1
|
Vancuylenberg G, Sadeghpour A, Tyler AII, Rappolt M. From angular to round: in depth interfacial analysis of binary phosphatidylethanolamine mixtures in the inverse hexagonal phase. SOFT MATTER 2023; 19:8519-8530. [PMID: 37889160 DOI: 10.1039/d3sm01029e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Packing stress in the lipidic inverse hexagonal HII phase arises from the necessity of the ideally cylinder-shaped micelles to fill out the hexagonally-shaped Wigner-Seitz unit cell. Thus, hydrocarbon chains stretch towards the corners and compress in the direction of the flat side of the hexagonal unit cell. Additionally, the lipid/water interface deviates from being perfectly circular. To study this packing frustration in greater detail, we have doped 1-palmitoyl-2-oleoyl-sn-phosphatidylethanolamine (POPE) with increasing molar concentrations of 1,2-palmitoyl-sn-phosphatidylethanolamine (DPPE: 0 to 15 mol%). Due to its effectively longer hydrophobic tails, DPPE tends to aggregate in the corner regions of the unit cell, and thus, increases the circularity of the lipid/water interface. From small angle X-ray diffraction (SAXD) we determined electron density maps. Using those, we analysed the size, shape and homogeneity of the lipid/water interface as well as that of the methyl trough region. At 6 and 9 mol% DPPE the nanotubular water core most closely resembles a circle; further to this, in comparison to its neighbouring concentrations, the 9 mol% DPPE sample has the smallest water core area and smallest number of lipids per circumference, best alleviating the packing stress. Finally, a three-water layer model was applied, discerning headgroup, perturbed and free water, demonstrating that the hexagonal phase is most stable in the direction of the flat faces (compression zones) and least stable towards the vertices of the unit cell (decompression zones).
Collapse
Affiliation(s)
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Arwen I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
2
|
Influence of Humectants on the Thermotropic Behaviour and Nanostructure of Fully Hydrated Lecithin Bilayers. Chem Phys Lipids 2021; 243:105165. [PMID: 34971600 DOI: 10.1016/j.chemphyslip.2021.105165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
Humectants are used widely in topical formulations as they provide cosmetic and health benefits to skin. Of particular interest to our laboratories is the interaction of humectants in phospholipid based topical skin care formulations. This study probed the effects of three exemplary humectants on a fully hydrated lecithin system (DPPC) by use of X-ray scattering and differential scanning calorimetry. While the three humectants affected the nanostructure of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, bilayers in a similar manner; leading to an increased membrane order, differences in the effect on the thermal behaviour of DPPC suggest that betaine and sarcosine interacted via a different mechanism compared to acetic monoethanolamide, AMEA. At concentrations above 0.4M, betaine and sarcosine stabilised the gel phase by depletion of the interfacial water via the preferential exclusion mechanism. At the same time, a slight increase in the rigidity of the membrane was observed with an increase in the membrane thickness. Overall, the addition of betaine or sarcosine resulted in an increase in the pre- and main transition temperatures of DPPC. AMEA, on the other hand, decreases both transition temperatures and although the interlamellar water layer was also decreased, there was evidence from the altered lipid chain packing, that AMEA molecules are present also at the bilayer interface, at least at high concentrations. Above the melting point in the fluid lamellar phase, none of the humectants induced significant structural changes, neither concerning the bilayer stacking order nor its overall membrane fluidity.
Collapse
|
3
|
Bala R, Sindhu RK, Kaundle B, Madaan R, Cavalu S. The prospective of liquid crystals in nano formulations for drug delivery systems. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Huang Y, Gui S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv 2018; 8:6978-6987. [PMID: 35540315 PMCID: PMC9078419 DOI: 10.1039/c7ra12008g] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Lyotropic liquid crystals (LLCs) formed by the self-assembly of amphiphilic molecules in a solvent (usually water) have attracted increasingly greater attention in the last few decades, especially the lamellar phase (Lα), the reversed bicontinuous cubic phase (Q2) and the reversed hexagonal phase (H2). Such phases offer promising prospects for encapsulation of a wide range of target molecules with various sizes and polarities owing to the unique internal structures. Also, different structures of mesophases can give rise to different diffusion coefficients. The bicontinuous cubic phase and the hexagonal phase have been demonstrated to control and sustain the release of active molecules. Furthermore, the structures are susceptible to many factors such as water content, temperature, pH, the presence of additives etc. Many researchers have been studying these influencing factors in order to accurately fabricate the desired phase. In this paper, we give a review of the characteristics of different structures of liquid crystalline phases, the influencing factors on the phase transition of liquid crystals and the relationship between structures of LLC and drug diffusion. We hope our review will provide some insights into how to manipulate in a controlled manner the rate of incorporating and transferring molecules by altering the structure of lyotropic mesophases. Factors such as amphiphilic molecules , water content, temperature, pressure, light and magnetic field on the structures of LLCs.![]()
Collapse
Affiliation(s)
- Yiming Huang
- Department of Pharmacy
- Anhui University of Chinese Medicine
- Hefei
- China
| | - Shuangying Gui
- Department of Pharmacy
- Anhui University of Chinese Medicine
- Hefei
- China
- Institute of Pharmaceutics
| |
Collapse
|
5
|
Tenchov B, Koynova R. Cubic phases in phosphatidylethanolamine dispersions: Formation, stability and phase transitions. Chem Phys Lipids 2017; 208:65-74. [DOI: 10.1016/j.chemphyslip.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/13/2023]
|
6
|
Abstract
Liquid crystals have been recently studied as novel drug delivery system. The reason behind this is their similarity to colloidal systems in living organisms. They have proven to be advantageous over Traditional, Dermal, Parentral and Oral Dosage forms. Liquid crystals are thermodynamically stable and possess long shelf life. Liquid crystals show bio adhesive properties and sustained release effects. Objective of this book chapter is to provide in-depth information of Pharmaceutical crystal technology. It shall deal with cubic and hexagonal liquid crystal and their applications in Drug delivery system.
Collapse
|
7
|
Zabara A, Mezzenga R. Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases. J Control Release 2014; 188:31-43. [DOI: 10.1016/j.jconrel.2014.05.052] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/28/2022]
|
8
|
Chen Y, Ma P, Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. BIOMED RESEARCH INTERNATIONAL 2014; 2014:815981. [PMID: 24995330 PMCID: PMC4068036 DOI: 10.1155/2014/815981] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022]
Abstract
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed.
Collapse
Affiliation(s)
- Yulin Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Ping Ma
- Global Pharmaceutical Research and Development, Hospira Inc., 1776 North Centennial Drive, McPherson, KS 67460, USA
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
- Anhui Key Laboratory of Modern Chinese Medicine & Materia, Hefei, Anhui 230031, China
- Anhui “115” Xin'an Traditional Chinese Medicine Research & Development Innovation Team, Hefei, Anhui 230031, China
| |
Collapse
|
9
|
Hinz M, Stein A, Uncini T. APRESS: apical regulatory super system, serotonin, and dopamine interaction. Neuropsychiatr Dis Treat 2011; 6:1603-10. [PMID: 21857786 PMCID: PMC3157489 DOI: 10.2147/ijn.s22667] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND THE MONOAMINES SEROTONIN AND DOPAMINE ARE KNOWN TO EXIST IN TWO SEPARATE STATES: the endogenous state and the competitive inhibition state. The presence of the competitive inhibition state has been known to science for many years, but from a functional standpoint it has been noted in the literature as being "meaningless." METHODS A large database of monoamine transporter response to amino acid precursor administration variations with clinical outcomes was accumulated. In the process, a new organic cation transporter (OCT) model has been published, and OCT functional status determination along with amino acid precursor manipulation methods have been invented and refined. RESULTS Methodology was developed whereby manipulation of the OCT, in the competitive inhibition state, is carried out in a predictable manner. This, in turn, has disproved the long-held assertion that the monoamine competitive inhibition state is functionally meaningless. CONCLUSION The most significant aspect of this paper is the documentation of newly recognized relationships between serotonin and dopamine. When transport of serotonin and dopamine are both in the competitive inhibition state, manipulation of the concentrations of one will lead to predictable changes in concentrations of the other. From a functional standpoint, processes regulated and controlled by changes to only serotonin can now be controlled by changes to dopamine, and vice versa, in a predictable manner.
Collapse
Affiliation(s)
- Marty Hinz
- Clinical Research, NeuroResearch Clinics, Inc, Cape Coral, FL, USA
| | | | | |
Collapse
|
10
|
Tenchov BG, MacDonald RC, Siegel DP. Cubic phases in phosphatidylcholine-cholesterol mixtures: cholesterol as membrane "fusogen". Biophys J 2006; 91:2508-16. [PMID: 16829556 PMCID: PMC1562400 DOI: 10.1529/biophysj.106.083766] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray diffraction reveals that mixtures of some unsaturated phosphatidylcholines (PCs) with cholesterol (Chol) readily form inverted bicontinuous cubic phases that are stable under physiological conditions. This effect was studied in most detail for dioleoyl PC/Chol mixtures with molar ratios of 1:1 and 3:7. Facile formation of Im3m and Pn3m phases with lattice constants of 30-50 nm and 25-30 nm, respectively, took place in phosphate-buffered saline, in sucrose solution, and in water near the temperature of the Lalpha-HII transition of the mixtures, as well as during cooling of the HII phase. Once formed, the cubic phases displayed an ability to supercool and replace the initial Lalpha phase over a broad range of physiological temperatures. Conversion into stable cubic phases was also observed for mixtures of Chol with dilinoleoyl PC but not for mixtures with palmitoyl-linoleoyl PC or palmitoyl-oleoyl PC, for which only transient cubic traces were recorded at elevated temperatures. A saturated, branched-chain PC, diphytanoyl PC, also displayed a cubic phase in mixture with Chol. Unlike the PEs, the membrane PCs are intrinsically nonfusogenic lipids: in excess water they only form lamellar phases and not any of the inverted phases on their own. Thus, the finding that Chol induces cubic phases in mixtures with unsaturated PCs may have important implications for its role in fusion. In ternary mixtures, saturated PCs and sphingomyelin are known to separate into liquid-ordered domains along with Chol. Our results thus suggest that unsaturated PCs, which are excluded from these domains, could form fusogenic domains with Chol. Such a dual role of Chol may explain the seemingly paradoxical ability of cell membranes to simultaneously form rigid, low-curvature raft-like patches while still being able to undergo facile membrane fusion.
Collapse
Affiliation(s)
- Boris G Tenchov
- Northwestern University, Department of Biochemistry, Molecular Biology and Cell Biology, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
11
|
Urbán E, Bóta A, Kocsis B. Effect of Salmonella minnesota R595 LPS on the dipalmitoylphosphatidyl-ethanolamine (DPPE)–dipalmitoylglycerol (DPG)–water model membrane system. Chem Phys Lipids 2006; 140:28-35. [PMID: 16451797 DOI: 10.1016/j.chemphyslip.2006.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/31/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The effect of Salmonella minnesota R595 lipopolysaccharide (LPS) on model membrane consisting of a mixture of fully hydrated lipids (dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylglycerol (DPG)) was investigated by differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and freeze-fracture methods. The DPPE-DPG/water system forms a multilamellar arrangement in the gel phase which transforms into a mixture of inverted hexagonal and cubic structures. By the presence of LPS the thermotropic behaviour of the system was affected significantly only at its high concentration (1:1 mol/mol LPS/DPPE-DPG) in the gel phase, while above the chain melting transition the ratio of the inverted cubic and the hexagonal structures was changed and at the 1:1 mol/mol LPS/DPPE-DPG ratio a complex and amorphous phase was formed. The structural parameters of the inverted hexagonal and cubic phases are modified by the temperature and also by the LPS concentration, as deduced from the characteristic SAXS curves. Summarizing the effects of the LPS molecules on the DPPE-DPG/water vesicle system a schematic phase diagram was constructed.
Collapse
Affiliation(s)
- Edit Urbán
- Department of Physical Chemistry, Budapest University of Technology and Economics, Budafoki 8, H-1521 Budapest, Hungary
| | | | | |
Collapse
|
12
|
Wang Z, Zheng L, Inoue T. Effect of sucrose on the structure of a cubic phase formed from a monoolein/water mixture. J Colloid Interface Sci 2005; 288:638-41. [PMID: 15927636 DOI: 10.1016/j.jcis.2005.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 03/04/2005] [Accepted: 03/10/2005] [Indexed: 11/13/2022]
Abstract
The effect of sucrose on the structure of molecular assemblies formed in an MO/H2O mixture has been studied using a small-angle X-ray scattering method. It was found that the phase transition Ia3d --> Pn3m --> H(II) occurs with increased sucrose concentration in the mixture with the composition 70 wt% MO at 20 degrees C. This structural change induced by sucrose addition would be ascribed to a cosmotropic property of sucrose, which leads to the dehydration of the MO head group and hence causes a decrease in the effective area occupied by the MO molecule at the polar/apolar interface, which facilitates the formation of molecular assemblies with a high curvature for the reversed liquid-crystal mesophase.
Collapse
Affiliation(s)
- Zhining Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, People's Republic of China
| | | | | |
Collapse
|
13
|
Abstract
There is a growing awareness of the utility of lipid phase behavior data in studies of membrane-related phenomena. Such miscibility information is commonly reported in the form of temperature-composition (T-C) phase diagrams. The current index is a conduit to the relevant literature. It lists lipid phase diagrams, their components and conditions of measurement, and complete bibliographic information. The main focus of the index is on lipids of membrane origin where water is the dispersing medium. However, it also includes records on acylglycerols, fatty acids, cationic lipids, and detergent-containing systems. The miscibility of synthetic and natural lipids with other lipids, with water, and with biomolecules (proteins, nucleic acids, carbohydrates, etc.) and non-biological materials (drugs, anesthetics, organic solvents, etc.) is within the purview of the index. There are 2188 phase diagram records in the index, the bulk (81%) of which refers to binary (two-component) T-C phase diagrams. The remainder is made up of more complex (ternary, quaternary) systems, pressure-T phase diagrams, and other more exotic miscibility studies. The index covers the period from 1965 through to July, 2001.
Collapse
Affiliation(s)
- Rumiana Koynova
- Biochemistry, Biophysics, Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
14
|
Tenchov B, Koynova R, Rapp G. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids. Biophys J 2001; 80:1873-90. [PMID: 11259300 PMCID: PMC1301376 DOI: 10.1016/s0006-3495(01)76157-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Formation of low-temperature ordered gel phases in several fully hydrated phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) with saturated chains as well as in dipalmitoylphosphatidylglycerol (DPPG) was observed by synchrotron x-ray diffraction, microcalorimetry, and densitometry. The diffraction patterns recorded during slow cooling show that the gel-phase chain reflection cooperatively splits into two reflections, signaling a transformation of the usual gel phase into a more ordered phase, with an orthorhombic chain packing (the Y-transition). This transition is associated with a small decrease (2-4 microl/g) or inflection of the partial specific volume. It is fully reversible with the temperature and displays in heating direction as a small (0.1-0.7 kcal/mol) endothermic event. We recorded a Y-transition in distearoyl PE, dipalmitoyl PE (DPPE), mono and dimethylated DPPE, distearoyl PC, dipalmitoyl PC, diC(15)PC, and DPPG. No such transition exists in dimyristoyl PE and dilauroyl PE where the gel L(beta) phase transforms directly into subgel L(c) phase, as well as in the unsaturated dielaidoyl PE. The PE and PC low-temperature phases denoted L(R1) and SGII, respectively, have different hydrocarbon chain packing. The SGII phase is with tilted chains, arranged in an orthorhombic lattice of two-nearest-neighbor type. Except for the PCs, it was also registered in ionized DPPG. In the L(R1) phase, the chains are perpendicular to the bilayer plane and arranged in an orthorhombic lattice of four-nearest-neighbor type. It was observed in PEs and in protonated DPPG. The L(R1) and SGII phases are metastable phases, which may only be formed by cooling the respective gel L(beta) and L(beta') phases, and not by heating the subgel L(c) phase. Whenever present, they appear to represent an indispensable intermediate step in the formation of the latter phase.
Collapse
Affiliation(s)
- B Tenchov
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
15
|
Koynova R, Tenchov B, Rapp G. Effect of PEG-lipid conjugates on the phase behavior of phosphatidylethanolamine dispersions. Colloids Surf A Physicochem Eng Asp 1999. [DOI: 10.1016/s0927-7757(98)00294-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Tenchov B, Koynova R, Rappolt M, Rapp G. An ordered metastable phase in hydrated phosphatidylethanolamine: the Y-transition. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:183-90. [PMID: 10076046 DOI: 10.1016/s0005-2736(98)00259-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
By using time-resolved X-ray diffraction, differential scanning calorimetry and scanning densitometry, we observed rapid formation at low temperature of a metastable ordered phase, termed LR1 phase, in fully hydrated dihexadecylphosphatidylethanolamine (DHPE). The LR1 phase has the same lamellar repeat period as the gel Lbeta phase but differs from the latter in its more ordered, orthorhombic hydrocarbon chain arrangement. It forms at about 12 degrees C upon cooling and manifests itself as splitting of the sharp, symmetric wide-angle X-ray peak of the DHPE gel phase into two reflections. This transition, designated the 'Y-transition', is readily reversible and proceeds with almost no hysteresis between cooling and heating scans. Calorimetrically, the LR1-->Lbeta transition is recorded as a low-enthalpy (0.2 kcal/mol) endothermic event. The formation of the LR1 phase from the gel phase is associated with a small, about 2 microl/g, decrease of the lipid partial specific volume recorded by scanning densitometry, in agreement with a volume calculation based on the X-ray data. The formation of the equilibrium Lc phase was found to take place from within the LR1 phase. This appears to be the only observable pathway for crystallisation of DHPE upon low-temperature incubation. Once formed, the Lc phase of this lipid converts directly into Lbeta phase at 50 degrees C, skipping the LR1 phase. Thus, the LR1 phase of DHPE can only be entered by cooling of the gel Lbeta phase. The data disclose certain similarities between the low-temperature polymorphism of DHPE and that of long-chain normal alkanes.
Collapse
Affiliation(s)
- B Tenchov
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 21, 1113, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
17
|
Tenchov B, Koynova R, Rapp G. Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. Biophys J 1998; 75:853-66. [PMID: 9675186 PMCID: PMC1299759 DOI: 10.1016/s0006-3495(98)77574-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
By means of x-ray diffraction we show that several sodium salts and the disaccharides sucrose and trehalose strongly accelerate the formation of cubic phases in phosphatidylethanolamine (PE) dispersions upon temperature cycling through the lamellar liquid crystalline-inverted hexagonal (Lalpha-HII) phase transition. Ethylene glycol does not have such an effect. The degree of acceleration increases with the solute concentration. Such an acceleration has been observed for dielaidoyl PE (DEPE), dihexadecyl PE, and dipalmitoyl PE. It was investigated in detail for DEPE dispersions. For DEPE (10 wt% of lipid) aqueous dispersions at 1 M solute concentration, 10-50 temperature cycles typically result in complete conversion of the Lalpha phase into cubic phase. Most efficient is temperature cycling executed by laser flash T-jumps. In that case the conversion completes within 10-15 cycles. However, the cubic phases produced by laser T-jumps are less ordered in comparison to the rather regular cubic structures produced by linear, uniform temperature cycling at 10 degrees C/min. Temperature cycles at scan rates of 1-3 degrees C/min also induce the rapid formation of cubic phases. All solutes used induce the formation of Im3m (Q229) cubic phase in 10 wt% DEPE dispersions. The initial Im3m phases appearing during the first temperature cycles have larger lattice parameters that relax to smaller values with continuation of the cycling after the disappearance of the Lalpha phase. A cooperative Im3m --> Pn3m transition takes place at approximately 85 degrees C and transforms the Im3m phase into a mixture of coexisting Pn3m (Q224) and Im3m phases. The Im3m/Pn3m lattice parameter ratio is 1. 28, as could be expected from a representation of the Im3m and Pn3m phases with the primitive and diamond infinite periodic minimal surfaces, respectively. At higher DEPE contents ( approximately 30 wt%), cubic phase formation is hindered after 20-30 temperature cycles. The conversion does not go through, but reaches a stage with coexisting Ia3d (Q230) and Lalpha phases. Upon heating, the Ia3d phase cooperatively transforms into a mixture of, presumably, Im3m and Pn3m phases at about the temperature of the Lalpha-HII transition. This transformation is readily reversible with the temperature. The lattice parameters of the DEPE cubic phases are temperature-insensitive in the Lalpha temperature range and decrease with the temperature in the range of the HII phase.
Collapse
Affiliation(s)
- B Tenchov
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
18
|
Gutberlet T, Dietrich U, Klose G, Rapp G. X-Ray Diffraction Study of the Lamellar-Hexagonal Phase Transition in Phospholipid/Surfactant Mixtures. J Colloid Interface Sci 1998; 203:317-27. [PMID: 9705770 DOI: 10.1006/jcis.1998.5485] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lamellar-to-hexagonal phase transition of a phospholipid/ surfactant mixed system of 1-palmitoyl-2-oleoyl-sn-glycero-3phosphocholine (POPC) and oligo(ethylene oxide)dodecyl ethers of type C12H25O(CH2CH2O)2H(C12E2) in molar surfactant/phospholipid ratio (RS/L) of 2 at low hydration driven by temperature has been studied by X-ray diffraction. The Lbeta-HII phase transition is a reversible two-state process showing hysteresis at fast temperature scan rates. The obtained hexagonal phase exhibits a temperature dependent structural change. The numbers of bound water molecules per composite particle (WS+L) absorbed in the lamellar and hexagonal phases are nearly the same, changing from WS+L = 5.0 to 4.7 during the phase transition. The fluidity of the alkyl chains on increasing the temperature and the close packing of the hydrophilic molecular parts are the driving parameters of the lamellar-to-hexagonal transformation. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- T Gutberlet
- Institut für Experimentelle Physik I, Universität Leipzig, Linnéstrasse 5, Leipzig, D- 04103, Germany
| | | | | | | |
Collapse
|
19
|
Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr Opin Colloid Interface Sci 1998. [DOI: 10.1016/s1359-0294(98)80069-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Koynova R, Tenchov B, Rapp G. Low amounts of PEG-lipid induce cubic phase in phosphatidylethanolamine dispersions. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1326:167-70. [PMID: 9218547 DOI: 10.1016/s0005-2736(97)00067-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By using time-resolved X-ray diffraction we demonstrate that low amounts (5-10 mol%) of a phospholipid with two saturated hydrocarbon acyl chains 14 carbon atoms long and PEG550 chain covalently attached to its phosphoethanolamine polar head group, DMPE(PEG550), induce spontaneous formation of a cubic phase with lattice constant 20.5 nm (cubic aspect #8, space group Im3m) in aqueous dispersions of dielaidoylphosphatidylethanolamine (DEPE). This phase displays a highly resolved X-ray diffraction pattern with 17 low-angle reflections. The cubic phase was found to intrude in the temperature range between the lamellar liquid crystalline (L(alpha)) phase and the inverted hexagonal phase (H(II)) known to form in pure DEPE/water dispersions. A higher DMPE(PEG550) amount of 20 mol% was found to eliminate the non-lamellar phases in the temperature scale up to 100 degrees C. DMPE grafted with PEG5000 only shifts the L(alpha)-H(II) transition of DEPE to higher temperatures but does not promote formation of cubic phase. These findings indicate that, consistent with their bulky head groups, the PEG-lipids decrease the tendency for negative interfacial mean curvature of the DEPE bilayers.
Collapse
Affiliation(s)
- R Koynova
- Institute of Biophysics, Bulgarian Academy of Sciences, Sofia.
| | | | | |
Collapse
|