s)
- Junhwa Shin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-1393, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Delivery of drugs to cell membranes by encapsulation in PEG–PE micelles. J Control Release 2012; 160:637-51. [DOI: 10.1016/j.jconrel.2012.02.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/13/2012] [Accepted: 02/26/2012] [Indexed: 12/11/2022]
|
18
|
Ahmed A, Heldt N, Slack G, Li Y. Lipid Exchange Rates of Conventional and Polymer Stabilized Liposomes. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-724-n8.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractPolymer-stabilized liposome systems consisting of polyethylene glycol bound lipids (PEG-lipids) and conventional (nonpolymer stabilized) liposomes were compared in terms of their inter-membrane lipid migration rates. In order to monitor the exchange of lipids between the membranes, 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphocholine (PY-PC), a phospholipid with pyrene attached to the hydrophobic tail, was used to label the liposome. Labeled and unlabeled liposome systems were mixed and fluorescence spectroscopy was used to examine the lipid transfer. More specifically, the relative employed to deduce the exchange kinetics. After labeled and unlabeled liposome systems were mixed, the E/M ratio for PY-PC in a polymer stabilized liposome system decreased by 66% over a period of 80 minutes, while the E/M for PY-PC in a conventional liposome system decreased 70% in less than 2 minutes. This suggests that the exchange rate for lipids in polymer stabilized liposome systems is much slower than that of conventional liposome systems. In addition, the exchange rates for both conventional and polymer stabilized liposome systems are accelerated at an elevated temperature.
Collapse
|
19
|
Seo JW, Qin S, Mahakian LM, Watson KD, Kheirolomoom A, Ferrara KW. Positron emission tomography imaging of the stability of Cu-64 labeled dipalmitoyl and distearoyl lipids in liposomes. J Control Release 2011; 151:28-34. [PMID: 21241753 DOI: 10.1016/j.jconrel.2011.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 01/25/2023]
Abstract
Changes in lipid acyl chain length can result in desorption of lipid from the liposomal anchorage and interaction with blood components. PET studies of the stability of such lipids have not been performed previously although such studies can map the pharmacokinetics of unstable lipids non-invasively in vivo. The purpose of this study was to characterize the in vivo clearance of (64)Cu-labeled distearoyl- and dipalmitoyl lipid included within long circulating liposomes. Distearoyl and dipalmitoyl maleimide lipids (1mol%) in liposomes were labeled with a (64)Cu-incorporated bifunctional chelator (TETA-PDP) after the activation of pyridine disulfide to thiol by TCEP. Long circulating liposomes containing HSPC:DSPE-PEG2k-OMe:cholesterol: x (55:5:39:1), where x was (64)Cu-DSPE or (64)Cu-DPPE, or HSPC:DSPE-PEG2k-OMe:cholesterol:(64)Cu-DSPE:DPPC (54:5:39:1:1) were evaluated in serum (in vitro) and via intravenous injection to FVB mice. The time-activity curves for the blood, liver, and kidney were measured from PET images and the biodistribution was performed at 48h. In vitro assays showed that (64)Cu-DPPE transferred from liposomes to serum with a 7.9h half-life but (64)Cu-DSPE remained associated with the liposomes. The half clearance of radioactivity from the blood pool was 18 and 5h for (64)Cu-DSPE- and (64)Cu-DPPE liposome-injected mice, respectively. The clearance of radioactivity from the liver and kidney was significantly greater following the injection of (64)Cu-DPPE-labeled liposomes than (64)Cu-DSPE-labeled liposomes at 6, 18 and 28h. Forty eight hours after injection, the whole body radioactivity was 57 and 17% ID/cc for (64)Cu-DSPE and (64)Cu-DPPE, respectively. These findings suggest that the acyl chain length of the radiolabel should be considered for liposomal PET studies and that PET is an effective tool for evaluating the stability of nanoformulations in vivo.
Collapse
Affiliation(s)
- Jai Woong Seo
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Reulen SWA, Merkx M. Exchange kinetics of protein-functionalized micelles and liposomes studied by Förster resonance energy transfer. Bioconjug Chem 2010; 21:860-6. [PMID: 20397687 DOI: 10.1021/bc900398p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-functionalized micelles and liposomes are attractive delivery systems for applications ranging from targeted drug delivery to molecular imaging. In particular, systems that use pegylated phospholipids have become popular, but little is known about the stability of these lipid-functionalized proteins toward exchange. In this study, Förster resonance energy transfer (FRET) between the fluorescent proteins ECFP and EYFP was used to investigate the lipid exchange behavior of protein-functionalized liposomes and micelles. Native chemical ligation was used as an efficient method to site-specifically couple varying amounts of proteins to pegylated phospholipids. No exchange was observed between protein-functionalized phospholipids in sterically stabilized liposomes. In micelles, however, protein-functionalized lipids were found to exchange with a half-time of exchange ranging from almost 2 h at room temperature to 4 min at 37 degrees C. These pegylated micelles remained intact at lipid concentrations down to 0.15 microM, indicating that they are even more stable than previously assumed. The results obtained in this study provide a useful frame of reference for assessing the potential role of protein exchange in biomedical applications of these lipid-based nanoparticles.
Collapse
Affiliation(s)
- Sanne W A Reulen
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | |
Collapse
|
21
|
Banno B, Ickenstein LM, Chiu GNC, Bally MB, Thewalt J, Brief E, Wasan EK. The functional roles of poly(ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipid-containing thermosensitive liposomes in vitro and in vivo. J Pharm Sci 2010; 99:2295-308. [PMID: 19902527 DOI: 10.1002/jps.21988] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Triggered release of liposomal contents following tumor accumulation and mild local heating is pursued as a means of improving the therapeutic index of chemotherapeutic drugs. Lysolipid-containing thermosensitive liposomes (LTSLs) are composed of dipalmitoylphosphatidylcholine (DPPC), the lysolipid monostearoylphosphatidylcholine (MSPC), and poly(ethylene glycol)-conjugated distearoylphosphatidylethanolamine (DSPE-PEG(2000)). We investigated the roles of DSPE-PEG(2000) and lysolipid in the functional performance of the LTSL-doxorubicin formulation. Varying PEG-lipid concentration (0-5 mol%) or bilayer orientation did not affect the release; however, lysolipid (0-10 mol%) had a concentration-dependent effect on drug release at 42 degrees C in vitro. Pharmacokinetics of various LTSL formulations were compared in mice with body temperature controlled at 37 degrees C. As expected, incorporation of the PEG-lipid increased doxorubicin plasma half-life; however, PEG-lipid orientation (bilayer vs. external leaflet) did not significantly improve circulation lifetime or drug retention in LTSL. Approximately 70% of lysolipid was lost within 1 h postinjection of LTSL, which could be due to interactions with the large membrane pool of the biological milieu. Considering that the present LTSL-doxorubicin formulation exhibits significant therapeutic activity when used in conjunction with mild heating, our current study provided critical insights into how the physicochemical properties of LTSL can be tailored to achieve better therapeutic activity.
Collapse
Affiliation(s)
- Brian Banno
- Department of Advanced Therapeutics, BC Cancer Agency, 675 West 10th Ave., Vancouver, British Columbia, Canada V5Z1L3
| | | | | | | | | | | | | |
Collapse
|
22
|
Hadorn M, Eggenberger Hotz P. DNA-mediated self-assembly of artificial vesicles. PLoS One 2010; 5:e9886. [PMID: 20360854 PMCID: PMC2845621 DOI: 10.1371/journal.pone.0009886] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/04/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. METHODOLOGY/PRINCIPAL FINDINGS In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. CONCLUSIONS/SIGNIFICANCE This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and targeting of long-lived, pharmacologically inert prodrugs and their conversion to short-lived, active drug molecules directly at the site of action may be accomplished if multi-vesicle assemblies of predefined architecture are used.
Collapse
Affiliation(s)
- Maik Hadorn
- Artificial Intelligence Laboratory, Department of Informatics, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
23
|
Boomer JA, Qualls MM, Inerowicz HD, Haynes RH, Patri VS, Kim JM, Thompson DH. Cytoplasmic delivery of liposomal contents mediated by an acid-labile cholesterol-vinyl ether-PEG conjugate. Bioconjug Chem 2009; 20:47-59. [PMID: 19072698 DOI: 10.1021/bc800239b] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An acid-cleavable PEG lipid, 1'-(4'-cholesteryloxy-3'-butenyl)-omega-methoxy-polyethylene[112] glycolate (CVEP), has been developed that produces stable liposomes when dispersed as a minor component (0.5-5 mol %) in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cleavage of CVEP at mildly acidic pHs results in dePEGylation of the latently fusogenic DOPE liposomes, thereby triggering the onset of content release. This paper describes the synthesis of CVEP via a six-step sequence starting from the readily available precursors 1,4-butanediol, cholesterol, and mPEG acid. The hydrolysis rates and release kinetics from CVEP/DOPE liposome dispersions as a function of CVEP loading, as well as the cryogenic transmission electron microscopy and pH-dependent monolayer properties of 9:91 CVEP/DOPE mixtures, also are reported. When folate receptor-positive KB cells were exposed to calcein-loaded 5:95 CVEP/DOPE liposomes containing 0.1 mol % folate-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene[76] glycolamide (folate-PEG-DSPE), delivery of the calcein cargo to the cytoplasm of the cells was observed as determined by fluorescence microscopy and flow cytometry. Fluorescence resonance energy transfer analysis of lipid mixing in these cells was consistent with membrane-membrane fusion between the liposome and endosomal membranes.
Collapse
Affiliation(s)
- Jeremy A Boomer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-1393, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2007; 25:55-71. [PMID: 17551809 PMCID: PMC2190344 DOI: 10.1007/s11095-007-9348-7] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/14/2007] [Indexed: 11/26/2022]
Abstract
Nanoparticles, such as liposomes, polymeric micelles, lipoplexes and polyplexes are frequently studied as targeted drug carrier systems. The ability of these particles to circulate in the bloodstream for a prolonged period of time is often a prerequisite for successful targeted delivery. To achieve this, hydrophilic ‘stealth’ polymers, such as poly(ethylene glycol) (PEG), are used as coating materials. Such polymers shield the particle surface and thereby reduce opsonization by blood proteins and uptake by macrophages of the mononuclear phagocyte system. Yet, after localizing in the pathological site, nanoparticles should deliver their contents in an efficient manner to achieve a sufficient therapeutic response. The polymer coating, however, may hinder drug release and target cell interaction and can therefore be an obstacle in the realization of the therapeutic response. Attempts have been made to enhance the therapeutic efficacy of sterically stabilized nanoparticles by means of shedding, i.e. a loss of the coating after arrival at the target site. Such an ‘unmasking’ process may facilitate drug release and/or target cell interaction processes. This review presents an overview of the literature regarding different shedding strategies that have been investigated for the preparation of sterically stabilized nanoparticulates. Detach mechanisms and stimuli that have been used are described.
Collapse
Affiliation(s)
- Birgit Romberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
25
|
De Cuyper M, Lievens S, Flo G, Cokelaere M, Peleman C, Martins F, Santana MHA. Receptor-mediated biological responses are prolonged using hydrophobized ligands. Biosens Bioelectron 2004; 20:1157-64. [PMID: 15556362 DOI: 10.1016/j.bios.2004.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 03/10/2004] [Accepted: 03/10/2004] [Indexed: 11/23/2022]
Abstract
Hormone-receptor interactions occur following three-dimensional diffusion of the ligand to the membrane-embedded receptor. However, prior hydrophobization of the ligand might restrict its movement to two dimensions along the membrane surface, and the biological response might therefore be modulated. This idea was tested using the C-terminal nonapeptide, CCK9, of the satiating hormone, cholecystokinin (CCK). The hormone was lipidated by linking it covalently to distearoylphosphatidylethanolamine via a poly(ethylene glycol) (PEG) spacer. The desired conjugate was isolated by thin-layer chromatography and incorporated into preformed small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles. The hormone-bearing vesicles were injected intraperitoneally into Wistar rats and food intake monitored. Compared to the biological effect elicited by the same amount of soluble non-derivatized CCK9, food intake reduction showed a delayed onset, but lasted for a significantly longer time. We believe this prolonged effect was due to the transfer of the derivatized CCK9 from the vesicles to the natural membrane containing the hormone receptor. Ultimately, this event may result in sustained receptor occupation and, thus, food intake reduction. The underlying mechanism for the physiological effects observed may be of relevance in interpreting results obtained using artificial measuring devices; for example, the signal produced by biosensors may be drastically affected by the hydrophobicity of the ligand.
Collapse
Affiliation(s)
- Marcel De Cuyper
- Interdisciplinary Research Centre, Katholieke Universiteit Leuven--Campus Kortrijk, University Campus, B-8500 Kortrijk, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Rejman J, Wagenaar A, Engberts JBFN, Hoekstra D. Characterization and transfection properties of lipoplexes stabilized with novel exchangeable polyethylene glycol-lipid conjugates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:41-52. [PMID: 14757219 DOI: 10.1016/j.bbamem.2003.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The positive charge of cationic-lipid/DNA complexes (lipoplexes) renders them highly susceptible to interactions with the biological milieu, leading to aggregation and destabilization, and rapid clearance from the blood circulation. In this study we synthesized and characterized a set of novel amphiphiles, based on N-methyl-4-alkylpyridinium chlorides (SAINTs), to which a PEG moiety is coupled. Plasmids were fully protected in lipoplexes prepared from cationic SAINT-2 lipid and stabilized with SAINT-PEGs. Our results demonstrate that SAINT-PEG stabilization is transient, and permits DNA to be released from these lipoplexes. The rate of SAINT-PEG transfer from lipoplexes to acceptor liposomes was determined by the nature of the lipid anchor. Increased hydrophobicity, by lengthening the alkyl chain, resulted in a decrease of the rate of DNA release from the lipoplexes. Chain unsaturation had the opposite effect. Similarly, the in vitro transfection potency of lipoplexes containing PEG-SAINT derivatives was sensitive to the length and (un)saturation of the alkyl chain. However, the internalization of SAINT-PEG stabilized lipoplexes is determined by their charge, rather than by the concentration of the polymer conjugate. Lipoplexes targeted to cell-surface epithelial glycoprotein 2, by means of a covalently coupled monoclonal antibody, were specifically internalized by cells expressing this antigen.
Collapse
Affiliation(s)
- Joanna Rejman
- Department of Membrane Cell Biology, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
27
|
De Cuyper M, Crabbe A, Cocquyt J, Van der Meeren P, Martins F, Santana MHA. PEGylation of phospholipids improves their intermembrane exchange rate. Phys Chem Chem Phys 2004. [DOI: 10.1039/b310461c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Harvie P, Dutzar B, Galbraith T, Cudmore S, O'Mahony D, Anklesaria P, Paul R. Targeting of Lipid-Protamine-DNA (LPD) Lipopolyplexes Using RGD Motifs. J Liposome Res 2003; 13:231-47. [PMID: 14670229 DOI: 10.1081/lpr-120026389] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incorporation of pegylated lipid into Lipid-Protamine-DNA (LPD-PEG) lipopolyplexes causes a decrease of their in vitro transfection activity. This can be partially attributed to a reduction in particle binding to cells. To restore particle binding and specifically target LPD formulations to tumor cells, the lipid-peptide conjugate DSPE-PEG5K-succinyl-ACDCRGDCFCG-COOH (DSPE-PEG5K-RGD-4C) was generated and incorporated into LPD formulations (LPD-PEG-RGD). LPD-PEG-RGD was characterized with respect to its biophysical and biological properties. The Incorporation of DSPE-PEG5K-RGD-4C ligands into LPD formulations results in a 5 and a 15 fold increase in the LPD-PEG-RGD binding and uptake, respectively, over an LPD-PEG formulation. Enhancement of binding and uptake resulted in a 100 fold enhancement of transfection activity. Moreover, this transfection enhancement was specific to cells expressing appropriate integrin receptors (MDA-MB-231). Huh7 cells, known for their low level of alphavbeta3 and alphavbeta5 integrin expression, failed to show RGD mediated transfection enhancement. This transfection enhancement can be abolished in a competitive manner using free RGD peptide, but not an RGE control peptide. Results demonstrated RGD mediated enhanced LPD-PEG cell binding and transfection in cells expressing the integrin receptor. These formulations provide the basis for effective, targeted, systemic gene delivery.
Collapse
Affiliation(s)
- Pierrot Harvie
- Targeted Genetics Corporation, Seattle, Washington 98101, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Dos Santos N, Mayer LD, Abraham SA, Gallagher RC, Cox KAK, Tardi PG, Bally MB. Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1561:188-201. [PMID: 11997119 DOI: 10.1016/s0005-2736(02)00345-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date there has been a focus on the application of sterically stabilized liposomes, composed of saturated diacylphospholipid, polyethylene glycol (PEG) conjugated lipids (5-10 mole%) and cholesterol (CH) (>30 mole%), for the systemic delivery of drugs. However, we are now exploring the utility of liposome formulations composed of diacylphospholipid conjugated PEG mixtures prepared in the absence of added cholesterol, with the primary objective of developing formulations that retain encapsulated drug better than comparable formulations prepared with cholesterol. In this report the stability of cholesterol-free distearoylphosphatidylcholine (DSPC):distearoylphosphatidylethanolamine (DSPE)-PEG(2000) (95:5 mol/mol) liposomes was characterized in comparison to cholesterol-containing formulations DSPC:CH (55:45 mol/mol) and DSPC:CH:DSPE-PEG(2000) (50:45:5 mol/mol/mol), in vivo. Circulation longevity of these formulations was determined in consideration of variables that included varying phospholipid acyl chain length, PEG content and molecular weight. The application of cholesterol-free liposomes as carriers for the hydrophobic anthracycline antibiotic, idarubicin (IDA), was assessed. IDA was encapsulated using a transmembrane pH gradient driven process. To determine stability in vivo, pharmacokinetic studies were performed using 'empty' and drug-loaded [(3)H]cholesteryl hexadecyl ether radiolabeled liposomes administered intravenously to Balb/c mice. Inclusion of 5 mole% of DSPE-PEG(2000) or 45 mole% cholesterol to DSPC liposomes increased the mean plasma area under the curve (AUC(0-24h)) 19-fold and 10-fold, respectively. Cryo-transmission electron micrographs of IDA loaded liposomes indicated that the drug formed a precipitate within liposomes. The mean AUC(0-4h) for free IDA was 0.030 micromole h/ml as compared to 1.38 micromole h/ml determined for the DSPC:DSPE-PEG(2000) formulation, a 45-fold increase, demonstrating that IDA was retained better in cholesterol-free compared to cholesterol-containing liposomes.
Collapse
Affiliation(s)
- Nancy Dos Santos
- Department of Advanced Therapeutics, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Li WM, Mayer LD, Bally MB. Prevention of antibody-mediated elimination of ligand-targeted liposomes by using poly(ethylene glycol)-modified lipids. J Pharmacol Exp Ther 2002; 300:976-83. [PMID: 11861806 DOI: 10.1124/jpet.300.3.976] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One of the major obstacles in the development of ligand-targeted liposomes is poor liposome circulation longevity as a result of antibody-mediated elimination of these highly immunogenic carriers. Because studies from our laboratory suggest that it is not possible to reduce the immunogenicity of ligand-conjugated liposomes by using surface-grafted poly(ethylene glycol) (PEG), we investigated the usefulness of PEG in protecting hapten-conjugated liposomes from elimination by an existing immune response that was previously established against the hapten. Using biotin as a model hapten, a strong biotin-specific antibody response was generated in mice by using bovine serum albumin-biotin. When these animals were challenged with liposomes containing biotin-conjugated lipid (1 or 0.1%), these liposomes were rapidly eliminated. Incorporation of PEG-lipids into these liposomes substantially reduced biotin-specific antibody binding as measured using an in vitro antibody consumption assay. However, depending on the hapten concentration, significant reductions in antibody binding through the use of PEG-lipids may not be sufficient to protect these liposomes from rapid elimination in vivo. Complete protection of liposomes was only achieved when the biotin concentration on liposome surface was low (0.1%) and with 5 mol% of either 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-[methoxy(polyethylene glycol)-2000] or 1,2-dipalmatoyl-sn-glycero-3-phosphoethanolamine-n-methoxy(polyethylene glycol)-2000]. The use of 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-n-[methoxy(polyethylene glycol)-2000] (up to 15 mol%) was not effective in protecting liposomes from rapid elimination in vivo, indicating the limited usefulness of this highly exchangeable PEG-lipid. In conclusion, our in vivo and in vitro data indicate that liposomes can be protected from antibody-mediated elimination by using the right type and concentration of PEG-lipids. This result has important implication in the development of ligand-targeted liposomes.
Collapse
Affiliation(s)
- Wai Ming Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
31
|
Chiu GNC, Bally MB, Mayer LD. Effects of phosphatidylserine on membrane incorporation and surface protection properties of exchangeable poly(ethylene glycol)-conjugated lipids. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1560:37-50. [PMID: 11958774 DOI: 10.1016/s0005-2736(01)00455-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liposomes containing the acidic phospholipid phosphatidylserine (PS) have been shown to avidly interact with proteins involved in blood coagulation and complement activation. Membranes with PS were therefore used to assess the shielding properties of poly(ethylene glycol 2000)-derivatized phosphatidylethanolamine (PE-PEG(2000)) with various acyl chain lengths on membranes containing reactive lipids. The desorption of PE-PEG(2000) from PS containing liposomes was studied using an in vitro assay which involved the transfer of PE-PEG(2000) into multilamellar vesicles, and the reactivity of PS containing liposomes was monitored by quantifying interactions with blood coagulation proteins. The percent inhibition of clotting activity of PS liposomes was dependent on the PE-PEG(2000) content. 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG(2000) which transferred out slowly from PS liposomes was able to abolish >80% of clotting activity of PS liposomes at 15 mol%. This level of DSPE-PEG(2000) was also able to extend the mean residence time of PS liposomes from 0.2 h to 14 h. However, PE-PEG(2000) with shorter acyl chains such as 1,2-dimyristyl-sn-glycero-3-phosphoethanolamine-PEG(2000) were rapidly transferred out from PS liposomes, which resulted in a 73% decrease in clotting activity inhibition and 45% of administered intravenously liposomes were removed from the blood within 15 min after injection. Thus, PS facilitates the desorption of PE-PEG(2000) from PS containing liposomes, thereby providing additional control of PEG release rates from membrane surfaces. These results suggest that membrane reactivity can be selectively regulated by surface grafted PEGs coupled to phosphatidylethanolamine of an appropriate acyl chain length.
Collapse
Affiliation(s)
- Gigi N C Chiu
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada
| | | | | |
Collapse
|