1
|
Pore-former enabled seeding of tau in rats: Alleviation by memantine and lithium chloride. J Neurosci Methods 2019; 319:47-59. [DOI: 10.1016/j.jneumeth.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
|
2
|
APS8 Delays Tumor Growth in Mice by Inducing Apoptosis of Lung Adenocarcinoma Cells Expressing High Number of α7 Nicotinic Receptors. Mar Drugs 2018; 16:md16100367. [PMID: 30282908 PMCID: PMC6213019 DOI: 10.3390/md16100367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 01/03/2023] Open
Abstract
The alkylpyridinium polymer APS8, a potent antagonist of α7 nicotinic acetylcholine receptors (nAChRs), selectively induces apoptosis in non-small cell lung cancer cells but not in normal lung fibroblasts. To explore the potential therapeutic value of APS8 for at least certain types of lung cancer, we determined its systemic and organ-specific toxicity in mice, evaluated its antitumor activity against adenocarcinoma xenograft models, and examined the in-vitro mechanisms of APS8 in terms of apoptosis, cytotoxicity, and viability. We also measured Ca2+ influx into cells, and evaluated the effects of APS8 on Ca2+ uptake while siRNA silencing of the gene for α7 nAChRs, CHRNA7. APS8 was not toxic to mice up to 5 mg/kg i.v., and no significant histological changes were observed in mice that survived APS8 treatment. Repetitive intratumoral injections of APS8 (4 mg/kg) significantly delayed growth of A549 cell tumors, and generally prevented regrowth of tumors, but were less effective in reducing growth of HT29 cell tumors. APS8 impaired the viability of A549 cells in a dose-dependent manner and induced apoptosis at micro molar concentrations. Nano molar APS8 caused minor cytotoxic effects, while cell lysis occurred at APS8 >3 µM. Furthermore, Ca2+ uptake was significantly reduced in APS8-treated A549 cells. Observed differences in response to APS8 can be attributed to the number of α7 nAChRs expressed in these cells, with those with more AChRs (i.e., A549 cells) being more sensitive to nAChR antagonists like APS8. We conclude that α7 nAChR antagonists like APS8 have potential to be used as therapeutics for tumors expressing large numbers of α7 nAChRs.
Collapse
|
3
|
O'Rourke A, Kremb S, Duggan BM, Sioud S, Kharbatia N, Raji M, Emwas AH, Gerwick WH, Voolstra CR. Identification of a 3-Alkylpyridinium Compound from the Red Sea Sponge Amphimedon chloros with In Vitro Inhibitory Activity against the West Nile Virus NS3 Protease. Molecules 2018; 23:E1472. [PMID: 29912151 PMCID: PMC6099703 DOI: 10.3390/molecules23061472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Viruses are underrepresented as targets in pharmacological screening efforts, given the difficulties of devising suitable cell-based and biochemical assays. In this study we found that a pre-fractionated organic extract of the Red Sea sponge Amphimedon chloros was able to inhibit the West Nile Virus NS3 protease (WNV NS3). Using liquid chromatography⁻mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy, the identity of the bioactive compound was determined as a 3-alkylpyridinium with m/z = 190.16. Diffusion Ordered Spectroscopy (DOSY) NMR and NMR relaxation rate analysis suggest that the bioactive compound forms oligomers of up to 35 kDa. We observed that at 9.4 μg/mL there was up to 40⁻70% inhibitory activity on WNV NS3 protease in orthogonal biochemical assays for solid phase extracts (SPE) of A. chloros. However, the LC-MS purified fragment was effective at inhibiting the protease up to 95% at an approximate amount of 2 µg/mL with negligible cytotoxicity to HeLa cells based on a High-Content Screening (HCS) cytological profiling strategy. To date, 3-alkylpyridinium type natural products have not been reported to show antiviral activity since the first characterization of halitoxin, or 3-alkylpyridinium, in 1978. This study provides the first account of a 3-alkylpyridinium complex that exhibits a proposed antiviral activity by inhibiting the NS3 protease. We suggest that the here-described compound can be further modified to increase its stability and tested in a cell-based assay to explore its full potential as a potential novel antiviral capable of inhibiting WNV replication.
Collapse
Affiliation(s)
- Aubrie O'Rourke
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Stephan Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Brendan M Duggan
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Salim Sioud
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - Najeh Kharbatia
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - Misjudeen Raji
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - William H Gerwick
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Sowmiah S, Esperança JMSS, Rebelo LPN, Afonso CAM. Pyridinium salts: from synthesis to reactivity and applications. Org Chem Front 2018. [DOI: 10.1039/c7qo00836h] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the pyridinium salts in terms of their natural occurrence, synthesis, reactivity, biological properties, and diverse applications.
Collapse
Affiliation(s)
- Subbiah Sowmiah
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - José M. S. S. Esperança
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
- LAQV-REQUIMTE
| | - Luís P. N. Rebelo
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
- LAQV-REQUIMTE
| | - Carlos A. M. Afonso
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-009 Lisboa
- Portugal
| |
Collapse
|
5
|
Natural polymeric 3-alkylpyridinium salt affects vertebrate skeletal muscle contractility by preferentially blocking neuromuscular transmission. Toxicol Lett 2017; 281:95-101. [DOI: 10.1016/j.toxlet.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
|
6
|
Koss DJ, Robinson L, Mietelska-Porowska A, Gasiorowska A, Sepčić K, Turk T, Jaspars M, Niewiadomska G, Scott RH, Platt B, Riedel G. Polymeric alkylpyridinium salts permit intracellular delivery of human Tau in rat hippocampal neurons: requirement of Tau phosphorylation for functional deficits. Cell Mol Life Sci 2015; 72:4613-32. [PMID: 26070304 PMCID: PMC11113860 DOI: 10.1007/s00018-015-1949-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/13/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
Abstract
Patients suffering from tauopathies including frontotemporal dementia (FTD) and Alzheimer's disease (AD) present with intra-neuronal aggregation of microtubule-associated protein Tau. During the disease process, Tau undergoes excessive phosphorylation, dissociates from microtubules and aggregates into insoluble neurofibrillary tangles (NFTs), accumulating in the soma. While many aspects of the disease pathology have been replicated in transgenic mouse models, a region-specific non-transgenic expression model is missing. Complementing existing models, we here report a novel region-specific approach to modelling Tau pathology. Local co-administration of the pore-former polymeric 1,3-alkylpyridinium salts (Poly-APS) extracted from marine sponges, and synthetic full-length 4R recombinant human Tau (hTau) was performed in vitro and in vivo. At low doses, Poly-APS was non-toxic and cultured cells exposed to Poly-APS (0.5 µg/ml) and hTau (1 µg/ml; ~22 µM) had normal input resistance, resting-state membrane potentials and Ca(2+) transients induced either by glutamate or KCl, as did cells exposed to a low concentration of the phosphatase inhibitor Okadaic acid (OA; 1 nM, 24 h). Combined hTau loading and phosphatase inhibition resulted in a collapse of the membrane potential, suppressed excitation and diminished glutamate and KCl-stimulated Ca(2+) transients. Stereotaxic infusions of Poly-APS (0.005 µg/ml) and hTau (1 µg/ml) bilaterally into the dorsal hippocampus at multiple sites resulted in hTau loading of neurons in rats. A separate cohort received an additional 7-day minipump infusion of OA (1.2 nM) intrahippocampally. When tested 2 weeks after surgery, rats treated with Poly-APS+hTau+OA presented with subtle learning deficits, but were also impaired in cognitive flexibility and recall. Hippocampal plasticity recorded from slices ex vivo was diminished in Poly-APS+hTau+OA subjects, but not in other treatment groups. Histological sections confirmed the intracellular accumulation of hTau in CA1 pyramidal cells and along their processes; phosphorylated Tau was present only within somata. This study demonstrates that cognitive, physiological and pathological symptoms reminiscent of tauopathies can be induced following non-mutant hTau delivery into CA1 in rats, but functional consequences hinge on increased Tau phosphorylation. Collectively, these data validate a novel model of locally infused recombinant hTau protein as an inducer of Tau pathology in the hippocampus of normal rats; future studies will provide insights into the pathological spread and maturation of Tau pathology.
Collapse
Affiliation(s)
- Dave J Koss
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
- Behavioural Neuroscience Core Facility, Division of Neuroscience, University of Dundee, Dundee, UK
| | | | - Anna Gasiorowska
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Mossakowski Medical Research Centre, Warsaw, Poland
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marcel Jaspars
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, UK
| | - Grazyna Niewiadomska
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roderick H Scott
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Bettina Platt
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Gernot Riedel
- School of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK.
| |
Collapse
|
7
|
Grandič M, Frangež R. Pathophysiological effects of synthetic derivatives of polymeric alkylpyridinium salts from the marine sponge, Reniera sarai. Mar Drugs 2014; 12:2408-21. [PMID: 24796301 PMCID: PMC4052297 DOI: 10.3390/md12052408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
Polymeric 3-alkylpyridinium salts (poly-APS) are among the most studied natural bioactive compounds extracted from the marine sponge, Reniera sarai. They exhibit a wide range of biological activities, and the most prominent among them are the anti-acetylcholinesterase and membrane-damaging activity. Due to their membrane activity, sAPS can induce the lysis of various cells and cell lines and inhibit the growth of bacteria and fungi. Because of their bioactivity, poly-APS are possible candidates for use in the fields of medicine, pharmacy and industry. Due to the small amounts of naturally occurring poly-APS, methods for the synthesis of analogues have been developed. They differ in chemical properties, such as the degree of polymerization, the length of the alkyl chains (from three to 12 carbon atoms) and in the counter ions present in their structures. Such structurally defined analogues with different chemical properties and degrees of polymerization possess different levels of biological activity. We review the current knowledge of the biological activity and toxicity of synthetic poly-APS analogues, with particular emphasis on the mechanisms of their physiological and pharmacological effects and, in particular, the mechanisms of toxicity of two analogues, APS12-2 and APS3, in vivo and in vitro.
Collapse
Affiliation(s)
- Marjana Grandič
- Institute for Hygiene and Pathology of Animal Nutrition, Veterinary Faculty, University of Ljubljana, Cesta v Mestni log 47, Ljubljana 1000, Slovenia.
| | - Robert Frangež
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana 1000, Slovenia.
| |
Collapse
|
8
|
Grandič M, Aráoz R, Molgó J, Turk T, Sepčić K, Benoit E, Frangež R. Toxicity of the synthetic polymeric 3-alkylpyridinium salt (APS3) is due to specific block of nicotinic acetylcholine receptors. Toxicology 2012; 303:25-33. [PMID: 23146756 DOI: 10.1016/j.tox.2012.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
The in vivo and in vitro toxic effects of the synthetic polymeric 3-alkylpyridinium salt (APS3), from the Mediterranean marine sponge Reniera sarai, were evaluated on mammals, with emphasis to determine its mode of action. The median lethal doses of APS3 were 7.25 and higher that 20mg/kg in mouse and rat, respectively. Intravenous administration of 7.25 and 20mg/kg APS3 to rat caused a significant fall followed by an increase in mean arterial blood pressure accompanied by tachycardia. In addition, cumulative doses of APS3 (up to 60 mg/kg) inhibited rat nerve-evoked skeletal muscle contraction in vivo, with a median inhibitory dose (ID(50)) of 37.25mg/kg. When administrated locally by intramuscular injection to mouse, APS3 decreased the compound muscle action potential recorded in response to in vivo nerve stimulation, with an ID(50) of 0.5mg/kg. In vitro experiments confirmed the inhibitory effect of APS3 on mouse hemidiaphragm nerve-evoked muscle contraction with a median inhibitory concentration (IC(50)) of 20.3 μM, without affecting directly elicited muscle contraction. The compound inhibited also miniature endplate potentials and nerve-evoked endplate potentials with an IC(50) of 7.28 μM in mouse hemidiaphragm. Finally, APS3 efficiently blocked acetylcholine-activated membrane inward currents flowing through Torpedo nicotinic acetylcholine receptors (nAChRs) incorporated to Xenopus oocytes, with an IC(50) of 0.19 μM. In conclusion, our results strongly suggest that APS3 blocks muscle-type nAChRs, and show for the first time that in vivo toxicity of APS3 is likely to occur through an antagonist action of the compound on these receptors.
Collapse
Affiliation(s)
- Marjana Grandič
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
9
|
Pozzi D, Marchini C, Cardarelli F, Amenitsch H, Garulli C, Bifone A, Caracciolo G. Transfection efficiency boost of cholesterol-containing lipoplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2335-43. [DOI: 10.1016/j.bbamem.2012.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
10
|
Cardiovascular effects induced by polymeric 3-alkylpyridinium salts from the marine sponge Reniera sarai. Toxicon 2012; 60:1041-8. [PMID: 22846421 DOI: 10.1016/j.toxicon.2012.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 07/08/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
Water-soluble polymeric 3-alkylpyridinum salts (poly-APS), isolated from the marine sponge Reniera sarai, are natural products with promising biomedical applications. However, their ability to form non-specific cell membrane pores raises safety issues. Therefore, the aim of the present study was to investigate the direct toxic effects of poly-APS on the cardiovascular system. To study the impact of poly-APS toxicodynamics on vascular function, the relaxation and contraction responses of isolated rat thoracic aortas incubated in poly-APS solutions (0.01-10 μM) were tested. In addition, cardiac toxicity was studied by measuring coronary flow, lactate dehydrogenase release rate, left ventricular pressure, heart rate, and the duration of arrhythmias in isolated rat hearts perfused with poly-APS (0.001-1 μM). Poly-APS diminished endothelium-dependent relaxation and contraction in a concentration- and time-dependent manner. Endothelial function was affected earlier and to a greater extent than contractile responses. Likewise, in isolated hearts the most evident cardiotoxic effects were observed after perfusion with the highest concentration (1 μM) of poly-APS: compared to the control group the coronary flow and heart rate were diminished by 2.2- and 1.8-fold, while lactate dehydrogenase release rate and left ventricular pressure were increased by 7.8- and 2.2-fold (all P < 0.001). Further, poly-APS had evident proarrhythmogenic activity in a concentration-dependent manner. However, in the low concentration range (1-10 nM) poly-APS showed only minor toxicity. Our results confirmed the direct toxic effects of poly-APS on the rat cardiovascular system. Therefore, it seems reasonable to conclude that the use of poly-APS as therapeutic adjuvants has limited safety margins.
Collapse
|
11
|
Grandič M, Zovko A, Frangež R, Turk T, Sepčić K. Binding and permeabilization of lipid bilayers by natural and synthetic 3-alkylpyridinium polymers. Bioorg Med Chem 2012; 20:1659-64. [PMID: 22325153 DOI: 10.1016/j.bmc.2012.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 11/29/2022]
Abstract
Naturally occurring 3-alkylpyridinium polymers from the marine sponge Reniera sarai are membrane-active compounds exerting a selective cytotoxicity towards non small cell lung cancer cells, and stable transfection of nucleated mammalian cells. In view of their possible use as chemotherapeutics and/or transfection tools, three poly-APS based synthetic compounds were tested on their activity using natural and artificial lipid membranes. The tested compounds were found to be very stable over a wide range of temperature, ionic strength, and pH, and to prefer the solid-ordered membrane state. Their membrane-damaging activity increases with the length of their alkyl chains and the degree of polymerization.
Collapse
Affiliation(s)
- Marjana Grandič
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
12
|
Grandič M, Sepčić K, Turk T, Juntes P, Frangež R. In vivo toxic and lethal cardiovascular effects of a synthetic polymeric 1,3-dodecylpyridinium salt in rodents. Toxicol Appl Pharmacol 2011; 255:86-93. [PMID: 21704644 DOI: 10.1016/j.taap.2011.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/23/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
APS12-2 is one in a series of synthetic analogs of the polymeric alkylpyridinium salts isolated from the marine sponge Reniera sarai. As it is a potential candidate for treating non small cell lung cancer (NSCLC), we have studied its possible toxic and lethal effects in vivo. The median lethal dose (LD(50)) of APS12-2 in mice was determined to be 11.5mg/kg. Electrocardiograms, arterial blood pressure and respiratory activity were recorded under general anesthesia in untreated, pharmacologically vagotomized and artificially ventilated rats injected with APS12-2. In one group, the in vivo effects of APS12-2 were studied on nerve-evoked muscle contraction. Administration of APS12-2 at a dose of 8mg/kg caused a progressive reduction of arterial blood pressure to a mid-circulatory value, accompanied by bradycardia, myocardial ischemia, ventricular extrasystoles, and second degree atrio-ventricular block. Similar electrocardiogram and arterial blood pressure changes caused by APS12-2 (8mg/kg) were observed in animals pretreated with atropine and in artificially ventilated animals, indicating that hypoxia and cholinergic effects do not play a crucial role in the toxicity of APS12-2. Application of APS12-2 at sublethal doses (4 and 5.5mg/kg) caused a decrease of arterial blood pressure, followed by an increase slightly above control values. We found that APS12-2 causes lysis of rat erythrocytes in vitro, therefore it is reasonable to expect the same effect in vivo. Indeed, hyperkalemia was observed in the blood of experimental animals. Hyperkalemia probably plays an important role in APS12-2 cardiotoxicity since no evident changes in histopathology of the heart were found. However, acute lesions were observed in the pulmonary vessels of rats after application of 8mg/kg APS12-2. Predominant effects were dilation of interalveolar blood vessels and lysis of aggregated erythrocytes within their lumina.
Collapse
Affiliation(s)
- Marjana Grandič
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
13
|
Houssen WE, Lu Z, Edrada-Ebel R, Chatzi C, Tucker SJ, Sepčić K, Turk T, Zovko A, Shen S, Mancini I, Scott RH, Jaspars M. Chemical synthesis and biological activities of 3-alkyl pyridinium polymeric analogues of marine toxins. J Chem Biol 2010; 3:113-25. [PMID: 21326630 DOI: 10.1007/s12154-010-0036-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022] Open
Abstract
UNLABELLED Two new large poly-1,3-dodecylpyridinium salts, APS12 and APS12-2 of 12.5- and 14.7-kDa size, respectively, were synthesised and tested for their pore-forming and transfection capabilities in HEK 293 and undifferentiated mouse ES cells using patch-clamp recording, Ca(2+) imaging and flow cytometry. Polymerisation reactions were enhanced by microwaves, and the product sizes were controlled by altering the irradiation time. This method can also be applied to obtain polymers with variable linking chains as shown by the preparation of poly-(1,3-octylpyridinium) salt of 11.9-kDa size. Molecular weights of the final products were determined using ESIMS analysis, which also indicated the products to be amongst the largest macro-cycles ever recorded, up to a 900-membered ring. Anti-bacterial, haemolytic and anti-acetylcholinesterase activities were also reported for the two dodecyl pyridinium polymers. These biological activities are characteristic to the structurally related marine toxin, poly-APS. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s12154-010-0036-4) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Abstract
Marine sponges and corals are widely recognized as rich sources of novel bioactive natural products. These organisms are frequently colonized by bacteria. Some of these bacteria can be pathogenic or serve as beneficial symbionts. Therefore, these organisms need to regulate the bacteria they encounter and resist microbial pathogens. One method is by chemical defense. Antimicrobial assays performed with extracts of 23 Red Sea corals and sponges against bacteria isolated from their natural environment revealed considerable variability in antimicrobial activity. Soft corals exhibited appreciable activity; sponges showed variability, and stony corals had little or no activity. Among the soft corals, Xenia macrospiculata exhibited the highest activity. Bioassay-directed fractionation of the extract indicated that the activity was due to a range of compounds, one of which was isolated and identified as the diterpene desoxyhavannahine. Among the sponges, Amphimedon chloros exhibited strong activity. Bioassay-directed fractionation resulted in the isolation of the pyridinium alkaloid antibiotics, the halitoxins and amphitoxins. These compounds showed selective activity against specific bacteria, rather than being broad-spectrum. They were highly active against seawater bacteria, whereas bacteria associated with the sponge were resistant. This selective toxicity may be important in enabling certain bacteria to live in close association with their sponge host while it maintains a chemical defense against microbial pathogenesis. The halitoxin-resistant bacteria were identified by 16S rRNA gene analysis as Alphaproteobacteria, closely related to other Alphaproteobacteria isolated from various marine sponges. The study of microbial communities associated with sponges and corals has important implications for the production of symbiont-derived bioactive compounds and for the use of corals and sponges as source material for microbial diversity in screening programs for natural products.
Collapse
|
15
|
Zhu L, Lu Y, Miller DD, Mahato RI. Structural and formulation factors influencing pyridinium lipid-based gene transfer. Bioconjug Chem 2009; 19:2499-512. [PMID: 19053309 DOI: 10.1021/bc8004039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of pyridinium lipids containing a heterocyclic ring and a nitrogen atom were synthesized to determine the structure-activity relationship for gene delivery. Pyrylium chloroaluminate was synthesized by monoacylation of mesityl oxide and converted into pyrylium hexafluorophosphate, which was used as the key intermediate for reaction with different primary amines, to yield hydroxyethylpyridinium hexafluorophosphate and aminoethylpyridinium hexafluorophosphate. Acylation of these pyridinium salts with different types of fatty acid chlorides afforded the final pyridinium lipids, which were mixed with a co-lipid, such as L-alpha-dioleoylphosphatidylethanolamine (DOPE) and cholesterol (Chol) to prepare cationic liposomes by sonication. These liposomes were mixed with plasmid DNA encoding enhanced green fluorescent protein (pCMS-EGFP) or luciferase (pcDNA3-Luc) and transfected into Chinese hamster ovary (CHO) cells. Several factors including hydrophobic anchor chain length, anchor chain type, configuration of double bond, linker type, co-lipid type, cationic lipid/co-lipid molar ratio, charge ratio (N/P), and cell type had significant influence on transfection efficiency and cytotoxicity. Pyridinium lipids with amide linker showed significantly higher transfection efficiency compared to their ester counterparts. Liposomes prepared at a 1:1 molar ratio of pyridinium lipid and co-lipid showed higher transfection efficiency when either DOPE or cholesterol was used as a co-lipid to prepare cationic liposomes for complex formation with plasmid DNA at 3:1(+/-) charge ratio. Pyridinium liposomes based on a hydrophobic anchor chain length of 16 showed higher transfection efficiency and lower cytotoxicity. The pyridinium lipid with a trans-configuration of the double bond in the fatty acid chain showed higher transfection efficiency than its counterpart with cis-configuration at the same fatty acid chain length. In the presence of serum, C16:0 and Lipofectamine significantly decreased their transfection efficiencies, which were completely lost at a serum concentration of 30% and higher, while C16:1 trans-isomer still had high transfection efficiency under these conditions. In conclusion, pyridinium lipids showed high transfection efficiency and have the potential to be used as transfection reagents in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Zhu
- University of Tennessee Health Science Center, Memphis, Tennessee 38103-3308, USA
| | | | | | | |
Collapse
|
16
|
Elersek T, Kosi G, Turk T, Pohleven F, Sepcic K. Influence of polymeric 3-alkylpyridinium salts from the marine sponge Reniera sarai on the growth of algae and wood decay fungi. BIOFOULING 2008; 24:137-143. [PMID: 18274962 DOI: 10.1080/08927010801935745] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai act as antifouling and anticholinesterase agents. They also show moderate haemolytic and cytotoxic activities against different cell lines. The haemolytic activity of poly-APS is due to their detergent-like structure and behaviour in aqueous solutions. In this work, the lytic activity of poly-APS against freshwater and marine algae, and inhibitory effects on wood decay fungi, were investigated. The results show that poly-APS inhibit the proliferation and movements of susceptible algae. Effects of poly-APS were time- and concentration-dependent and differed between various algal species. No growth inhibition effects were observed towards the examined wood fungi.
Collapse
Affiliation(s)
- Tina Elersek
- National Institute of Biology, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
17
|
3-Akylpyridinium and 3-Alkylpyridine Compounds from Marine Sponges, Their Synthesis, Biological Activities and Potential Use. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1572-5995(08)80009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Affiliation(s)
- Parag Madaan
- Department of Oil and Paint Technology, Harcourt Butler Technological Institute
| | - Vinod K. Tyagi
- Department of Oil and Paint Technology, Harcourt Butler Technological Institute
| |
Collapse
|
19
|
Timm C, Volk C, Sasse F, Köck M. The first cyclic monomeric 3-alkylpyridinium alkaloid from natural sources: identification, synthesis, and biological activity. Org Biomol Chem 2008; 6:4036-40. [DOI: 10.1039/b808647h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Mechanisms of Toxicity of 3-Alkylpyridinium Polymers from Marine Sponge Reniera sarai. Mar Drugs 2007. [DOI: 10.3390/md504157] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT. Marine pharmacology in 2003-4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:553-81. [PMID: 17392033 PMCID: PMC2151674 DOI: 10.1016/j.cbpc.2007.01.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA.
| | | | | | | |
Collapse
|
22
|
A comparative study of the actions of alkylpyridinium salts from a marine sponge and related synthetic compounds in rat cultured hippocampal neurones. BMC Pharmacol 2007; 7:1. [PMID: 17274812 PMCID: PMC1797161 DOI: 10.1186/1471-2210-7-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 02/02/2007] [Indexed: 11/16/2022] Open
Abstract
Background Polymeric alkylpyridinium salts (poly-APS), are chemical defences produced by marine sponges including Reniera sarai. Poly-APS have previously been shown to effectively deliver macromolecules into cells. The efficiency of this closely follows the ability of poly-APS to form transient pores in membranes, providing strong support for a pore-based delivery mechanism. Recently, water soluble compounds have been synthesised that are structurally related to the natural polymers but bear a different number of pyridinium units. These compounds may share a number of bio-activities with poly-APS. Using electrophysiology, calcium imaging and 1,6-diphenyl-1,3,5-hexatriene imaging, the pore forming properties of poly-APS and four related synthetic oligomers have been tested on primary cultured rat hippocampal neurones. Results Acute application of poly-APS (0.5 μg/ml), reduced membrane potential, input resistance and suppressed action potential firing. Poly-APS evoked inward cation currents with linear current-voltage relationships similar to actions of pore formers on other cell types. Poly-APS (0.005–5 μg/ml) also produced Ca2+ transients in ~41% of neurones. The dose-dependence of poly-APS actions were complex, such that at 0.05 μg/ml and 5 μg/ml poly-APS produced varying magnitudes of membrane permeability depending on the order of application. Data from surface plasmon resonance analysis suggested accumulation of poly-APS in membranes and subsequent enhanced poly-APS binding. Even at 10–100 fold higher concentrations, none of the synthetic compounds produced changes in electrophysiological characteristics of the same magnitude as poly-APS. Of the synthetic oligomers tested compounds 1 (monomeric) and tetrameric 4 (5–50 μg/ml) induced small transient currents and 3 (trimeric) and 4 (tetrameric) produced significant Ca2+ transients in hippocampal neurones. Conclusion Poly-APS induced pore formation in hippocampal neurones and such pores were transient, with neurones recovering from exposure to these polymers. Synthetic structurally related oligomers were not potent pore formers when compared to poly-APS and affected a smaller percentage of the hippocampal neurone population. Poly-APS may have potential as agents for macromolecular delivery into CNS neurones however; the smaller synthetic oligomers tested in this study show little potential for such use. This comparative analysis indicated that the level of polymerisation giving rise to the supermolecular structure in the natural compounds, is likely to be responsible for the activity here reported.
Collapse
|
23
|
Temraz TA, Houssen WE, Jaspars M, Woolley DR, Wease KN, Davies SN, Scott RH. A pyridinium derivative from Red Sea soft corals inhibited voltage-activated potassium conductances and increased excitability of rat cultured sensory neurones. BMC Pharmacol 2006; 6:10. [PMID: 16824204 PMCID: PMC1538584 DOI: 10.1186/1471-2210-6-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/06/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole cell patch clamp recording and intracellular Ca2+ imaging were carried out on rat cultured dorsal root ganglion (DRG) neurones to characterize the actions of crude extracts and purified samples from Red Sea soft corals. The aim of the project was to identify compounds that would alter the excitability of DRG neurones. RESULTS Crude extracts of Sarcophyton glaucum and Lobophyton crassum attenuated spike frequency adaptation causing DRG neurones to switch from firing single action potentials to multiple firing. The increase in excitability was associated with enhanced KCl-evoked Ca2+ influx. The mechanism of action of the natural products in the samples from the soft corals involved inhibition of voltage-activated K+ currents. An active component of the crude marine samples was identified as 3-carboxy-1-methyl pyridinium (trigonelline). Application of synthetic 3-carboxy-1-methyl pyridinium at high concentration (0.1 mM) also induced multiple firing and reduced voltage-activated K+ current. The changes in excitability of DRG neurones induced by 3-carboxy-1-methyl pyridinium suggest that this compound contributes to the bioactivity produced by the crude extracts from two soft corals. CONCLUSION Sarcophyton glaucum and Lobophyton crassum contain natural products including 3-carboxy-1-methyl pyridinium that increase the excitability of DRG neurones. We speculate that in addition to developmental control and osmoregulation these compounds may contribute to chemical defenses.
Collapse
Affiliation(s)
- Tarek A Temraz
- Marine Science Department, Suez Canal University, Ismailia, Egypt
| | - Wael E Houssen
- Marine Natural Products Laboratory, Department of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, UK
| | - Marcel Jaspars
- Marine Natural Products Laboratory, Department of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, UK
| | - David R Woolley
- College of Medical Sciences, Institute of Medical Science, The University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| | - Kerrie N Wease
- College of Medical Sciences, Institute of Medical Science, The University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| | - Steven N Davies
- College of Medical Sciences, Institute of Medical Science, The University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| | - Roderick H Scott
- College of Medical Sciences, Institute of Medical Science, The University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| |
Collapse
|
24
|
McLaggan D, Adjimatera N, Sepčić K, Jaspars M, MacEwan DJ, Blagbrough IS, Scott RH. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA. BMC Biotechnol 2006; 6:6. [PMID: 16412248 PMCID: PMC1361793 DOI: 10.1186/1472-6750-6-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 01/16/2006] [Indexed: 11/24/2022] Open
Abstract
Background Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS), which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen)). DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Results Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12°C compared to 21°C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12°C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Conclusion Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.
Collapse
Affiliation(s)
- Debra McLaggan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Noppadon Adjimatera
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Veèna pot 111, 1000 Ljubljana, Slovenia
| | - Marcel Jaspars
- Marine Natural Products Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - David J MacEwan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Roderick H Scott
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
25
|
Volk CA, Köck M. Viscosaline: new 3-alkyl pyridinium alkaloid from the Arctic sponge Haliclona viscosa. Org Biomol Chem 2004; 2:1827-30. [PMID: 15227533 DOI: 10.1039/b403413a] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polycyclic pyridinium alkaloids are widely distributed in several sponges of the order Haplosclerida. So far, studies on Haliclona and related genera were mainly concentrated on warm or tropical waters. Here, we describe the chemical investigation of the Arctic sponge Haliclona viscosa and structure elucidation of the acyclic 1,3-dialkyl pyridinium alkaloid viscosaline. A novel structural motif of viscosaline is that beta-alanine is covalently bound to one alkyl chain.
Collapse
Affiliation(s)
- Christian A Volk
- Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | | |
Collapse
|