1
|
Yang YY, Cao Z, Wang Y. Mass Spectrometry-Based Proteomics for Assessing Epitranscriptomic Regulations. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39422510 DOI: 10.1002/mas.21911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Epitranscriptomics is a rapidly evolving field that explores chemical modifications in RNA and how they contribute to dynamic and reversible regulations of gene expression. These modifications, for example, N6-methyladenosine (m6A), are crucial in various RNA metabolic processes, including splicing, stability, subcellular localization, and translation efficiency of mRNAs. Mass spectrometry-based proteomics has become an indispensable tool in unraveling the complexities of epitranscriptomics, offering high-throughput, precise protein identification, and accurate quantification of differential protein expression. Over the past two decades, advances in mass spectrometry, including the improvement of high-resolution mass spectrometers and innovative sample preparation methods, have allowed researchers to perform in-depth analyses of epitranscriptomic regulations. This review focuses on the applications of bottom-up proteomics in the field of epitranscriptomics, particularly in identifying and quantifying epitranscriptomic reader, writer, and eraser (RWE) proteins and in characterizing their functions, posttranslational modifications, and interactions with other proteins. Together, by leveraging modern proteomics, researchers can gain deep insights into the intricate regulatory networks of RNA modifications, advancing fundamental biology, and fostering potential therapeutic applications.
Collapse
Affiliation(s)
- Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Zhongwen Cao
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Khatib TO, Amanso AM, Knippler CM, Pedro B, Summerbell ER, Zohbi NM, Konen JM, Mouw JK, Marcus AI. A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling. PLoS One 2023; 18:e0292554. [PMID: 37819930 PMCID: PMC10566726 DOI: 10.1371/journal.pone.0292554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomic and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live cells. This protocol requires cells expressing a photoconvertible fluorescent protein and employs live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulations for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live cell phenotypes and multi-omic heterogeneity within normal and diseased cellular populations.
Collapse
Affiliation(s)
- Tala O. Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, United States of America
| | - Angelica M. Amanso
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Christina M. Knippler
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Brian Pedro
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Emily R. Summerbell
- Office of Intramural Training and Education, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Najdat M. Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, Georgia, United States of America
| | - Jessica M. Konen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Fatani AS, Petkova A, Schatzlein AG, Uchegbu IF. Dose-dependent delivery of genes to the cerebral cortex via the nasal route. Int J Pharm 2023; 644:123343. [PMID: 37633538 DOI: 10.1016/j.ijpharm.2023.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The use of nucleic acids to treat various brain diseases could offer new therapeutic modalities, providing the nucleic acids may be effectively delivered to areas of the brain using non-toxic vectors. In this study, we present evidence that genes may be successfully delivered in a dose-dependent manner via the nose, primarily to the cerebral cortex using a 6-O-glycolchitosan (GC) formulation of plasmid DNA. Positively charged (zeta potential = +13 - + 25 mV) GC-DNA nanoparticles of 100-500 nm in diameter with favourable cell biocompatibility were shown to deliver the reporter Green Fluorescent Protein (GFP) plasmid to the U87MG cell line and the resulting protein expression was not significantly different from that obtained with Lipofectamine 2000. On intranasal delivery of GC-luciferase-plasmid nanoparticles to Balb/ C mice at 4 doses, ranging from 0.02 to 0.1 mg/ kg, luciferase activity was observed qualitatively in intact mouse brains, 48 h after intranasal, using the IV-VIS visualisation. In further confirmation of brain delivery, dose-dependent protein expression was quantified in multiple brain areas 48 h after dosing; with protein expression seen mainly in the cerebral cortex and striatum and following expression levels: cerebral cortex = olfactory bulb > striatum > brain stem > mid brain = cerebellum. No protein expression was observed in the liver and lungs of dosed animals. GC-DNA protein expression was not significantly different to that observed with Lipofectamine 2000. These results demonstrate that GC-DNA nanoparticles are able to deliver genes preferably to specific brain regions such as the cerebral cortex and striatum; offering the possibility of using genes to treat a range of neurological disorders using a non-invasive method of dosing.
Collapse
Affiliation(s)
| | - Asya Petkova
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Andreas G Schatzlein
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Ijeoma F Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK.
| |
Collapse
|
5
|
Foster T, Ionescu CM, Jones M, Wagle SR, Kovacevic B, Lim P, Mooranian A, Al-Salami H. Poly-L-lysine as a crosslinker in bile acid and alginate nanoaggregates for gene delivery in auditory cells. Nanomedicine (Lond) 2023; 18:1247-1260. [PMID: 37665059 DOI: 10.2217/nnm-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Background: Hearing loss is a condition that may affect a wide array of patients from various backgrounds. There are no cures for sensorineural hearing loss. Gene therapy is one possible method of improving hearing status; however, gene delivery remains challenging. Materials & methods: Polymer nanoaggregates of alginate and poly-L-lysine were prepared with and without bile acid. The nanoaggregates had physical properties, cytotoxicity, gene release and gene expression analyzed. Results & discussion: The nanoparticles produced had appropriate size and charge, low cytotoxicity between 0.5 and 1.0 mg/ml and linear gene release but poor transfection efficiency. Conclusion: The present study provides preliminary evidence for the efficacy of polymer nanotechnology with bile acids for inner ear gene delivery; optimization is required to improve transfection efficiency.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth 6000, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6000, Western Australia, Australia
| |
Collapse
|
6
|
Karayianni M, Sentoukas T, Skandalis A, Pippa N, Pispas S. Chitosan-Based Nanoparticles for Nucleic Acid Delivery: Technological Aspects, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1849. [PMID: 37514036 PMCID: PMC10383118 DOI: 10.3390/pharmaceutics15071849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections. In this review, we summarize the most recent developments in the field of chitosan-based NPs intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the technological aspects of chitosan complexes for nucleic acid delivery.
Collapse
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
7
|
Khatib TO, Amanso AM, Pedro B, Knippler CM, Summerbell ER, Zohbi NM, Konen JM, Mouw JK, Marcus AI. A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530493. [PMID: 36909653 PMCID: PMC10002729 DOI: 10.1101/2023.02.28.530493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.
Collapse
Affiliation(s)
- Tala O Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
- These authors contributed equally
| | - Angelica M Amanso
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- These authors contributed equally
| | - Brian Pedro
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina M Knippler
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Emily R Summerbell
- Office of Intratumoral Training and Education, The National Institutes of Health, Bethesda, Maryland, USA
| | - Najdat M Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, Georgia, USA
| | - Jessica M Konen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Janna K Mouw
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Moghadam NA, Bagheri F, Eslaminejad MB. Chondroitin sulfate modified chitosan nanoparticles as an efficient and targeted gene delivery vehicle to chondrocytes. Colloids Surf B Biointerfaces 2022; 219:112786. [PMID: 36049252 DOI: 10.1016/j.colsurfb.2022.112786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
Conventional treatments for osteoarthritis (OA), including drug delivery and tissue engineering approaches, could not offer a high yield of cartilage repair due to the compact and exclusive structure of cartilage. Targeted and high-efficiency delivery of gene sequences is necessary to rebalance the lost homeostatic properties of the cartilage in OA. Herein, we synthesized chitosan (CH)-chondroitin sulfate (CS) nanoparticles (NPs) as a platform for delivering gene sequences. These new nanoparticles benefit from two natural polymers that minimize the toxicity, and the presence of CS can be in favor of targeted delivery. The CAG-GFP plasmid was used as a gene sequence model, and the nanoparticles could successfully encapsulate approximately all of them in their structure. Loaded nanoparticles were characterized in terms of morphology, size, zeta potential, the efficiency of encapsulation and, DNA release pattern. Cell viability and uptake of new nanoparticles were compared to the chitosan nanoparticles and Lipofectamine. After substituting TPP with CS, NPs exhibited a significant decrease in size. In addition, there was little difference in zeta potential between nanoparticles. Furthermore, a tremendous increase in plasmid uptake and cell viability was observed by CH-CS NPs compared to CH-TPP NPs and Lipofectamine. In the final stage, the knockdown level of MMP13 was evaluated with real-time RT-PCR for confirming the potential uptake of CH-CS NPs. The results revealed cellular uptake of siRNA loaded NPs and effective knockdown of MMP13 in chondrocytes. In conclusion, CH-CS nanoparticles can be considered as a candidate for gene therapy purposes in cartilage diseases.
Collapse
Affiliation(s)
- Naghmeh Akbari Moghadam
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Trousil J, Dal NJK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | | | | | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
- Department of Biology, Faculty of Science, University of J. E. Purkyně, Ústí nad Labem, 400 96, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
10
|
Arai T, Aiki Y, Sato T. Accelerated transgene expression of pDNA/polysaccharide complexes by solid-phase reverse transfection and analysis of the cell transfection mechanism. Polym J 2022. [DOI: 10.1038/s41428-021-00603-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Achieving highly efficient gene transfer to the bladder by increasing the molecular weight of polymer-based nanoparticles. J Control Release 2021; 332:210-224. [PMID: 33607176 DOI: 10.1016/j.jconrel.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Abstract
Short dwell-time and poor penetration of the bladder permeability barrier (BPB) are the main obstacles to intravesical treatments for bladder diseases, and is evidenced by the lack of such therapeutic options on the market. Herein, we demonstrate that by finely tuning the molecular weight of our cationic polymer mucoadhesive nanoparticles, we enhanced our gene transfer, leading to improved adherence and penetrance through the BPB in a safe and efficient manner. Specifically, increasing the polymer molecular weight from 45 kDa to 83 kDa enhanced luciferase plasmid transfer to the healthy murine bladder, leading to 1.35 ng/g luciferase protein expression in the urothelium and lamina propria regions. The relatively higher molecular weight polymer (83 kDa) did not induce morphologic changes or inflammatory responses in the bladder. This approach of altering polymer molecular weight for prolonging gene transfer residence time and deeper penetration through the BPB could be the basis for the design of future gene therapies for bladder diseases.
Collapse
|
12
|
Takehana S, Murata Y, Jo JI, Tabata Y. Complexation design of cationized gelatin and molecular beacon to visualize intracellular mRNA. PLoS One 2021; 16:e0245899. [PMID: 33493232 PMCID: PMC7833158 DOI: 10.1371/journal.pone.0245899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to prepare cationized gelatin-molecular beacon (MB) complexes for the visualization of intracellular messenger RNA (mRNA). The complexes were prepared from cationized gelatins with different extents of cationization and different mixing ratios of MB to cationized gelatin. The apparent size of complexes was almost similar, while the zeta potential was different among the complexes. Irrespective of the preparation conditions, the complexes had a sequence specificity against the target oligonucleotides in hybridization. The cytotoxicity and the amount of complexes internalized into cells increased with an increase in the cationization extent and the concentration of cationized gelatin. After the incubation with complexes prepared from cationized gelatin with the highest extent of cationization and at mixing ratios of 10 and 20 pmole MB/μg cationized gelatin, a high fluorescent intensity was detected. On the other hand, the complex prepared with the mixing ratio at 20 pmole/μg did not show any cytotoxicity. The complex was the most effective to visualize the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA endogenously present. In addition, even for enhanced green fluorescent protein (EGFP) mRNA exogenously transfected, the complex permitted to effectively detect it as well. It is concluded that both the endogenous and exogenous mRNA can be visualized in living cells by use of cationized gelatin-MB complexes designed.
Collapse
Affiliation(s)
- Sho Takehana
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Murata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
13
|
Patino CA, Mukherjee P, Lemaitre V, Pathak N, Espinosa HD. Deep Learning and Computer Vision Strategies for Automated Gene Editing with a Single-Cell Electroporation Platform. SLAS Technol 2021; 26:26-36. [PMID: 33449846 DOI: 10.1177/2472630320982320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-cell delivery platforms like microinjection and nanoprobe electroporation enable unparalleled control over cell manipulation tasks but are generally limited in throughput. Here, we present an automated single-cell electroporation system capable of automatically detecting cells with artificial intelligence (AI) software and delivering exogenous cargoes of different sizes with uniform dosage. We implemented a fully convolutional network (FCN) architecture to precisely locate the nuclei and cytosol of six cell types with various shapes and sizes, using phase contrast microscopy. Nuclear staining or reporter fluorescence was used along with phase contrast images of cells within the same field of view to facilitate the manual annotation process. Furthermore, we leveraged the near-human inference capabilities of the FCN network in detecting stained nuclei to automatically generate ground-truth labels of thousands of cells within seconds, and observed no statistically significant difference in performance compared to training with manual annotations. The average detection sensitivity and precision of the FCN network were 95±1.7% and 90±1.8%, respectively, outperforming a traditional image-processing algorithm (72±7.2% and 72±5.5%) used for comparison. To test the platform, we delivered fluorescent-labeled proteins into adhered cells and measured a delivery efficiency of 90%. As a demonstration, we used the automated single-cell electroporation platform to deliver Cas9-guide RNA (gRNA) complexes into an induced pluripotent stem cell (iPSC) line to knock out a green fluorescent protein-encoding gene in a population of ~200 cells. The results demonstrate that automated single-cell delivery is a useful cell manipulation tool for applications that demand throughput, control, and precision.
Collapse
Affiliation(s)
- Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.,iNfinitesimal LLC, Skokie, IL, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.,Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA.,iNfinitesimal LLC, Skokie, IL, USA
| | | | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.,Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.,Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA.,iNfinitesimal LLC, Skokie, IL, USA
| |
Collapse
|
14
|
Human-derived NLS enhance the gene transfer efficiency of chitosan. Biosci Rep 2021; 41:227253. [PMID: 33305307 PMCID: PMC7789810 DOI: 10.1042/bsr20201026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 11/29/2022] Open
Abstract
Nuclear import is considered as one of the major limitations for non-viral gene delivery systems and the incorporation of nuclear localization signals (NLS) that mediate nuclear intake can be used as a strategy to enhance internalization of exogenous DNA. In this work, human-derived endogenous NLS peptides based on insulin growth factor binding proteins (IGFBP), namely IGFBP-3 and IGFBP-5, were tested for their ability to improve nuclear translocation of genetic material by non-viral vectors. Several strategies were tested to determine their effect on chitosan mediated transfection efficiency: co-administration with polyplexes, co-complexation at the time of polyplex formation, and covalent ligation to chitosan. Our results show that co-complexation and covalent ligation of the NLS peptide derived from IGFBP-3 to chitosan polyplexes yields a 2-fold increase in transfection efficiency, which was not observed for NLS peptide derived from IGFBP-5. These results indicate that the integration of IGFBP-NLS-3 peptides into polyplexes has potential as a strategy to enhance the efficiency of non-viral vectors.
Collapse
|
15
|
Badazhkova VD, Raik SV, Polyakov DS, Poshina DN, Skorik YA. Effect of Double Substitution in Cationic Chitosan Derivatives on DNA Transfection Efficiency. Polymers (Basel) 2020; 12:polym12051057. [PMID: 32380700 PMCID: PMC7284465 DOI: 10.3390/polym12051057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022] Open
Abstract
Recently, much effort has been expended on the development of non-viral gene delivery systems based on polyplexes of nucleic acids with various cationic polymers. Natural polysaccharide derivatives are promising carriers due to their low toxicity. In this work, chitosan was chemically modified by a reaction with 4-formyl-n,n,n-trimethylanilinium iodide and pyridoxal hydrochloride and subsequent reduction of the imine bond with NaBH4. This reaction yielded three novel derivatives, n-[4-(n’,n’,n’-trimethylammonium)benzyl]chitosan chloride (TMAB-CS), n-[(3-hydroxy-5-(hydroxymethyl)-2-methyl-4-pyridine)methyl]chitosan chloride (Pyr-CS), and n-[4-(n’,n’,n’’-trimethylammonium)benzyl]-n-[(3-hydroxy-5-(hydroxymethyl)-2-methyl-4-pyridine)methyl]chitosan chloride (PyrTMAB-CS). Their structures and degrees of substitution were established by 1H NMR spectroscopy as DS1 = 0.22 for TMAB-CS, DS2 = 0.28 for Pyr-CS, and DS1 = 0.21, DS2 = 0.22 for PyrTMAB-CS. Dynamic light scattering measurements revealed that the new polymers formed stable polyplexes with plasmid DNA encoding the green fluorescent protein (pEGFP-N3) and that the particles had the smallest size (110–165 nm) when the polymer:DNA mass ratio was higher than 5:1. Transfection experiments carried out in the HEK293 cell line using the polymer:DNA polyplexes demonstrated that Pyr-CS was a rather poor transfection agent at polymer:DNA mass ratios less than 10:1, but it was still more effective than the TMAB-CS and PyrTMAB-CS derivatives that contained a quaternary ammonium group. By contrast, TMAB-CS and PyrTMAB-CS were substantially more effective than Pyr-CS at higher polymer:DNA mass ratios and showed a maximum efficiency at 200:1 (50%–70% transfected cells). Overall, the results show the possibility of combining substituent effects in a single carrier, thereby increasing its efficacy.
Collapse
Affiliation(s)
- Veronika D. Badazhkova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, 199004 St. Petersburg, Russia; (V.D.B.); (S.V.R.); (D.N.P.)
| | - Sergei V. Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, 199004 St. Petersburg, Russia; (V.D.B.); (S.V.R.); (D.N.P.)
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Dmitry S. Polyakov
- Institute of Experimental Medicine, Akademika Pavlova st. 12, 197376 St. Petersburg, Russia;
| | - Daria N. Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, 199004 St. Petersburg, Russia; (V.D.B.); (S.V.R.); (D.N.P.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, 199004 St. Petersburg, Russia; (V.D.B.); (S.V.R.); (D.N.P.)
- Correspondence:
| |
Collapse
|
16
|
Chehelgerdi M, Doosti A. Effect of the cagW-based gene vaccine on the immunologic properties of BALB/c mouse: an efficient candidate for Helicobacter pylori DNA vaccine. J Nanobiotechnology 2020; 18:63. [PMID: 32316990 PMCID: PMC7175550 DOI: 10.1186/s12951-020-00618-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infect more than half of the world population, and they cause different serious diseases such as gastric carcinomas. This study aims to design a vaccine on the basis of cagW against H. pylori infection. After pcDNA3.1 (+)-cagW-CS-NPs complex is produced, it will be administered into the muscles of healthy BALB/c mice in order to study the effect of this DNA vaccine on the interleukin status of mice, representing its effect on the immune system. After that, the results will be compared with the control groups comprising the administration of cagW-pCDNA3.1 (+) vaccine, the administration of chitosan and the administration of PBS in the muscles of mice. METHODS The cagW gene of H. pylori was amplified by employing PCR, whose product was then cloned into the pcDNA3.1 (+) vector, and this cloning was confirmed by PCR and BamHI/EcoRV restriction enzyme digestion. CagW gene DNA vaccine was encapsulated in chitosan nanoparticles (pcDNA3.1 (+)-cagW-CS-NPs) using a complex coacervation method. The stability and in vitro expression of chitosan nanoparticles were studied by DNase I digestion and transfection, and the immune responses elicited in specific pathogen-free (SPF) mice by the pcDNA3.1 (+)-cagW-CS-NPs were evaluated. Apart from that, the protective potential pcDNA3.1 (+)-cagW-CS-NPs was evaluated by challenging with H. pylori. RESULTS The pcDNA3.1 (+)-cagW-CS-NPs comprises cagW gene of H. pylori that is encapsulated in chitosan nanoparticles, produced with good morphology, high stability, a mean diameter of 117.7 nm, and a zeta potential of + 5.64 mV. Moreover, it was confirmed that chitosan encapsulation protects the DNA plasmid from DNase I digestion, and the immunofluorescence assay showed that the cagW gene could express in HDF cells and maintain good bioactivity at the same time. In comparison to the mice immunized with the control plasmid, in vivo immunization revealed that mice immunized with pcDNA3.1 (+)-cagW-NPs showed better immune responses and prolonged release of the plasmid DNA. CONCLUSIONS This research proves chitosan-DNA nanoparticles as potent immunization candidates against H. pylori infection and paves the way for further developments in novel vaccines encapsulated in chitosan nanoparticles.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
17
|
Wang L, Xu W, Chen Y, Wang J. Alveolar bone repair of rhesus monkeys by using BMP-2 gene and mesenchymal stem cells loaded three-dimensional printed bioglass scaffold. Sci Rep 2019; 9:18175. [PMID: 31796797 PMCID: PMC6890714 DOI: 10.1038/s41598-019-54551-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
Over the past years, the study about bone tissue engineering in the field of regenerative medicine has been a main research topic. Using three-dimensional (3D) porous degradable scaffold complexed with mesenchymal stem cells (MSCs) and growth factor gene to improve bone tissue repair and regeneration has raised much interest. This study mainly evaluated the osteogenesis of alveolar bone defects of animal in the following experimental groups: sham-operated (SO), 3D printed bioglass (3D-BG), 3D-BG with BMP-2 gene loaded CS (3D-BG + BMP/CS) and 3D-BG with rhesus marrow bone MSCs and BMP/CS (3D-BG + BMP/CS + rBMSCs). Simulated human bone defect with critical size of 10 × 10 × 5 mm were established in quadrumana - rhesus monkeys, and in vivo osteogenesis was characterized by X-ray, micro-Computed Tomography (mCT) and history. Our results revealed that 3D-BG + rBMSCs + BMP/CS scaffold could improve bone healing best by showing its promote osteogenic properties in vivo. Considering the great bone repair capacity of 3D-BG + BMP/CS + rBMSCs in humanoid primate rhesus monkeys, it could be a promising therapeutic strategy for surgery trauma or accidents, especially for alveolar bones defects.
Collapse
Affiliation(s)
- Liyan Wang
- Department of Stomatology, Foshan Woman and Children's Hospital, Foshan, Guangdong, 528000, China
| | - Weikang Xu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, Guangzhou, Guangdong, 510500, China
| | - Yang Chen
- Department of Orthopaedics, The First people's Hospital of Foshan, Foshan, Guangdong, 528000, China.
| | - Jingjing Wang
- Department of Stomatology, Foshan Woman and Children's Hospital, Foshan, Guangdong, 528000, China.
| |
Collapse
|
18
|
ApoE-2 Brain-Targeted Gene Therapy Through Transferrin and Penetratin Tagged Liposomal Nanoparticles. Pharm Res 2019; 36:161. [PMID: 31529284 PMCID: PMC10150442 DOI: 10.1007/s11095-019-2691-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/20/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Apolipoprotein E2 (ApoE2) gene therapy is a potential disease-modifying therapy for Alzheimer's disease (AD). We investigated the potential of plasmid encoding ApoE2 loaded brain-targeted functionalized-liposomes for treatment of AD. This was achieved via systemic administration of liposomes entrapping therapeutic gene targeting the brain of mice. METHODS Targeting and transfection efficiency of designed liposomes were determined in bEnd.3, primary glial and primary neuronal cells. The ability of liposomal formulations to translocate across in vitro blood-brain barrier (BBB) and, thereafter, transfect primary neuronal cells was investigated using in vitro triple co-culture BBB model. We quantified ApoE expression in the brain of mice after single intravenous injection of brain-targeted liposomes loaded with plasmid ApoE2. RESULTS Dual surface modification enhanced the in vitro transfection efficiency of designed liposomes. Successful delivery of therapeutic gene overcoming BBB by Transferrin-Penetratin- modified liposomes was demonstrated both in vitro and in vivo. Significant (p < 0.05) increase in ApoE levels in the brain of mice was observed after intravenous administration of Tf-Pen-liposomes encasing plasmid ApoE2. CONCLUSION The results indicate that dual-ligand based liposomal gene delivery systems had both enhanced brain targeting and gene delivery efficiencies. Transferrin-Penetratin modified liposomes for delivery of plasmid ApoE2 has great potential for AD treatment.
Collapse
|
19
|
Abrica-González P, Zamora-Justo JA, Sotelo-López A, Vázquez-Martínez GR, Balderas-López JA, Muñoz-Diosdado A, Ibáñez-Hernández M. Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers. NANOSCALE RESEARCH LETTERS 2019; 14:258. [PMID: 31363863 PMCID: PMC6667606 DOI: 10.1186/s11671-019-3083-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Currently, gold nanoparticles have found applications in engineering and medical sciences, taking advantage from their properties and characteristics. Surface plasmon resonance, for instance, is one of the main features for optical applications and other physical properties, like high density, that represents the key for cellular uptake. Among other applications, in the medical field, some diseases may be treated by using gene therapy, including monogenetic or polygenetic disorders and infections. Gene adding, suppression, or substitution is one of the many options for genetic manipulation. This work explores an alternative non-viral method for gene transfer by using gold nanoparticles functionalized with organic polymers; two routes of synthesis were used: one of them with sodium borohydride as reducing agent and the other one with chitosan oligosaccharide as reducing and stabilizing agent. Gold nanoparticles conjugated with chitosan, acylated chitosan and chitosan oligosaccharide, were used to evaluate transfection efficiency of plasmid DNA into cell culture (HEK-293). Physical and chemical properties of gold nanocomposites were characterized by using UV-Vis Spectroscopy, ξ-potential, and transmission electron microscopy. Furthermore, the interaction between gold nanoparticles and plasmid DNA was demonstrated by using agarose gel electrophoresis. Transfection tests were performed and evaluated by β-galactosidase activity and green fluorescence protein expression. The percentage of transfection obtained with chitosan, acylated chitosan, and chitosan oligosaccharide were of 27%, 33%, and 60% respectively.
Collapse
Affiliation(s)
- Paulina Abrica-González
- Instituto Politécnico Nacional, Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnología, 07340 Mexico City, Mexico
| | - José Alberto Zamora-Justo
- Instituto Politécnico Nacional, Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnología, 07340 Mexico City, Mexico
| | - Antonio Sotelo-López
- Instituto Politécnico Nacional, Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnología, 07340 Mexico City, Mexico
| | - Guillermo Rocael Vázquez-Martínez
- Instituto Politécnico Nacional, Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnología, 07340 Mexico City, Mexico
| | - José Abraham Balderas-López
- Instituto Politécnico Nacional, Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnología, 07340 Mexico City, Mexico
| | - Alejandro Muñoz-Diosdado
- Instituto Politécnico Nacional, Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnología, 07340 Mexico City, Mexico
| | - Miguel Ibáñez-Hernández
- Instituto Politécnico Nacional, Biochemistry Department, Escuela Nacional de Ciencias Biológicas, 11340 Mexico City, Mexico
| |
Collapse
|
20
|
Ueda M, Jo JI, Gao JQ, Tabata Y. Effect of lipopolysaccharide addition on the gene transfection of spermine-introduced pullulan-plasmid DNA complexes for human mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1542-1558. [PMID: 31354063 DOI: 10.1080/09205063.2019.1650240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective of this study is to investigate the effect of lipopolysaccharide (LPS) addition on the gene transfection of human mesenchymal stem cells (hMSC). hMSC were treated with the LPS at different concentrations and the complex of spermine-introduced pullulan and luciferase plasmid DNA for 3 h. The maximum level of gene expression was observed for hMSC treated with a certain concentration range of LPS. In addition, the cytotoxicity, cellular internalization of complexes, and cell cycle after LPS treatment were investigated. The cytotoxicity increased with an increase in the LPS concentration treated. On the other hand, the cellular internalization of complexes increased with the increased LPS concentration, although the internalization was sharply reduced at the high concentration. The LPS treatment increased the actin polymerization of cells to allow to spread more. The enhanced cells spreading would enhance the cellular internalization of complexes. In addition, the LPS treatment increased the rate of cell cycle. It is possible that the balance of cytotoxicity, cellular internalization, and cell cycle caused by the LPS addition results in the enhanced gene transfection at a certain LPS concentration. It is concluded that LPS treatment positively modified the cellular internalization and the cell cycle, resulting in the enhanced gene transfection.
Collapse
Affiliation(s)
- Masumi Ueda
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University , Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University , Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University , P. R. China
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University , Japan
| |
Collapse
|
21
|
Lebedeva NS, Yurina ES, Gubarev YA. Spectral and thermochemical research of the DNA polyplex with chitosan formation process and the influence of anionic and cationic compounds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:153-157. [PMID: 30825864 DOI: 10.1016/j.saa.2019.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/21/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
In this paper, the results of a spectral and thermochemical study of the DNA polyplex formation with chitosan and the effect of ethidium bromide polyplexes, sodium dodecyl sulfate, n-octyltrimethyl ammonium bromide, poly(4-styrenesulfonic acid), and heparin on the stability of the complexes are considered. It has been established that chitosan forms thermodynamically stable complexes with ethidium bromide (EtBr), in which there exists one monomer unit of chitosan for two ethidium bromide ones. The interaction of ethidium bromide with chitosan leads to a charge exchange of the polymer surface. The impact of chitosan on the intercalated DNA-EtBr complex conditions a release of EtBr with a polyplex formation. The process of polyplex formation in the presence of ethidium bromide proceeds endothermically, and in its absence the reaction is exothermic. The polyplex particles formed from DNA after release of EtBr are larger and have a smaller charge, as compared to the polyplex particles obtained without ethidium bromide. It has been found that anionic compounds cause the degradation of polyplexes, and it can prove to be a significant obstacle for using chitosan polyplexes in transfection, since in the presence of heparin in the bloodstream, the complexes will break down before reaching the target.
Collapse
Affiliation(s)
- Natalya Sh Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russia
| | - Elena S Yurina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russia
| | - Yury A Gubarev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russia.
| |
Collapse
|
22
|
Shende P, Ture N, Gaud RS, Trotta F. Lipid- and polymer-based plexes as therapeutic carriers for bioactive molecules. Int J Pharm 2019; 558:250-260. [PMID: 30641179 DOI: 10.1016/j.ijpharm.2018.12.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
Recently, promising strategies of plexes include the complexation of nucleic acids with lipids (lipoplexes) and different kinds of polymers (polyplexes) for delivery of actives and genetic material in abnormal conditions like cancer, cystic fibrosis and genetic disorders. The present review article focuses on the comparative aspects of lipoplexes and polyplexes associated with molecular structure, cellular transportation and formulation aspects. The major advantages of lipoplexes and polyplexes over conventional liposomes involve non-immunogenic viral gene transfer, facile manufacturing and preservation of genetic material encapsulated within the nanocarriers. Lipoplexes and polyplexes enhance the transfection of DNA into the cell by stepwise electrostatic cationic-anionic interaction with DNA backbones. The ease and cost-effective formation of complexes extend their applications in the treatment of cancer and genetic disorders. Lipoplexes and polyplexes necessitate intensive research in the fields of quality, toxicity and methods of preparation for commercialization.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, India.
| | - Narayan Ture
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, India
| | - R S Gaud
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, India
| | - F Trotta
- Department of Chemistry, University of Torino, Italy
| |
Collapse
|
23
|
Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HDC. PEGylated Chitosan for Nonviral Aerosol and Mucosal Delivery of the CRISPR/Cas9 System in Vitro. Mol Pharm 2018; 15:4814-4826. [PMID: 30222933 DOI: 10.1021/acs.molpharmaceut.8b00434] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chitosan has been widely employed to deliver nucleic acids such as siRNA and plasmids. However, chitosan-mediated delivery of a gene-editing system has not been reported yet. In this study, poly(ethylene glycol) monomethyl ether (mPEG) was conjugated to chitosan with different molecular weights (low molecular weight and medium molecular weight chitosan) achieving a high degree of substitution as identified by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) spectra. PEGylated chitosan/pSpCas9-2A-GFP nanocomplexes were formed at different N/ P (amine group to phosphate group) ratios and characterized in terms of size and zeta potential. The nanocomplexes developed showed the capability to protect loaded nucleic acids from DNase I digestion and from the stresses of nebulization. In addition, we demonstrated that the PEG conjugation of chitosan improved the mucus-penetration capability of the formed nanocomplexes at N/ P ratios of 5, 10, 20, and 30. Finally, PEGylated low molecular weight chitosan nanocomplexes showed optimal transfection efficiency at an N/ P ratio of 20, while PEGylated medium molecular weight chitosan nanocomplexes showed an optimal transfection efficiency at an N/ P ratio of 5 at pH 6.5 and 6.8. This study established the basis for the delivery of a gene-editing system by PEGylated chitosan nanocomplexes.
Collapse
|
24
|
Daneshmandi S, Pourfathollah AA, Forouzandeh-Moghaddam M. Enhanced CD40 and ICOSL expression on dendritic cells surface improve anti-tumor immune responses; effectiveness of mRNA/chitosan nanoparticles. Immunopharmacol Immunotoxicol 2018; 40:375-386. [PMID: 30265161 DOI: 10.1080/08923973.2018.1510959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: To improve dendritic cells (DCs) function, we targeted DCs to over express CD40 and inducible costimulator ligand (ICOSL) costimulatory molecules along with total messenger RNA (mRNA) of tumor cells to achieve a safe and effective system for treatment of tumor. Materials and methods: We generated CD40 and ICOSL mRNA in vitro and manipulated DCs using chitosan nanoparticles and also lipofectamine transfection system then examined in vitro and in vivo. Results: Mice bone marrow derived DCs pulsed with total tumor mRNA/CD40 mRNA or ICOSL mRNA showed higher expression of DCs maturation markers (CD40, ICOSL, CD86, and MHC-II) and accelerated secretion of pro-inflammatory cytokines. Co-culture of DCs with T cells enhanced proliferation of T cells and shift toward stronger Th1 cytokine responses especially in presence of CD40 over expressed DCs. Intra-tumor administration of manipulated DCs to 4T1 tumor mice model showed delay in growth of tumor volume, trend to increase in mice survival, and stronger anti-tumor cytokines production in splenocytes of mice model (with higher efficacy of mRNA/chitosan nanoparticle system). Conclusions: Hence, we suggest that targeting intra-tumor DCs to elicit expression of CD40 and ICOSL and present broad range of tumor antigens could yield effective anti-tumor responses. In this regard, CD40 molecule manipulation trigger stronger functions, while mRNA/chitosan nanoparticles system could provide a high potent tool for targeting strategies.
Collapse
Affiliation(s)
- Saeed Daneshmandi
- a Department of Immunology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Ali Akbar Pourfathollah
- a Department of Immunology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | | |
Collapse
|
25
|
Protein moiety in oligochitosan modified vector regulates internalization mechanism and gene delivery: Polyplex characterization, intracellular trafficking and transfection. Carbohydr Polym 2018; 202:143-156. [PMID: 30286987 DOI: 10.1016/j.carbpol.2018.08.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Oligochitosan-modified proteins have gained attention as efficient non-viral vectors for gene delivery. However, little information exists if protein moieties can serve as an important role for internalization and endosome escape ability of the genetic material. To explore this issue, we designed two cationic oligochitosan-modified vectors that consist of different proteins, namely a hydrophobic plant protein (zein) and a hydrophilic animal protein (ovalbumin (OVA)) to deliver pDNA to epithelial cell line CHO-K1 and HEK 293 T. These cationic vectors were systematically characterized by molecular weight, infrared (IR) structural analysis, transmission electron microscopy (TEM) morphology, and surface charge. A remarkable impact of protein moieties was observed on physiochemical properties of the developed vectors. Oligochitosan-modified zein containing hydrophobic protein exhibited high buffering capacity and excellent DNA binding ability compared to the oligochitosan-modified OVA. The data on transfection in the presence of endocytic inhibitors indicated that the caveolae-mediated pathway (CvME) played a key role in the internalization of the zein-based polyplex. However, the OVA-based polyplex was internalized in CHO-K1 cells via CvME and in HEK 293 T cells via the lipid-mediated pathway. Moreover, oligochitosan-modified zein exhibited lower cytotoxicity, greater lysosomal escape ability, better plasmid stability, and better transfection efficiency than the oligochitosan-modified OVA. This study offers a facile procedure for the synthesis of cationic vectors and elucidates the relationship that exists between protein moieties and transfection activity, thus providing an alternative, non-viral platform for the gene delivery.
Collapse
|
26
|
Grande-Tovar CD, Chaves-Lopez C, Serio A, Rossi C, Paparella A. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Sato T, Nakata M, Yang Z, Torizuka Y, Kishimoto S, Ishihara M. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency. J Gene Med 2018; 19. [PMID: 28667693 DOI: 10.1002/jgm.2968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lyophilization is an effective method for preserving nonviral gene vectors. To improve the stability and transgene expression of lyophilized plasmid DNA (pDNA) complexes, we coated the surfaces of pDNA/chitosan complexes with hyaluronic acid (HA) of varying molecular masses. The transgene expression of pDNA/chitosan/HA ternary complexes was characterized in vitro and in vivo. METHODS pDNA complexes were lyophilized overnight and the resultant products with spongy, porous consistencies were stored at -30, 4 or 25°C for 2 weeks. Rehydrated complexes were characterized using gel retardation assays, aiming to confirm complex formation, measure particle size and evaluate zeta potential, as well as conduct luciferase gene reporter assays. The anti-tumor effects of pDNA ternary complexes were evaluated using suicide gene (pTK) coding thymidine kinase in Huh7-implanted mice. RESULTS Transfection efficiencies of pDNA/chitosan/HA ternary complexes were dependent on the average molecular masses of HA. The coating of pDNA/chitosan complexes with HA maintained the cellular transfection efficiencies of lyophilized pDNA ternary complexes. Furthermore, intratumoral injection of lyophilized, rehydrated pDNA ternary complexes into tumor-bearing mice showed a significant suppression of tumor growth. CONCLUSIONS The coating of pDNA/chitosan complexes with high-molecular-weight HA augmented the stability and cellular transfection ability of the complexes after lyophilization-rehydration.
Collapse
Affiliation(s)
- Toshinori Sato
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Mitsuhiro Nakata
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Zhihong Yang
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Yu Torizuka
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Shimotsuga, Tochigi, Japan
| | - Masayuki Ishihara
- Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
28
|
Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018; 110:97-109. [DOI: 10.1016/j.ijbiomac.2017.08.140] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022]
|
29
|
Raik SV, Poshina DN, Lyalina TA, Polyakov DS, Vasilyev VB, Kritchenkov AS, Skorik YA. N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride: Synthesis, interaction with DNA and evaluation of transfection efficiency. Carbohydr Polym 2017; 181:693-700. [PMID: 29254024 DOI: 10.1016/j.carbpol.2017.11.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 12/29/2022]
Abstract
А novel cationic chitosan derivative, N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride (TMAB-CS), with different degrees of substitution (DS) was synthesized by a chemoselective interaction of 4-formyl-N,N,N-trimethylanilinium iodide with chitosan amino groups using a reductive amination method. Several factors (pH, reactant ratio, reaction time, and chitosan structure) were studied for their effects on the DS of the resulting TMAB-CS. The obtained derivatives were characterized by 1H NMR and FTIR spectroscopy. Turbidimetric titration showed enhanced solubility over a wide pH range even for low-substituted TMAB-CS. TMAB-CS provided strong DS-dependent binding of plasmid DNA. Dynamic light scattering measurements revealed the formation of stable polyplexes with hydrodynamic diameters of 200-300nm and ζ-potential of 20-30mV. TMAB-CS with relatively low DS (25%) demonstrated more pronounced transfection efficiency (up to 2000 cell/cm2) of plasmid DNA into the HEK293 cell line promoted by free TMAB-CS. The positive effects of lower DS can be related to a better polyplex dissociation within the cell. The cytotoxicity of TMAB-CS was comparable to that of the initial chitosan at concentrations up to 300ng/μL, even at high DS.
Collapse
Affiliation(s)
- Sergei V Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation; Saint-Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg 199034, Russian Federation
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Tatiana A Lyalina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg 194064, Russian Federation
| | - Dmitry S Polyakov
- Institute of Experimental Medicine, ul. Akademika Pavlova 12, St. Petersburg 197022, Russian Federation
| | - Vadim B Vasilyev
- Saint-Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg 199034, Russian Federation; Institute of Experimental Medicine, ul. Akademika Pavlova 12, St. Petersburg 197022, Russian Federation
| | - Andreii S Kritchenkov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation; Almazov National Medical Research Centre, ul. Akkuratova 2, St. Petersburg 197341, Russian Federation.
| |
Collapse
|
30
|
Efficient gene delivery by oligochitosan conjugated serum albumin: Facile synthesis, polyplex stability, and transfection. Carbohydr Polym 2017; 183:37-49. [PMID: 29352891 DOI: 10.1016/j.carbpol.2017.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Chitosan and its derivatives have shown to be potential gene carriers with biocompatiblility and safety. However, their practical delivery is far from being ideal because of the low transfection efficiency. The present work describes the potential of a natural protein, bovine serum albumin (BSA), conjugated with a natural oligosaccharide, oligochitosan (OC), as a considerable promising approach for a safe and efficient non-viral gene delivery vector. The FTIR spectra proved the effective conjugation of BSA with OC through covalent bond. The condensation ability of plasmid DNA (pDNA) with a BSA-OC biopolymer was analyzed by gel retardation assay, competition binding assay, and dynamic light scattering used to measure the nanoparticle size. In addition, the BSA-OC biopolymer showed the protection of pDNA from enzymatic degradation by DNase I and showed good stability when exposed to 50% fetal bovine serum. The transfection efficiency was evaluated in the presence of 10% serum-supplemented media or serum-free media on three kinds of mammalian cells. Our results showed that the BSA-OC biopolymer is a good non-viral vehicle for gene delivery. We investigated the parameters such as the pDNA payload, temperature, incubating duration, and biopolymer/pDNA ratio on the transfection efficiency. This hybrid vehicle had the ability to transfect 90% of cells and to maintain 80% of cell viability. The aforementioned results suggest that the facile synthesis of the BSA-OC biopolymer could overcome the cytotoxicity problem and transfection barriers during in vitro gene delivery.
Collapse
|
31
|
Sharma D, Singh J. Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymer and Their Nanomicelles for Nonviral Gene Delivery Applications. Bioconjug Chem 2017; 28:2772-2783. [PMID: 29040803 DOI: 10.1021/acs.bioconjchem.7b00505] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to synthesize and characterize fatty acid-grafted-chitosan (fatty acid-g-CS) polymer and their nanomicelles for use as carriers for gene delivery. CS was hydrophobically modified using saturated fatty acids of increasing fatty acyl chain length. Carbodiimide along with N-hydroxysuccinimide was used for coupling carboxyl group of fatty acids with amine groups of CS. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy were used to quantify fatty acyl substitution onto CS backbone. The molecular weight distribution of the synthesized polymers was determined using size exclusion high performance liquid chromatography and was found to be in range of the parent CS polymer (∼50 kDa). The critical micelle concentration (cmc) of the polymers was determined using pyrene as a fluorescent probe. The cmc was found to decrease with an increase in fatty acyl chain length. The amphiphilic fatty acid-g-CS polymers self-assembled in an aqueous environment to form nanomicelles of ∼200 nm particle size and slightly positive net charge due to the cationic nature of free primary amino groups on CS molecule. These polymeric nanomicelles exhibited excellent hemo- and cytocompatibility, as evaluated by in vitro hemolysis and MTT cell viability assay, respectively, and showed superior transfection efficiency compared to unmodified chitosan and naked DNA. The surface of these nanomicelles can be further modified with ligands allowing for selective targeting, enhanced cell binding, and internalization. These nanomicelles can thus be exploited as potential nonviral gene delivery vectors for safe and efficient gene therapy.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University , Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University , Fargo, North Dakota 58105, United States
| |
Collapse
|
32
|
Bakar LM, Abdullah MZ, Doolaanea AA, Ichwan SJA. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/884/1/012117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Shan XY, Xu TT, Liu ZL, Hu XF, Zhang YD, Guo SZ, Wang B. Targeting of angiopoietin 2-small interfering RNA plasmid/chitosan magnetic nanoparticles in a mouse model of malignant melanoma in vivo. Oncol Lett 2017; 14:2320-2324. [PMID: 28781670 PMCID: PMC5530215 DOI: 10.3892/ol.2017.6443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/03/2017] [Indexed: 11/26/2022] Open
Abstract
The aim of the present study was to observe the in vivo targeting characteristic of angiopoietin 2-small interfering RNA (Ang2-siRNA) plasmid/chitosan magnetic nanoparticles in an established nude mouse model of malignant melanoma (MM) under an external magnetic field. The nude mouse MM model was first established, then divided into 3 groups, including the control group, the non-targeting group and the target group, the control group was given normal saline and the non-targeting and targeting groups were administrated particles through the tail vein; the non-targeting group was not under external magnetic field and the control group and the targeting group were under external magnetic field for 60 min. The mice were then sacrificed and the tumor tissues were stained with hematoxylin and eosin and Prussian blue in order to verify the particle distributions in the tumor tissues. The control group exhibited negative Prussian blue staining in the tumor tissues, the non-targeting group demonstrated weakly positive Prussian blue staining in tumor tissues and the targeting group revealed strongly positive Prussian blue staining in tumor tissues. Ang2-siRNA plasmid vector/chitosan magnetic nanoparticles directly moved towards tumor tissues under the action of external magnetic field, thus it demonstrated good targeting characteristic.
Collapse
Affiliation(s)
- Xiu-Ying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ting-Ting Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhao-Liang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xue-Feng Hu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Yan-Ding Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Shu-Zhong Guo
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
34
|
Davoodi P, Srinivasan MP, Wang CH. Effective co-delivery of nutlin-3a and p53 genes via core-shell microparticles for disruption of MDM2-p53 interaction and reactivation of p53 in hepatocellular carcinoma. J Mater Chem B 2017; 5:5816-5834. [PMID: 32264215 DOI: 10.1039/c7tb00481h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The tumor suppressor protein p53 is the most frequently inactivated, mutated, or deleted transcriptional factor in tumor cells. Recent studies have shown that the negative regulation of p53 by the murine double minute 2 (MDM2) protein in human cells interrupts the p53 apoptotic pathway and causes tumorigenesis. Therefore, the disruption of the MDM2-p53 complex by small molecules such as nutlin-3a and the administration of the active p53 protein can effectively restore the apoptotic activity of the p53 protein in tumor cells. This study aims to introduce a unique combined p53-based gene and chemotherapy approach using core-shell polymeric microparticles for the localized treatment of cancers. Core-shell microparticles were successfully fabricated in a single step using a modified electrohydrodynamic atomization (EHDA) technique, where the core and shell layers were loaded with nutlin-3a and β-cyclodextrin-g-chitosan/p53 nanoparticles, respectively. The grafting of β-cyclodextrin (β-CD) onto chitosan chains demonstrated remarkable cellular uptake (∼5-fold) compared to pure chitosan at N/P = 6, attributed to a strong interaction and temporary disruption of the lipid bilayer in the cell membrane by the synthesized copolymer. The therapeutic efficiencies of single- and dual-agent loaded microparticle formulations were also evaluated and compared against free-drug treatment in terms of cell viability and intracellular expression of p53, caspase 3, and MDM2 proteins via an MTS assay, an enzyme-linked immunosorbent assay, and an immunostaining assay. The results revealed that the controlled and sustained release of both agents from the microparticles synergistically enhanced the anti-proliferative efficacy of the agents via the continuous overexpression of p53 and caspase 3 proteins over 5 days. However, MDM2 protein expression remained at the basal level over that period. The findings also indicated that nutlin-3a could impose excessive oxidative stress on cancer cells, where the overproduction of reactive oxygen species (ROS) with irreversible destructive effects on subcellular organelles such as the nucleus (DNA) and mitochondria could be considered as a secondary apoptotic pathway induced by nutlin-3a. Inspired by the observations, the proposed drug delivery system can serve as a unique and powerful drug and gene delivery system with a far-reaching application in human cancer therapy.
Collapse
Affiliation(s)
- Pooya Davoodi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
35
|
Lallana E, Rios de la Rosa JM, Tirella A, Pelliccia M, Gennari A, Stratford IJ, Puri S, Ashford M, Tirelli N. Chitosan/Hyaluronic Acid Nanoparticles: Rational Design Revisited for RNA Delivery. Mol Pharm 2017; 14:2422-2436. [PMID: 28597662 DOI: 10.1021/acs.molpharmaceut.7b00320] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chitosan/hyaluronic acid (HA) nanoparticles can be used to deliver an RNA/DNA cargo to cells overexpressing HA receptors such as CD44. For these systems, unequivocal links have not been established yet between chitosan macromolecular (molecular weight; degree of deacetylation, i.e., charge density) and nanoparticle variables (complexation strength, i.e., stability; nucleic acid protection; internalization rate) on one hand, and transfection efficiency on the other hand. Here, we have focused on the role of avidity on transfection efficiency in the CD44-expressing HCT-116 as a cellular model; we have employed two differently sized payloads (a large luciferase-encoding mRNA and a much smaller anti-Luc siRNA), and a small library of chitosans (variable molecular weight and degree of deactylation). The RNA avidity for chitosan showed-as expected-an inverse relationship: higher avidity-higher polyplex stability-lower transfection efficiency. The avidity of chitosan for RNA appears to lead to opposite effects: higher avidity-higher polyplex stability but also higher transfection efficiency. Surprisingly, the best transfecting particles were those with the lowest propensity for RNA release, although this might be a misleading relationship: for example, the same macromolecular parameters that increase avidity can also boost chitosan's endosomolytic activity, with a strong enhancement in transfection. The performance of these nonviral vectors appears therefore difficult to predict simply on the basis of carrier- or payload-related variables, and a more holistic consideration of the journey of the nanoparticle, from cell uptake to cytosolic bioavailability of payload, is needed. It is also noteworthy that the nanoparticles used in this study showed optimal performance under slightly acidic conditions (pH 6.4), which is promising for applications in a tumoral extracellular environment. It is also worth pointing out that under these conditions we have for the first time successfully delivered mRNA with chitosan/HA nanoparticles.
Collapse
Affiliation(s)
- Enrique Lallana
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Julio M Rios de la Rosa
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Annalisa Tirella
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Maria Pelliccia
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Arianna Gennari
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Ian J Stratford
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Sanyogitta Puri
- Innovative Medicines-Pharmaceutical Sciences, AstraZeneca , Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| | - Marianne Ashford
- Innovative Medicines-Pharmaceutical Sciences, AstraZeneca , Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| | - Nicola Tirelli
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
36
|
Limiting the level of tertiary amines on polyamines leads to biocompatible nucleic acid vectors. Int J Pharm 2017; 526:106-124. [DOI: 10.1016/j.ijpharm.2017.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/01/2017] [Accepted: 04/23/2017] [Indexed: 01/18/2023]
|
37
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
38
|
Babu A, Ramesh R. Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy. Mar Drugs 2017; 15:E96. [PMID: 28346381 PMCID: PMC5408242 DOI: 10.3390/md15040096] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chitosan is a versatile polysaccharide of biological origin. Due to the biocompatible and biodegradable nature of chitosan, it is intensively utilized in biomedical applications in scaffold engineering as an absorption enhancer, and for bioactive and controlled drug release. In cancer therapy, chitosan has multifaceted applications, such as assisting in gene delivery and chemotherapeutic delivery, and as an immunoadjuvant for vaccines. The present review highlights the recent applications of chitosan and chitosan derivatives in cancer therapy.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
39
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
40
|
Shan X, Xu T, Liu Z, Hu X, Zhang YD, Wang B. Safety and toxicology of the intravenous administration of Ang2‑siRNA plasmid chitosan magnetic nanoparticles. Mol Med Rep 2016; 15:736-742. [PMID: 28035391 PMCID: PMC5364838 DOI: 10.3892/mmr.2016.6090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/04/2016] [Indexed: 11/10/2022] Open
Abstract
This aim of the present study was to investigate the safety and toxicology of intravenous administration of angiopoietin-2 (Ang2)-small interfering (si)RNA plasmid-chitosan magnetic nanoparticles (CMNPs). Ang2-CMNPs were constructed and subsequently administered at different doses to mice and rats via the tail vein. The acute (in mice) and chronic toxicity (in rats) were observed. The results of the acute toxicity assay revealed that the LD50 mice was >707.0 mg·kg-1·d-1, and the general condition of mice revealed no obvious abnormalities. With the exception of the high dose group (254.6 mg·kg-1·d-1), which exhibited partial lung congestion, the other groups exhibited no obvious abnormalities. Results of the chronic toxicity assay demonstrated that the non-toxic dose of Ang2-CMNPs in the rat was >35.35 mg·kg-1·d-1 for 14 days. The rat general condition and blood biochemistry indexes revealed no obvious abnormality. The blood routine indexes and lung/body ratio of each treatment group were higher when compared with the control group. The middle- and high-dose groups exhibited chronic pulmonary congestion, whilst the low-dose and control groups exhibited no abnormality. Similarly, the other organs revealed no obvious abnormality. Ang2-CMNPs have good safety at a certain dose range and may be considered as the target drug carrier.
Collapse
Affiliation(s)
- Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Tingting Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhaoliang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xuefeng Hu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Yan-Ding Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
41
|
Bor G, Mytych J, Zebrowski J, Wnuk M, Şanlı-Mohamed G. Cytotoxic and cytostatic side effects of chitosan nanoparticles as a non-viral gene carrier. Int J Pharm 2016; 513:431-437. [PMID: 27659861 DOI: 10.1016/j.ijpharm.2016.09.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 12/23/2022]
Abstract
Although chitosan nanoparticles (CNs) became a promising tool for several biological and medical applications owing to their inherent biocompatibility and biodegradability features, studies regarding their effects on cytotoxic and cytostatic properties still remain insufficient. Therefore, in the present study, we decided to perform comprehensive analysis of the interactions between CNs-pKindling-Red-Mito (pDNA) and different cell line models derived from blood system and human solid tissues cancers. The resulting CNs-pDNA was investigated in terms of their cellular uptake, transfection efficiency, and physico-chemical, cytotoxic and cytostatic properties. The nanoparticles showed high encapsulation efficiency and physical stability for various formulations even after two days time period. Moreover, high gene expression levels were observed after 96h of transfection. CNs-pDNA treatment, despite the absence of oxidative stress induction, caused cell cycle arrest in G0/G1 phase and as a consequence led to premature senescence which turned out to be both p21-dependent and p21-independent. Also, observed DNMT2 upregulation may suggest the activation of different pathways protecting from the results of CNs-mediated stress. In conclusion, treatment of different cell lines with CNs-pDNA showed that their biocompatibility was limited and the effects were cell type-dependent.
Collapse
Affiliation(s)
- Gizem Bor
- Biotechnology and Bioengineering Department, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Jennifer Mytych
- Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| | - Jacek Zebrowski
- Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Department of Plant Physiology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Maciej Wnuk
- Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| | - Gülşah Şanlı-Mohamed
- Department of Chemistry, Izmir Institute of Technology, Urla, Izmir 35430, Turkey.
| |
Collapse
|
42
|
Fangkangwanwong J, Sae-Liang N, Sriworarat C, Sereemaspun A, Chirachanchai S. Water-Based Chitosan for Thymine Conjugation: A Simple, Efficient, Effective, and Green Pathway to Introduce Cell Compatible Nucleic Acid Recognition. Bioconjug Chem 2016; 27:2301-2306. [PMID: 27547985 DOI: 10.1021/acs.bioconjchem.6b00251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chitosan is a potential biopolymer for cell recognition and targeting; however, when those functions are based on cationic amine groups of chitosan, cell damage is a concern. This study presents water-based chitosan conjugated with thymine (CsT) through a mild and homogeneous conjugating reaction via amide bond without the use of organic and/or acidic solvents. The CsT displays water-solubility in a wide range of pH. A series of comparative gel retardation assays confirm the selective binding with poly(A), resulting in nanoparticles of 100 to 250 nm in size. PrestoBlue cell viability assay clarifies nontoxicity and reveals noncytotoxicity to normal colon cells but inhibition of colon cancer cells. This simple pathway for water-soluble chitosan-nucleic acid leads to synergistic effects of cell compatibility and DNA recognition.
Collapse
|
43
|
Patel BJ, Vignesh NK, Hortelano G. Chitosan DNA nanoparticles for oral gene delivery. World J Med Genet 2016; 6:22-33. [DOI: 10.5496/wjmg.v6.i3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is a promising technology with potential applications in the treatment of medical conditions, both congenital and acquired. Despite its label as breakthrough technology for the 21st century, the simple concept of gene therapy - the introduction of a functional copy of desired genes in affected individuals - is proving to be more challenging than expected. Oral gene delivery has shown intriguing results and warrants further exploration. In particular, oral administration of chitosan DNA nanoparticles, one the most commonly used formulations of therapeutic DNA, has repeatedly demonstrated successful in vitro and in vivo gene transfection. While oral gene therapy has shown immense promise as treatment options in a variety of diseases, there are still significant barriers to overcome before it can be considered for clinical applications. In this review we provide an overview of the physiologic challenges facing the use of chitosan DNA nanoparticles for oral gene delivery at both the extracellular and intracellular level. From administration at the oral cavity, chitosan nanoparticles must traverse the gastrointestinal tract and protect its DNA contents from significant jumps in pH levels, various intestinal digestive enzymes, thick mucus layers with high turnover, and a proteinaceous glycocalyx meshwork. Once these extracellular barriers are overcome, chitosan DNA nanoparticles must enter intestinal cells, escape endolysosomes, and disassociate from genetic material at the appropriate time allowing transport of genetic material into the nucleus to deliver a therapeutic effect. The properties of chitosan nanoparticles and modified nanoparticles are discussed in this review. An understanding of the barriers to oral gene delivery and how to overcome them would be invaluable for future gene therapy development.
Collapse
|
44
|
Lee MH, Thomas JL, Chen JZ, Jan JS, Lin HY. Activation of tumor suppressor p53 gene expression by magnetic thymine-imprinted chitosan nanoparticles. Chem Commun (Camb) 2016; 52:2137-40. [PMID: 26693943 DOI: 10.1039/c5cc09896c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chitosan is a natural biodegradable polysaccharide that has been used to enhance gene delivery, owing to the ease with which chitosan nanoparticles enter the nucleus of cells. To study the effects of nuclear delivery of telomeric gene sequences, which contain thymine, we formed magnetic thymine-imprinted chitosan nanoparticles (TIPs) by the precipitation of chitosan, mixed with thymine and magnetic nanoparticles (to aid in separations). The mean size of the TIPS was 116 ± 18 nm; the dissociation constant for thymine was 21.8 mg mL(-1). We then treated human hepatocellular carcinoma (HepG2) with TIPs nanoparticles bearing bound thymine or a bound telomeric DNA sequence. The expression of the tumor suppressor p53 gene increased when TIPs were applied and decreased when telomere-bound TIPs were applied.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jian-Zhou Chen
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan.
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan.
| |
Collapse
|
45
|
Tsuchiya Y, Ishii T, Okahata Y, Sato T. Characterization of Protamine as a Transfection Accelerator for Gene Delivery. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506070816] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protamine is an FDA-approved compound with a documented safety profile that facilitates efficient plasmid condensation for gene delivery by various types of cationic liposomes. It also improves adenoviral vector-mediated gene transfer as a transfection accelerator. However, there is no consensus as to the mechanism of protamine on gene delivery into cells. To analyze the uptake and subcellular distribution, plasmid and protamine were labeled with FITC and Texas-Red, respectively. Although the uptake of FITC-labeled plasmid/protamine complexes into the cells was the same as that of free FITC-labeled plasmid in HeLa, SOJ and A549 cells, they improved the transfection efficiency by several orders of magnitude. Moreover, we found that protamine derived from different sources (salmon, herring and trout sperm) had different transfection efficiencies; however, the gene transfer efficiency with protamine was lower than with optimized poly(L-lysine) and DEAE-Dextran. There were likely two main reasons: firstly, the uptake of plasmid mediated by protamine was complete within the first 10min because the particle size increased as time passed, and secondly, the plasmid/protamine complexes were not released from endosomal membrane. These results indicate that as a transfection accelerator from an appropriate protamine source, with controlled particle size and facile release from endosomes would lead to successful gene delivery with protamine.
Collapse
Affiliation(s)
| | | | - Yoshio Okahata
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3–14–1Hiyoshi, Kouhoku-ku, Yokohama 223 –8522, Japan
| |
Collapse
|
46
|
Fairclough M, Prenant C, Ellis B, Boutin H, McMahon A, Brown G, Locatelli P, Jones A. A new technique for the radiolabelling of mixed leukocytes with zirconium-89 for inflammation imaging with positron emission tomography. J Labelled Comp Radiopharm 2016; 59:270-6. [PMID: 27061114 PMCID: PMC5074313 DOI: 10.1002/jlcr.3392] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
Abstract
Mixed leukocyte (white blood cells [WBCs]) trafficking using positron emission tomography (PET) is receiving growing interest to diagnose and monitor inflammatory conditions. PET, a high sensitivity molecular imaging technique, allows precise quantification of the signal produced from radiolabelled moieties. We have evaluated a new method for radiolabelling WBCs with either zirconium-89 ((89) Zr) or copper-64 ((64) Cu) for PET imaging. Chitosan nanoparticles (CNs) were produced by a process of ionotropic gelation and used to deliver radiometals into WBCs. Experiments were carried out using mixed WBCs freshly isolated from whole human blood. WBCs radiolabelling efficiency was higher with [(89) Zr]-loaded CN (76.8 ± 9.6% (n = 12)) than with [(64) Cu]-loaded CN (26.3 ± 7.0 % (n = 7)). [(89) Zr]-WBCs showed an initial loss of 28.4 ± 5.8% (n = 2) of the radioactivity after 2 h. This loss was then followed by a plateau as (89) Zr remains stable in the cells. [(64) Cu]-WBCs showed a loss of 85 ± 6% (n = 3) of the radioactivity after 1 h, which increased to 96 ± 6% (n = 3) loss after 3 h. WBC labelling with [(89) Zr]-loaded CN showed a fast kinetic of leukocyte association, high labelling efficiency and a relatively good retention of the radioactivity. This method using (89) Zr has a potential application for PET imaging of inflammation.
Collapse
Affiliation(s)
| | - C. Prenant
- Wolfson Molecular Imaging CentreManchesterUK
| | - B. Ellis
- NHS Foundation TrustCentral Manchester University HospitalManchesterUK
| | - H. Boutin
- Wolfson Molecular Imaging CentreManchesterUK
| | - A. McMahon
- Wolfson Molecular Imaging CentreManchesterUK
| | - G. Brown
- Wolfson Molecular Imaging CentreManchesterUK
| | - P. Locatelli
- Materials Science BuildingUniversity of ManchesterManchesterUK
| | - A.K.P. Jones
- Clinical Sciences BuildingSalford Royal NHS Foundation TrustManchesterUK
| |
Collapse
|
47
|
Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf B Biointerfaces 2016; 146:188-97. [PMID: 27318964 DOI: 10.1016/j.colsurfb.2016.05.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/05/2023]
Abstract
Overexpression of signal transducer and activator of transcription 3 (STAT3) protein prevents apoptosis and enhances proliferation of melanocytes. The aim of this study was to investigate the feasibility of using layer-by-layer assembled gold nanoparticles (LbL-AuNP) as a carrier for iontophoretic delivery of STAT3 siRNA to treat melanoma. Chitosan coated AuNP (AuNP-CS) were prepared by direct reduction of HAuCl4 in the presence of chitosan. The AuNP-CS were then sequentially layered with siRNA and chitosan to form AuNP-CS/siRNA/CS. STAT3 siRNA replaced with scrambled siRNA or sodium alginate were used as controls. The average particle size and zeta-potential of the prepared LbL-AuNP were 150±10nm (PDI: 0.41±0.06) and 35±6mV, respectively. In vitro studies in B16F10 murine melanoma cells showed that AuNP-CS/siRNA/CS inhibited the cell growth by 49.0±0.6% and 66.0±0.2% at 0.25nM and 0.5nM STAT3 siRNA concentration, respectively. Fluorescence microscopy and flow cytometry studies showed a time dependent cell uptake of the LbL-AuNP up to 120min. Clathrin mediated endocytosis was found to be the predominant cell uptake mechanism for LbL-AuNP. STAT3 siRNA loaded LbL-AuNP reduced the STAT3 protein expression by 47.3% in B16F10 cells. Similarly, apoptosis assay showed 29% and 44% of early and late apoptotic events, respectively after treatment with STAT3 siRNA loaded LbL-AuNP. Confocal microscope and skin cryosections showed that application of 0.47mA/cm(2) of anodal iontophoresis enhanced the skin penetration of LbL-AuNP to reach viable epidermis. In conclusion, layer-by-layer chitosan coated AuNP can be developed as a carrier for iontophoretic delivery of STAT3 siRNA to treat melanoma.
Collapse
|
48
|
Doolaanea AA, Mansor N'I, Mohd Nor NH, Mohamed F. Co-encapsulation ofNigella sativaoil and plasmid DNA for enhanced gene therapy of Alzheimer’s disease. J Microencapsul 2016; 33:114-26. [DOI: 10.3109/02652048.2015.1134689] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Lebre F, Borchard G, Faneca H, Pedroso de Lima MC, Borges O. Intranasal Administration of Novel Chitosan Nanoparticle/DNA Complexes Induces Antibody Response to Hepatitis B Surface Antigen in Mice. Mol Pharm 2016; 13:472-82. [PMID: 26651533 DOI: 10.1021/acs.molpharmaceut.5b00707] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The generation of strong pathogen-specific immune responses at mucosal surfaces where hepatitis B virus (HBV) transmission can occur is still a major challenge. Therefore, new vaccines are urgently needed in order to overcome the limitations of existing parenteral ones. Recent studies show that this may be achieved by intranasal immunization. Chitosan has gained attention as a nonviral gene delivery system; however, its use in vivo is limited due to low transfection efficiency mostly related to strong interaction between the negatively charged DNA and the positively charged chitosan. We hypothesize that the adsorption of negatively charged human serum albumin (HSA) onto the surface of the chitosan particles would facilitate the intracellular release of DNA, enhancing transfection activity. Here, we demonstrate that a robust systemic immune response was induced after vaccination using HSA-loaded chitosan nanoparticle/DNA (HSA-CH NP/DNA) complexes. Furthermore, intranasal immunization with HSA-CH NP/DNA complexes induced HBV specific IgA in nasal and vaginal secretions; no systemic or mucosal responses were detected after immunization with DNA alone. Overall, our results show that chitosan-based DNA complexes elicited both humoral and mucosal immune response, making them an interesting and valuable gene delivery system for nasal vaccination against HBV.
Collapse
Affiliation(s)
- F Lebre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra , 3004-0504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - G Borchard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - H Faneca
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra , 3004-0504 Coimbra, Portugal.,Department of Life Sciences, University of Coimbra , 3004-517 Coimbra, Portugal
| | - M C Pedroso de Lima
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra , 3004-0504 Coimbra, Portugal.,Department of Life Sciences, University of Coimbra , 3004-517 Coimbra, Portugal
| | - O Borges
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra , 3004-0504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
50
|
Zhao L, Zhang K, Bu W, Xu X, Jin H, Chang B, Wang B, Sun Y, Yang B, Zheng C, Sun H. Effective delivery of bone morphogenetic protein 2 gene using chitosan–polyethylenimine nanoparticle to promote bone formation. RSC Adv 2016. [DOI: 10.1039/c5ra24891d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treating bone defects is still a challenge in clinical practice.
Collapse
|