1
|
Sugimoto T, Katayama K, Kandori H. FTIR study of light-induced proton transfer and Ca 2+ binding in T82D mutant of TAT rhodopsin. Biophys J 2024; 123:4245-4255. [PMID: 39118325 DOI: 10.1016/j.bpj.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Proton transfer reactions play important functional roles in many proteins, such as enzymes and transporters, which is also the case in rhodopsins. In fact, functional expression of rhodopsins accompanies intramolecular proton transfer reactions in many cases. One of the exceptional cases can be seen in the protonated form of marine bacterial TAT rhodopsin, which isomerizes the retinal by light but returns to the original state within 10-5 s. Thus, light energy is converted into heat without any function. In contrast, the T82D mutant of TAT rhodopsin conducts the light-induced deprotonation of the Schiff base at high pH. In this article, we report the structural analysis of T82D by means of difference Fourier transform infrared (FTIR) spectroscopy. In the light-induced difference FTIR spectra at 77 K, we observed little hydrogen out-of-plane vibrations for T82D as well as the wild-type (WT), suggesting that the planar chromophore structure itself is not the origin of the reversion from the K intermediate in WT TAT rhodopsin. Upon relaxation of the K intermediate, T82D forms the following intermediate, such as M, whereas K of WT returns to the original state. Present FTIR analysis revealed the proton transfer from the Schiff base to D82 in T82D upon formation of the M intermediate. It is accompanied by the second proton transfer from E54 to the Schiff base, forming the N intermediate, particularly in membranes. The equilibrium between the M and N intermediates corresponds to the protonation equilibrium between E54 and the Schiff base. We also found that Ca2+ binding takes place in T82D as well as WT but with 6 times lower affinity. An altered hydrogen-bonding network would be the origin of low affinity in T82D, where deprotonation of E54 is involved in the Ca2+ binding.
Collapse
Affiliation(s)
- Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
2
|
Wijesiri K, Gascón JA. Structural Models of the First Molecular Events in the Heliorhodopsin Photocycle. J Phys Chem B 2024; 128:5966-5972. [PMID: 38877606 DOI: 10.1021/acs.jpcb.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Retinylidene conformations and rearrangements of the hydrogen-bond network in the vicinity of the protonated Schiff base (PSB) play a key role in the proton transfer process in the Heliorhodopsin photocycle. Photoisomerization of the retinylidene chromophore and the formation of photoproducts corresponding to the early intermediates were modeled using a combination of molecular dynamics simulations and quantum mechanical/molecular mechanics calculations. The resulting structures were refined, and the respective excitation energies were calculated. Aided by metadynamics simulations, we constructed a photoisomerized intermediate where the 13-cis retinylidene chromophore is rotated about a parallel pair of double bonds at C13=C14 and C15=NZ double bonds. We demonstrate how the deprotonation of the Schiff base and the concomitant protonation of the Glu107 counterion are only favored because of these rearrangements.
Collapse
Affiliation(s)
- Kithmini Wijesiri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
3
|
Kariev AM, Green ME. Water, Protons, and the Gating of Voltage-Gated Potassium Channels. MEMBRANES 2024; 14:37. [PMID: 38392664 PMCID: PMC10890431 DOI: 10.3390/membranes14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Ion channels are ubiquitous throughout all forms of life. Potassium channels are even found in viruses. Every cell must communicate with its surroundings, so all cells have them, and excitable cells, in particular, especially nerve cells, depend on the behavior of these channels. Every channel must be open at the appropriate time, and only then, so that each channel opens in response to the stimulus that tells that channel to open. One set of channels, including those in nerve cells, responds to voltage. There is a standard model for the gating of these channels that has a section of the protein moving in response to the voltage. However, there is evidence that protons are moving, rather than protein. Water is critical as part of the gating process, although it is hard to see how this works in the standard model. Here, we review the extensive evidence of the importance of the role of water and protons in gating these channels. Our principal example, but by no means the only example, will be the Kv1.2 channel. Evidence comes from the effects of D2O, from mutations in the voltage sensing domain, as well as in the linker between that domain and the gate, and at the gate itself. There is additional evidence from computations, especially quantum calculations. Structural evidence comes from X-ray studies. The hydration of ions is critical in the transfer of ions in constricted spaces, such as the gate region and the pore of a channel; we will see how the structure of the hydrated ion fits with the structure of the channel. In addition, there is macroscopic evidence from osmotic experiments and streaming current measurements. The combined evidence is discussed in the context of a model that emphasizes the role of protons and water in gating these channels.
Collapse
Affiliation(s)
- Alisher M Kariev
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Michael E Green
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
4
|
Engilberge S, Caramello N, Bukhdruker S, Byrdin M, Giraud T, Jacquet P, Scortani D, Biv R, Gonzalez H, Broquet A, van der Linden P, Rose SL, Flot D, Balandin T, Gordeliy V, Lahey-Rudolph JM, Roessle M, de Sanctis D, Leonard GA, Mueller-Dieckmann C, Royant A. The TR-icOS setup at the ESRF: time-resolved microsecond UV-Vis absorption spectroscopy on protein crystals. Acta Crystallogr D Struct Biol 2024; 80:16-25. [PMID: 38088897 PMCID: PMC10833346 DOI: 10.1107/s2059798323010483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump-probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump-probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm-2, providing experimental laser and delay parameters for a successful TR-MX experiment.
Collapse
Affiliation(s)
- Sylvain Engilberge
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| | - Nicolas Caramello
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sergei Bukhdruker
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Martin Byrdin
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| | - Thierry Giraud
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | - Philippe Jacquet
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| | - Damien Scortani
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | - Rattana Biv
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | - Hervé Gonzalez
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | - Antonin Broquet
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | - Peter van der Linden
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
- PSCM (Partnership for Soft Condensed Matter), ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Samuel L. Rose
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | - David Flot
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | - Taras Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Valentin Gordeliy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - J. Mia Lahey-Rudolph
- Technische Hochschule Lübeck – University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany
| | - Manfred Roessle
- Technische Hochschule Lübeck – University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany
| | - Daniele de Sanctis
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | - Gordon A. Leonard
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
| | | | - Antoine Royant
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38403 Grenoble CEDEX 9, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| |
Collapse
|
5
|
Petrovskaya LE, Siletsky SA, Mamedov MD, Lukashev EP, Balashov SP, Dolgikh DA, Kirpichnikov MP. Features of the Mechanism of Proton Transport in ESR, Retinal Protein from Exiguobacterium sibiricum. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1544-1554. [PMID: 38105023 DOI: 10.1134/s0006297923100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Dmitry A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
6
|
Kataoka M. Structural studies of bacteriorhodopsin in BC era. Biophys Physicobiol 2023; 20:e201006. [PMID: 38362329 PMCID: PMC10865857 DOI: 10.2142/biophysico.bppb-v20.s006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
It marked half a century since the discovery of bacteriorhodopsin two years ago. On this occasion, I have revisited historically important diffraction studies of this membrane protein, based on my recollections. X-ray diffraction and electron diffraction, and electron microscopy, described the low-resolution structure of bacteriorhodopsin within the purple membrane. Neutron diffraction was effective to assign the helical regions in the primary structure with 7 rods revealed by low-resolution structure as well as to describe the retinal position. Substantial conformational changes upon light illumination were clarified by the structures of various photointermediates. Early trials of time-resolved studies were also introduced. Models for the mechanism of light-driven proton pump based on the low-resolution structural studies are also described. Significantly, they are not far from the today's understanding. I believe that the spirit of the early research scientists in this field and the essence of their studies, which constitute the foundations of the field, still actively fertilizes current membrane protein research.
Collapse
Affiliation(s)
- Mikio Kataoka
- Nara Institute of Science and Technology, Ikoma, Nara 630-0189, Japan
| |
Collapse
|
7
|
Michalczyk M, Kizior B, Zierkiewicz W, Scheiner S. Factors contributing to halogen bond strength and stretch or contraction of internal covalent bond. Phys Chem Chem Phys 2023; 25:2907-2915. [PMID: 36636920 DOI: 10.1039/d2cp05598h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The halogen bond formed by a series of Lewis acids TF3X (T = C, Si, Ge, Sn, Pb; X = Cl, Br, I) with NH3 is studied by quantum chemical calculations. The interaction energy is closely mimicked by the depth of the σ-hole on the X atom as well as the full electrostatic energy. There is a first trend by which the hole is deepened if the T atom to which X is attached becomes more electron-withdrawing: C > Si > Ge > Sn > Pb. On the other hand, larger more polarizable T atoms are better able to transmit the electron-withdrawing power of the F substituents. The combination of these two opposing factors leaves PbF3X forming the strongest XBs, followed by CF3X, with SiF3X engaging in the weakest bonds. The charge transfer from the NH3 lone pair into the σ*(TX) antibonding orbital tends to elongate the covalent TX bond, and this force is largest for the heavier X and T atoms. On the other hand, the contraction of this bond deepens the σ-hole at the X atom, which would enhance both the electrostatic component and the full interaction energy. This bond-shortening effect is greatest for the lighter X atoms. The combination of these two opposing forces leaves the T-X bond contracting for X = Cl and Br, but lengthening for I.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Beata Kizior
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah, 84322-0300, USA.
| |
Collapse
|
8
|
Archaeal Lipids Regulating the Trimeric Structure Dynamics of Bacteriorhodopsin for Efficient Proton Release and Uptake. Int J Mol Sci 2022; 23:ijms23136913. [PMID: 35805918 PMCID: PMC9278134 DOI: 10.3390/ijms23136913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
S-TGA-1 and PGP-Me are native archaeal lipids associated with the bacteriorhodopsin (bR) trimer and contribute to protein stabilization and native dynamics for proton transfer. However, little is known about the underlying molecular mechanism of how these lipids regulate bR trimerization and efficient photocycling. Here, we explored the specific binding of S-TGA-1 and PGP-Me with the bR trimer and elucidated how specific interactions modulate the bR trimeric structure and proton release and uptake using long-term atomistic molecular dynamic simulations. Our results showed that S-TGA-1 and PGP-Me are essential for stabilizing the bR trimer and maintaining the coherent conformational dynamics necessary for proton transfer. The specific binding of S-TGA-1 with W80 and K129 regulates proton release on the extracellular surface by forming a “Glu-shared” model. The interaction of PGP-Me with K40 ensures proton uptake by accommodating the conformation of the helices to recruit enough water molecules on the cytoplasmic side. The present study results could fill in the theoretical gaps of studies on the functional role of archaeal lipids and could provide a reference for other membrane proteins containing similar archaeal lipids.
Collapse
|
9
|
Talele S, King JT. Reaction cycle of operating pump protein studied with single-molecule spectroscopy. Chemphyschem 2022; 23:e202200099. [PMID: 35614023 DOI: 10.1002/cphc.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Biological machinery relies on nonequilibrium dynamics to maintain stable directional fluxes through complex reaction cycles. For such reaction cycles, the presence of microscopically irreversible conformational transitions of the protein, and the accompanying entropy production, is of central interest. In this work, we use multidimensional single-molecule fluorescence lifetime correlation spectroscopy to measure the forward and reverse conformational transitions of bacteriorhodopsin during trans-membrane H + pumping. We quantify the flux, affinity, enthalpy and entropy production through portions of the reaction cycle as a function of temperature. We find that affinity of irreversible conformational transitions decreases with increasing temperature, resulting in diminishing flux and entropy production. We show that the temperature dependence of the transition affinity is well fit by the Gibbs-Helmholtz relation, allowing the DH trans to be experimentally extracted.
Collapse
Affiliation(s)
- Saurabh Talele
- Institute for Basic Science, Center for Soft and Living Matter, KOREA, REPUBLIC OF
| | - John Thomas King
- Institute for Basic Science, Center for Soft and Living Matter, Advanced Materials Building, Ulsan National Institute of Science and Technology, 44919, Ulsan, KOREA, REPUBLIC OF
| |
Collapse
|
10
|
Brown LS. Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183867. [PMID: 35051382 DOI: 10.1016/j.bbamem.2022.183867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
In the last twenty years, our understanding of the rules and mechanisms for the outward light-driven proton transport (and underlying proton transfers) by microbial rhodopsins has been changing dramatically. It transitioned from a very detailed atomic-level understanding of proton transport by bacteriorhodopsin, the prototypical proton pump, to a confounding variety of sequence motifs, mechanisms, directions, and modes of transport in its newly found homologs. In this review, we will summarize and discuss experimental data obtained on new microbial rhodopsin variants, highlighting their contribution to the refinement and generalization of the ideas crystallized in the previous century. In particular, we will focus on the proton transport (and transfers) vectoriality and their structural determinants, which, in many cases, remain unidentified.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
11
|
Lorenz-Fonfria VA, Yagi K, Ito S, Kandori H. Retinal Vibrations in Bacteriorhodopsin are Mechanically Harmonic but Electrically Anharmonic: Evidence From Overtone and Combination Bands. Front Mol Biosci 2022; 8:749261. [PMID: 34977154 PMCID: PMC8718751 DOI: 10.3389/fmolb.2021.749261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Fundamental vibrations of the chromophore in the membrane protein bacteriorhodopsin (BR), a protonated Schiff base retinal, have been studied for decades, both by resonance Raman and by infrared (IR) difference spectroscopy. Such studies started comparing vibrational changes between the initial BR state (all-trans retinal) and the K intermediate (13-cis retinal), being later extended to the rest of intermediates. They contributed to our understanding of the proton-pumping mechanism of BR by exploiting the sensitivity of fundamental vibrational transitions of the retinal to its conformation. Here, we report on new bands in the 2,500 to 1,800 cm−1 region of the K-BR difference FT-IR spectrum. We show that the bands between 2,500 and 2,300 cm−1 originate from overtone and combination transitions from C-C stretches of the retinal. We assigned bands below 2,300 cm−1 to the combination of retinal C-C stretches with methyl rocks and with hydrogen-out-of-plane vibrations. Remarkably, experimental C-C overtone bands appeared at roughly twice the wavenumber of their fundamentals, with anharmonic mechanical constants ≤3.5 cm−1, and in some cases of ∼1 cm−1. Comparison of combination and fundamental bands indicates that most of the mechanical coupling constants are also very small. Despite the mechanical quasi-harmonicity of the C-C stretches, the area of their overtone bands was only ∼50 to ∼100 times smaller than of their fundamental bands. We concluded that electrical anharmonicity, the second mechanism giving intensity to overtone bands, must be particularly high for the retinal C-C stretches. We corroborated the assignments of negative bands in the K-BR difference FT-IR spectrum by ab initio anharmonic vibrational calculations of all-trans retinal in BR using a quantum-mechanics/molecular mechanics approach, reproducing reasonably well the small experimental anharmonic and coupling mechanical constants. Yet, and in spite accounting for both mechanical and electrical anharmonicities, the intensity of overtone C-C transitions was underestimated by a factor of 4–20, indicating room for improvement in state-of-the-art anharmonic vibrational calculations. The relatively intense overtone and combination bands of the retinal might open the possibility to detect retinal conformational changes too subtle to significantly affect fundamental transitions but leaving a footprint in overtone and combination transitions.
Collapse
Affiliation(s)
| | - Kiyoshi Yagi
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
12
|
Gordeliy V, Kovalev K, Bamberg E, Rodriguez-Valera F, Zinovev E, Zabelskii D, Alekseev A, Rosselli R, Gushchin I, Okhrimenko I. Microbial Rhodopsins. Methods Mol Biol 2022; 2501:1-52. [PMID: 35857221 DOI: 10.1007/978-1-0716-2329-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first microbial rhodopsin, a light-driven proton pump bacteriorhodopsin from Halobacterium salinarum (HsBR), was discovered in 1971. Since then, this seven-α-helical protein, comprising a retinal molecule as a cofactor, became a major driver of groundbreaking developments in membrane protein research. However, until 1999 only a few archaeal rhodopsins, acting as light-driven proton and chloride pumps and also photosensors, were known. A new microbial rhodopsin era started in 2000 when the first bacterial rhodopsin, a proton pump, was discovered. Later it became clear that there are unexpectedly many rhodopsins, and they are present in all the domains of life and even in viruses. It turned out that they execute such a diversity of functions while being "nearly the same." The incredible evolution of the research area of rhodopsins and the scientific and technological potential of the proteins is described in the review with a focus on their function-structure relationships.
Collapse
Affiliation(s)
- Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitrii Zabelskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Riccardo Rosselli
- Departamento de Fisiología, Genetica y Microbiología. Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
13
|
Dynamic Coupling of Tyrosine 185 with the Bacteriorhodopsin Photocycle, as Revealed by Chemical Shifts, Assisted AF-QM/MM Calculations and Molecular Dynamic Simulations. Int J Mol Sci 2021; 22:ijms222413587. [PMID: 34948384 PMCID: PMC8709120 DOI: 10.3390/ijms222413587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Aromatic residues are highly conserved in microbial photoreceptors and play crucial roles in the dynamic regulation of receptor functions. However, little is known about the dynamic mechanism of the functional role of those highly conserved aromatic residues during the receptor photocycle. Tyrosine 185 (Y185) is one of the highly conserved aromatic residues within the retinal binding pocket of bacteriorhodopsin (bR). In this study, we explored the molecular mechanism of its dynamic coupling with the bR photocycle by automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) calculations and molecular dynamic (MD) simulations based on chemical shifts obtained by 2D solid-state NMR correlation experiments. We observed that Y185 plays a significant role in regulating the retinal cis–trans thermal equilibrium, stabilizing the pentagonal H-bond network, participating in the orientation switch of Schiff Base (SB) nitrogen, and opening the F42 gate by interacting with the retinal and several key residues along the proton translocation channel. Our findings provide a detailed molecular mechanism of the dynamic couplings of Y185 and the bR photocycle from a structural perspective. The method used in this paper may be applied to the study of other microbial photoreceptors.
Collapse
|
14
|
Maag D, Mast T, Elstner M, Cui Q, Kubař T. O to bR transition in bacteriorhodopsin occurs through a proton hole mechanism. Proc Natl Acad Sci U S A 2021; 118:e2024803118. [PMID: 34561302 PMCID: PMC8488608 DOI: 10.1073/pnas.2024803118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Extensive classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations are used to establish the structural features of the O state in bacteriorhodopsin (bR) and its conversion back to the bR ground state. The computed free energy surface is consistent with available experimental data for the kinetics and thermodynamics of the O to bR transition. The simulation results highlight the importance of the proton release group (PRG, consisting of Glu194/204) and the conserved arginine 82 in modulating the hydration level of the protein cavity. In particular, in the O state, deprotonation of the PRG and downward rotation of Arg82 lead to elevated hydration level and a continuous water network that connects the PRG to the protonated Asp85. Proton exchange through this water network is shown by ∼0.1-μs semiempirical QM/MM free energy simulations to occur through the generation and propagation of a proton hole, which is relayed by Asp212 and stabilized by Arg82. This mechanism provides an explanation for the observation that the D85S mutant of bacteriorhodopsin pumps chloride ions. The electrostatics-hydration coupling mechanism and the involvement of all titration states of water are likely applicable to many biomolecules involved in bioenergetic transduction.
Collapse
Affiliation(s)
- Denis Maag
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Thilo Mast
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| |
Collapse
|
15
|
Mukhina T, Gerelli Y, Hemmerle A, Koutsioubas A, Kovalev K, Teulon JM, Pellequer JL, Daillant J, Charitat T, Fragneto G. Insertion and activation of functional Bacteriorhodopsin in a floating bilayer. J Colloid Interface Sci 2021; 597:370-382. [PMID: 33894545 DOI: 10.1016/j.jcis.2021.03.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method. The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single and floating bilayers with the aim of determining the structure and composition of this membrane-protein system before and after protein reconstitution at sub-nanometer resolution. Lipid bilayer integrity and protein activity were preserved upon the reconstitution process. Reversible structural modifications of the membrane, induced by the bacteriorhodopsin functional activity triggered by visible light, were observed and characterized at the nanoscale.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Yuri Gerelli
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arnaud Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Kirill Kovalev
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany; Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141071, 9 Institutskiy per., Dolgoprudny, Russia; Institute of Crystallography, RWTH Aachen University, 52066, Jägerstraße 17-19, Aachen, Germany
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Thierry Charitat
- Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France
| |
Collapse
|
16
|
Oda K, Nomura T, Nakane T, Yamashita K, Inoue K, Ito S, Vierock J, Hirata K, Maturana AD, Katayama K, Ikuta T, Ishigami I, Izume T, Umeda R, Eguma R, Oishi S, Kasuya G, Kato T, Kusakizako T, Shihoya W, Shimada H, Takatsuji T, Takemoto M, Taniguchi R, Tomita A, Nakamura R, Fukuda M, Miyauchi H, Lee Y, Nango E, Tanaka R, Tanaka T, Sugahara M, Kimura T, Shimamura T, Fujiwara T, Yamanaka Y, Owada S, Joti Y, Tono K, Ishitani R, Hayashi S, Kandori H, Hegemann P, Iwata S, Kubo M, Nishizawa T, Nureki O. Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin. eLife 2021; 10:62389. [PMID: 33752801 PMCID: PMC7987342 DOI: 10.7554/elife.62389] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/15/2021] [Indexed: 01/17/2023] Open
Abstract
Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in optogenetics to control neural activity with light . Light absorption causes retinal chromophore isomerization and subsequent protein conformational changes visualized as optically distinguished intermediates, coupled with channel opening and closing. However, the detailed molecular events underlying channel gating remain unknown. We performed time-resolved serial femtosecond crystallographic analyses of ChR by using an X-ray free electron laser, which revealed conformational changes following photoactivation. The isomerized retinal adopts a twisted conformation and shifts toward the putative internal proton donor residues, consequently inducing an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore.
Collapse
Affiliation(s)
- Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Nomura
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keiichi Inoue
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Shota Ito
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Johannes Vierock
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kunio Hirata
- RIKEN SPring-8 Center, Hyogo, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Andrés D Maturana
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kota Katayama
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Tatsuya Ikuta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Itsuki Ishigami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tamaki Izume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rie Umeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryuun Eguma
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satomi Oishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Go Kasuya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takafumi Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroto Shimada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Takatsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Reiya Taniguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryoki Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hirotake Miyauchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yongchan Lee
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, Hyogo, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Hyogo, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, Hyogo, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Tatsuro Shimamura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Fujiwara
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuaki Yamanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideki Kandori
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021; 254:51-64. [PMID: 33409541 PMCID: PMC7936944 DOI: 10.1007/s00232-020-00165-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Abstract Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understanding of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of membrane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
18
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
19
|
Nagasaka Y, Hososhima S, Kubo N, Nagata T, Kandori H, Inoue K, Yawo H. Gate-keeper of ion transport-a highly conserved helix-3 tryptophan in a channelrhodopsin chimera, C1C2/ChRWR. Biophys Physicobiol 2020; 17:59-70. [PMID: 33173715 PMCID: PMC7593130 DOI: 10.2142/biophysico.bsj-2020007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/01/2022] Open
Abstract
Microbial rhodopsin is a large family of membrane proteins having seven transmembrane helices (TM1-7) with an all-trans retinal (ATR) chromophore that is covalently bound to Lys in the TM7. The Trp residue in the middle of TM3, which is homologous to W86 of bacteriorhodopsin (BR), is highly conserved among microbial rhodopsins with various light-driven functions. However, the significance of this Trp for the ion transport function of microbial rhodopsins has long remained unknown. Here, we replaced the W163 (BR W86 counterpart) of a channelrhodopsin (ChR), C1C2/ChRWR, which is a chimera between ChR1 and 2, with a smaller aromatic residue, Phe to verify its role in the ion transport. Under whole-cell patch clamp recordings from the ND7/23 cells that were transfected with the DNA plasmid coding human codon optimized C1C2/ChRWR (hWR) or its W163F mutant (hWR-W163F), the photocurrents were evoked by a pulsatile light at 475 nm. The ion-transporting activity of hWR was strongly altered by the W163F mutation in 3 points: (1) the H+ leak at positive membrane potential (Vm) and its light-adaptation, (2) the attenuation of cation channel activity and (3) the manifestation of outward H+ pump activity. All of these results strongly suggest that W163 has a role in stabilizing the structure involved in the gating-on and -off of the cation channel, the role of “gate keeper”. We can attribute the attenuation of cation channel activity to the incomplete gating-on and the H+ leak to the incomplete gating-off.
Collapse
Affiliation(s)
- Yujiro Nagasaka
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Naoko Kubo
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Hiromu Yawo
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
20
|
Medrano-Soto A, Ghazi F, Hendargo KJ, Moreno-Hagelsieb G, Myers S, Saier MH. Expansion of the Transporter-Opsin-G protein-coupled receptor superfamily with five new protein families. PLoS One 2020; 15:e0231085. [PMID: 32320418 PMCID: PMC7176098 DOI: 10.1371/journal.pone.0231085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Here we provide bioinformatic evidence that the Organo-Arsenical Exporter (ArsP), Endoplasmic Reticulum Retention Receptor (KDELR), Mitochondrial Pyruvate Carrier (MPC), L-Alanine Exporter (AlaE), and the Lipid-linked Sugar Translocase (LST) protein families are members of the Transporter-Opsin-G Protein-coupled Receptor (TOG) Superfamily. These families share domains homologous to well-established TOG superfamily members, and their topologies of transmembranal segments (TMSs) are compatible with the basic 4-TMS repeat unit characteristic of this Superfamily. These repeat units tend to occur twice in proteins as a result of intragenic duplication events, often with subsequent gain/loss of TMSs in many superfamily members. Transporters within the ArsP family allow microbial pathogens to expel toxic arsenic compounds from the cell. Members of the KDELR family are involved in the selective retrieval of proteins that reside in the endoplasmic reticulum. Proteins of the MPC family are involved in the transport of pyruvate into mitochondria, providing the organelle with a major oxidative fuel. Members of family AlaE excrete L-alanine from the cell. Members of the LST family are involved in the translocation of lipid-linked glucose across the membrane. These five families substantially expand the range of substrates of transport carriers in the superfamily, although KDEL receptors have no known transport function. Clustering of protein sequences reveals the relationships among families, and the resulting tree correlates well with the degrees of sequence similarity documented between families. The analyses and programs developed to detect distant relatedness, provide insights into the structural, functional, and evolutionary relationships that exist between families of the TOG superfamily, and should be of value to many other investigators.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Faezeh Ghazi
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | | - Scott Myers
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Friedrich D, Brünig FN, Nieuwkoop AJ, Netz RR, Hegemann P, Oschkinat H. Collective exchange processes reveal an active site proton cage in bacteriorhodopsin. Commun Biol 2020; 3:4. [PMID: 31925324 PMCID: PMC6941954 DOI: 10.1038/s42003-019-0733-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
Proton translocation across membranes is vital to all kingdoms of life. Mechanistically, it relies on characteristic proton flows and modifications of hydrogen bonding patterns, termed protonation dynamics, which can be directly observed by fast magic angle spinning (MAS) NMR. Here, we demonstrate that reversible proton displacement in the active site of bacteriorhodopsin already takes place in its equilibrated dark-state, providing new information on the underlying hydrogen exchange processes. In particular, MAS NMR reveals proton exchange at D85 and the retinal Schiff base, suggesting a tautomeric equilibrium and thus partial ionization of D85. We provide evidence for a proton cage and detect a preformed proton path between D85 and the proton shuttle R82. The protons at D96 and D85 exchange with water, in line with ab initio molecular dynamics simulations. We propose that retinal isomerization makes the observed proton exchange processes irreversible and delivers a proton towards the extracellular release site. Daniel Friedrich et al. show that reversible proton translocation occurs in the dark–state of bacteriorhodopsin, involving the retinal Schiff base and D85 exchanging protons with H2O. They find evidence of an active site proton cage and possible proton transfer via R82.
Collapse
Affiliation(s)
- Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.,Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, 02215, USA
| | - Florian N Brünig
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Andrew J Nieuwkoop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Peter Hegemann
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115, Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.
| |
Collapse
|
22
|
Kataoka M, Kamikubo H. Mechanism of the light-driven proton pump of bacteriorhodopsin based on the consistency principle. Biophys Physicobiol 2019; 16:274-279. [PMID: 31984181 PMCID: PMC6976003 DOI: 10.2142/biophysico.16.0_274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
According to the consistency principle, a design principle for protein tertiary structures, all interactions that maintain a protein’s structure are consistent with each other. We assume that proteins satisfy the consistency principle. The specific local structures that form are consequences of the consistency principle. The specific local structures and the global conformation become interdependent. We assume that protein function is a consequence of the interdependency and the breaking of consistency. We applied this idea to the light-driven proton-pump mechanism of bacteriorhodopsin. Bacteriorhodopsin has two distinct conformers: one in which the proton channel opens toward the extracellular side, and another in which the channel opens toward the cytoplasmic side. Important reactions involved in proton pumping are protonation of D85 from the retinal Schiff base and reprotonation of the Schiff base from D96. To recruit a key water molecule, a characteristic pentameric hydrogen bond network is formed around the D85 and Schiff base, but is lost during proton pumping. These reaction components can be explained by active consistency-breaking and processes that either establish new consistency or restore the original consistency. Thus, the consistency principle can be expanded from structure to guide our understanding of protein function. This hypothesis is applicable to other functional proteins with two distinct conformers.
Collapse
Affiliation(s)
- Mikio Kataoka
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Hironari Kamikubo
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
23
|
Wickstrand C, Nogly P, Nango E, Iwata S, Standfuss J, Neutze R. Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. Annu Rev Biochem 2019; 88:59-83. [DOI: 10.1146/annurev-biochem-013118-111327] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directional transport of protons across an energy transducing membrane—proton pumping—is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all- trans retinal chromophore being photoisomerized to a 13- cis conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Przemyslaw Nogly
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
24
|
Dai G, Geng X, Chaoluomeng, Tamogami J, Kikukawa T, Demura M, Kamo N, Iwasa T. Photocycle of Sensory Rhodopsin II from Halobacterium salinarum (HsSRII): Mutation of D103 Accelerates M Decay and Changes the Decay Pathway of a 13-cis O-like Species. Photochem Photobiol 2018. [PMID: 29512821 DOI: 10.1111/php.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aspartic acid 103 (D103) of sensory rhodopsin II from Halobacterium salinarum (HsSRII, or also called phoborhodopsin) corresponds to D115 of bacteriorhodopsin (BR). This amino acid residue is functionally important in BR. This work reveals that a substitution of D103 with asparagine (D103N) or glutamic acid (D103E) can cause large changes in HsSRII photocycle. These changes include (1) shortened lifetime of the M intermediate in the following order: the wild-type > D103N > D103E; (2) altered decay pathway of a 13-cis O-like species. The 13-cis O-like species, tentatively named Px, was detected in HsSRII photocycle. Px appeared to undergo branched reactions at 0°C, leading to a recovery of the unphotolyzed state and formation of a metastable intermediate, named P370, that slowly decayed to the unphotolyzed state at room temperature. In wild-type HsSRII at 0°C, Px mainly decayed to the unphotolyzed state, and the decay reaction toward P370 was negligible. In mutant D103E at 0°C, Px decayed to P370, while the recovery of the unphotolyzed state became unobservable. In mutant D103N, the two reactions proceeded at comparable rates. Thus, D103 of HsSRII may play an important role in regulation of the photocycle of HsSRII.
Collapse
Affiliation(s)
- Gang Dai
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, 010018, China
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Chaoluomeng
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Jun Tamogami
- College of Pharmaceutical Science, Matsuyama University, Matsuyama, 790-8578, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| |
Collapse
|
25
|
Mizohata E, Nakane T, Fukuda Y, Nango E, Iwata S. Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology. Biophys Rev 2017; 10:209-218. [PMID: 29196935 DOI: 10.1007/s12551-017-0344-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200-50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50-1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.
Collapse
Affiliation(s)
- Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 OQH, UK
| | - Yohta Fukuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
26
|
Abstract
The 97 amino acid bitopic membrane protein M2 of influenza A forms a tetrameric bundle in which two of the monomers are covalently linked via a cysteine bridge. In its tetrameric assembly the protein conducts protons across the viral envelope and within intracellular compartments during the infectivity cycle of the virus. A key residue in the translocation of the protons is His-37 which forms a planar tetrad in the configuration of the bundle accepting and translocating the incoming protons from the N terminal side, exterior of the virus, to the C terminal side, inside the virus. With experimentally available data from NMR spectroscopy of the transmembrane domains of the tetrameric M2 bundle classical MD simulations are conducted with the protein bundle in different protonation stages in respect to His-37. A full correlation analysis (FCA) of the data sets with the His-37 tetrad either in a fully four times unprotonated or protonated state, assumed to mimic high and low pH in vivo, respectively, in both cases reveal asymmetric backbone dynamics. His-37 side chain rotation dynamics is increased at full protonation of the tetrad compared to the dynamics in the fully unprotonated state. The data suggest that proton translocation can be achieved by decoupled side chain or backbone dynamics. Graphical abstract Visualization of the tetrameric bundle of the transmembrane domains of M2 of influenza A after 200 ns of MD simulations (upper left). The four histidine residues 37 are either not protonated as in M20 or fully protonated is in M24+. The asymmetric dynamics of the backbones are shown after a full correlation analysis (FCA) in blue (lower left). The rotational dynamics of the χ2 dihedral angles of the histidines in M20 (upper right) are less than those in M24+ (lower right).
Collapse
Affiliation(s)
- Monoj Mon Kalita
- Institute of Biophotonics and Biophotonics & Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Nong St., Sec. 2, Taipei, 112, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics and Biophotonics & Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Nong St., Sec. 2, Taipei, 112, Taiwan.
| |
Collapse
|
27
|
Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review. Curr Microbiol 2017; 74:996-1002. [DOI: 10.1007/s00284-017-1271-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
28
|
Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, Kimura T, Tanaka T, Tono K, Song C, Tanaka R, Arima T, Yamashita A, Kobayashi J, Hosaka T, Mizohata E, Nogly P, Sugahara M, Nam D, Nomura T, Shimamura T, Im D, Fujiwara T, Yamanaka Y, Jeon B, Nishizawa T, Oda K, Fukuda M, Andersson R, Båth P, Dods R, Davidsson J, Matsuoka S, Kawatake S, Murata M, Nureki O, Owada S, Kameshima T, Hatsui T, Joti Y, Schertler G, Yabashi M, Bondar AN, Standfuss J, Neutze R, Iwata S. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 2016; 354:1552-1557. [DOI: 10.1126/science.aah3497] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/21/2016] [Indexed: 01/24/2023]
|
29
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
30
|
Scheiner S. Monitoring the Charge Distribution during Proton and Sodium Ion Conduction along Chains of Water Molecules and Protein Residues. Isr J Chem 2016. [DOI: 10.1002/ijch.201600062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry; Utah State University; Logan UT 84322-0300 USA
| |
Collapse
|
31
|
Szőke A, Hajdu J. Energy utilization in fluctuating biological energy converters. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:034701. [PMID: 27191009 PMCID: PMC4851624 DOI: 10.1063/1.4945792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/03/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
We have argued previously [Szoke et al., FEBS Lett. 553, 18-20 (2003); Curr. Chem. Biol. 1, 53-57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems.
Collapse
Affiliation(s)
- Abraham Szőke
- Lawrence Livermore National Laboratory , Livermore, California 94551, USA
| | - Janos Hajdu
- Department of Cell and Molecular Biology, Uppsala University , Box 596, S-75124 Uppsala, Sweden
| |
Collapse
|
32
|
Berbasova T, Santos EM, Nosrati M, Vasileiou C, Geiger JH, Borhan B. Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch. Chembiochem 2016; 17:407-14. [PMID: 26684483 PMCID: PMC4835339 DOI: 10.1002/cbic.201500613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Mutants of cellular retinoic acid-binding protein II (CRABPII), engineered to bind all-trans-retinal as an iminium species, demonstrate photochromism upon irradiation with light at different wavelengths. UV light irradiation populates the cis-imine geometry, which has a high pKa , leading to protonation of the imine and subsequent "turn-on" of color. Yellow light irradiation yields the trans-imine isomer, which has a depressed pKa , leading to loss of color because the imine is not protonated. The protein-bound retinylidene chromophore undergoes photoinduced reversible interconversion between the colored and uncolored species, with excellent fatigue resistance.
Collapse
Affiliation(s)
- Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Meisam Nosrati
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
33
|
|
34
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
35
|
Takemoto M, Kato HE, Koyama M, Ito J, Kamiya M, Hayashi S, Maturana AD, Deisseroth K, Ishitani R, Nureki O. Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening. PLoS One 2015; 10:e0131094. [PMID: 26114863 PMCID: PMC4482709 DOI: 10.1371/journal.pone.0131094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/28/2015] [Indexed: 11/25/2022] Open
Abstract
Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR.
Collapse
Affiliation(s)
- Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Hideaki E. Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Michio Koyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Jumpei Ito
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| | - Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Andrés D. Maturana
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| | - Karl Deisseroth
- Department of Bioengineering and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States of America
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
- * E-mail: (ON); (RI)
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
- * E-mail: (ON); (RI)
| |
Collapse
|
36
|
da Silva GFZ, Goblirsch BR, Tsai AL, Spudich JL. Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin. Biochemistry 2015; 54:3950-9. [PMID: 26037033 DOI: 10.1021/bi501386d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A recently discovered rhodopsin ion pump (DeNaR, also known as KR2) in the marine bacterium Dokdonia eikasta uses light to pump protons or sodium ions from the cell depending on the ionic composition of the medium. In cells suspended in a KCl solution, DeNaR functions as a light-driven proton pump, whereas in a NaCl solution, DeNaR conducts light-driven sodium ion pumping, a novel activity within the rhodopsin family. These two distinct functions raise the questions of whether the conformations of the protein differ in the presence of K(+) or Na(+) and whether the helical movements that result in the canonical E → C conformational change in other microbial rhodopsins are conserved in DeNaR. Visible absorption maxima of DeNaR in its unphotolyzed (dark) state show an 8 nm difference between Na(+) and K(+) in decyl maltopyranoside micelles, indicating an influence of the cations on the retinylidene photoactive site. In addition, electronic paramagnetic resonance (EPR) spectra of the dark states reveal repositioning of helices F and G when K(+) is replaced with Na(+). Furthermore, the conformational changes assessed by EPR spin-spin dipolar coupling show that the light-induced transmembrane helix movements are very similar to those found in bacteriorhodopsin but are altered by the presence of Na(+), resulting in a new feature, the clockwise rotation of helix F. The results establish the first observation of a cation switch controlling the conformations of a microbial rhodopsin and indicate specific interactions of Na(+) with the half-channels of DeNaR to open an appropriate path for ion translocation.
Collapse
Affiliation(s)
- Giordano F Z da Silva
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| | - Brandon R Goblirsch
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| | - Ah-Lim Tsai
- ‡Department of Internal Medicine, Division of Hematology, University of Texas Medical School, Houston, Texas 77030, United States
| | - John L Spudich
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| |
Collapse
|
37
|
Dynamic regulation of lipid-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1849-59. [PMID: 25666872 DOI: 10.1016/j.bbamem.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
Abstract
We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein-lipid interactions. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
|
38
|
Neutze R. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130318. [PMID: 24914150 PMCID: PMC4052859 DOI: 10.1098/rstb.2013.0318] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 1012 X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.
Collapse
Affiliation(s)
- Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
39
|
Ferrandez Y, Dezi M, Bosco M, Urvoas A, Valerio-Lepiniec M, Le Bon C, Giusti F, Broutin I, Durand G, Polidori A, Popot JL, Picard M, Minard P. Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J Membr Biol 2014; 247:925-40. [PMID: 25086771 DOI: 10.1007/s00232-014-9707-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed αReps, for "artificial alpha repeat protein") have been recently described. The stabilization and immobilization of MPs in a functional state are an absolute prerequisite for the screening of binders that recognize specifically their native conformation. We present here a general procedure for the selection of αReps specific of any MP. It relies on the use of biotinylated amphipols, which act as a universal "Velcro" to stabilize, and immobilize MP targets onto streptavidin-coated solid supports, thus doing away with the need to tag the protein itself.
Collapse
Affiliation(s)
- Yann Ferrandez
- Laboratoire de Modélisation et Ingénierie des Protéines, IBBMC UMR 8619, CNRS/Université Paris Sud, 91405, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eghiaian F, Rico F, Colom A, Casuso I, Scheuring S. High-speed atomic force microscopy: Imaging and force spectroscopy. FEBS Lett 2014; 588:3631-8. [DOI: 10.1016/j.febslet.2014.06.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
41
|
Wickstrand C, Dods R, Royant A, Neutze R. Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim Biophys Acta Gen Subj 2014; 1850:536-53. [PMID: 24918316 DOI: 10.1016/j.bbagen.2014.05.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacteriorhodopsin (bR) is the simplest known light driven proton pump and has been heavily studied using structural methods: eighty four X-ray diffraction, six electron diffraction and three NMR structures of bR are deposited within the protein data bank. Twenty one X-ray structures report light induced structural changes and changes induced by mutation, changes in pH, thermal annealing or X-ray induced photo-reduction have also been examined. SCOPE OF REVIEW We argue that light-induced structural changes that are replicated across several studies by independent research groups are those most likely to represent what is happening in reality. We present both internal distance matrix analyses that sort deposited bR structures into hierarchal trees, and difference Fourier analysis of deposited X-ray diffraction data. MAJOR CONCLUSIONS An internal distance matrix analysis separates most wild-type bR structures according to their different crystal forms, indicating how the protein's structure is influenced by crystallization conditions. A similar analysis clusters eleven studies of illuminated bR crystals as one branch of a hierarchal tree with reproducible movements of the extracellular portion of helix C towards helix G, and of the cytoplasmic portion of helix F away from helices A, B and G. All crystallographic data deposited for illuminated crystals show negative difference density on a water molecule (Wat402) that forms H-bonds to the retinal Schiff Base and two aspartate residues (Asp85, Asp212) in the bR resting state. Other recurring difference density features indicated reproducible side-chain, backbone and water molecule displacements. X-ray induced radiation damage also disorders Wat402 but acts via cleaving the head-groups of Asp85 and Asp212. GENERAL SIGNIFICANCE A remarkable level of agreement exists when deposited structures and crystallographic observations are viewed as a whole. From this agreement a unified picture of the structural mechanism of light-induced proton pumping by bR emerges. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Antoine Royant
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France; European Synchrotron Radiation Facility, F-38043 Grenoble, France.
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
42
|
|
43
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
44
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 808] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
45
|
Toliautas S, Macernis M, Sulskus J, Valkunas L. Solvent effect on the photo-induced proton transfer in 2-(N-methyl-α-iminoethyl)-phenol. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.10.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Wang W, Geiger JH, Borhan B. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength. Bioessays 2013; 36:65-74. [PMID: 24323922 DOI: 10.1002/bies.201300094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
47
|
Dynamic structural science: recent developments in time-resolved spectroscopy and X-ray crystallography. Biochem Soc Trans 2013; 41:1260-4. [DOI: 10.1042/bst20130125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To understand the mechanism of biological processes, time-resolved methodologies are required to investigate how functionality is linked to changes in molecular structure. A number of spectroscopic techniques are available that probe local structural rearrangements with high temporal resolution. However, for macromolecules, these techniques do not yield an overall high-resolution description of the structure. Time-resolved X-ray crystallographic methods exist, but, due to both instrument availability and stringent sample requirements, they have not been widely applied to macromolecular systems, especially for time resolutions below 1 s. Recently, there has been a resurgent interest in time-resolved structural science, fuelled by the recognition that both chemical and life scientists face many of the same challenges. In the present article, we review the current state-of-the-art in dynamic structural science, highlighting applications to enzymes. We also look to the future and discuss current method developments with the potential to widen access to time-resolved studies across discipline boundaries.
Collapse
|
48
|
Wang T, Facciotti MT, Duan Y. Schiff base switch II precedes the retinal thermal isomerization in the photocycle of bacteriorhodopsin. PLoS One 2013; 8:e69882. [PMID: 23922839 PMCID: PMC3726731 DOI: 10.1371/journal.pone.0069882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB) are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti) configuration to an extracellular facing (13-cis, 15-syn) configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal’s C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.
Collapse
Affiliation(s)
- Ting Wang
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Marc T. Facciotti
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MF); (YD)
| | - Yong Duan
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MF); (YD)
| |
Collapse
|
49
|
Cheng CY, Han S. Dynamic Nuclear Polarization Methods in Solids and Solutions to Explore Membrane Proteins and Membrane Systems. Annu Rev Phys Chem 2013; 64:507-32. [DOI: 10.1146/annurev-physchem-040412-110028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| |
Collapse
|
50
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|