1
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
2
|
Wu S, Liu M, Hu X, He C, Zhao C, Xiang S, Zeng Y. Evaluation of pentaerythritol-based and trimethylolpropane-based cationic lipidic materials for gene delivery. Bioorg Med Chem Lett 2022; 62:128635. [PMID: 35202809 DOI: 10.1016/j.bmcl.2022.128635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The chemical and physical structure of cationic liposomes pays an important effect on their gene transfection efficiency. Investigation on the structure-function relationship of cationic liposomes will guide the design of novel cationic liposomes with high transfection efficiency and biosafety. In this paper, two novel series of lipids based on the backbone of pentaerythritol and trimethylolpropane were discovered, and their gene transfection efficiencies were assayed in vitro. The four lipids 8c, 9c, 14b, and 15b, exhibited much better transfection efficiency in the HEK293 cell lines compared with Lipo2000, lipid 9c also showed good transfection efficiency in the SW480 cell lines. And the structure-efficiency relationship revealed that a hydroxyethyl polar head group boosted transfer potency in trimethylolpropane-type lipids, but reduced in pentaerythritol-type lipids.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Meiyan Liu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Chengxi He
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Chunyan Zhao
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Youlin Zeng
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
3
|
Beg S, Almalki WH, Khatoon F, Alharbi KS, Alghamdi S, Akhter MH, Khalilullah H, Baothman AA, Hafeez A, Rahman M, Akhter S, Choudhry H. Lipid/polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines. Drug Discov Today 2021; 26:1891-1903. [PMID: 33610757 DOI: 10.1016/j.drudis.2021.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
Cancer vaccines consist of nucleic acid derivatives such as plasmid DNA, small interfering RNA and mRNA, and can be customized according to the patient's needs. Nanomedicines have proven to be exceptionally good as miniaturized drug carriers, and thus they offer great advantages for delivering cancer vaccines. This review provides an overview of the literature on cancer vaccines, from their inception to current developments in the field.
Collapse
Affiliation(s)
- Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Abdullah A Baothman
- Ministry of National Guard-Health Affairs, King Saud Bin Abdulaziz University for Health Science (KSAU-HS), King Abdullah International Medical Research Center (KAIMARC), Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Sahranpur, Uttar Pradesh, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Faculty of Health Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK; Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Sarkar S, Tran N, Soni SK, Nasa Z, Drummond CJ, Conn CE. Cuboplex-Mediated Nonviral Delivery of Functional siRNA to Chinese Hamster Ovary (CHO) Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2336-2345. [PMID: 33410653 DOI: 10.1021/acsami.0c20956] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipid nanoparticles of internal cubic symmetry, termed cuboplexes, are potential nonviral delivery vehicles for gene therapy due to their "topologically active" nature, which may enhance endosomal escape and improve delivery outcomes. In this study, we have used cationic cuboplexes, based on monoolein (MO) doped with a cationic lipid, for the encapsulation and delivery of antisense green fluorescent protein (GFP)-small interfering RNA (siRNA) into Chinese Hamster Ovary (CHO)-GFP cells. Agarose gel electrophoresis has confirmed the successful encapsulation of siRNA within cationic cubosomes, while synchrotron small-angle X-ray scattering (SAXS) demonstrated that the underlying cubic nanostructure of the particles was retained following encapsulation. The cationic cubosomes were shown to be reasonably nontoxic against the CHO-GFP cell line. Fluorescence-activated cell sorting (FACS) provided evidence of the successful transfection to CHO-GFP cells. Knockdown efficiency was strongly linked to the type of cationic lipid used, although all cubosomes had essentially the same internal nanostructure. The gene knockdown efficiency for some cationic cubosomes was shown to be higher than lipofectamine, which is a commercially available liposome-based formulation, while the controlled release of the siRNA from the cubosomes over a 72 h period was observed using confocal microscopy. This combination exemplifies the potential of cationic cuboplexes as a novel, nonviral, controlled-release delivery vector for siRNA.
Collapse
Affiliation(s)
- Sampa Sarkar
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Sarvesh Kumar Soni
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Zeyad Nasa
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Bruininks BM, Souza PC, Ingolfsson H, Marrink SJ. A molecular view on the escape of lipoplexed DNA from the endosome. eLife 2020; 9:52012. [PMID: 32297853 PMCID: PMC7170654 DOI: 10.7554/elife.52012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
The use of non-viral vectors for in vivo gene therapy could drastically increase safety, whilst reducing the cost of preparing the vectors. A promising approach to non-viral vectors makes use of DNA/cationic liposome complexes (lipoplexes) to deliver the genetic material. Here we use coarse-grained molecular dynamics simulations to investigate the molecular mechanism underlying efficient DNA transfer from lipoplexes. Our computational fusion experiments of lipoplexes with endosomal membrane models show two distinct modes of transfection: parallel and perpendicular. In the parallel fusion pathway, DNA aligns with the membrane surface, showing very quick release of genetic material shortly after the initial fusion pore is formed. The perpendicular pathway also leads to transfection, but release is slower. We further show that the composition and size of the lipoplex, as well as the lipid composition of the endosomal membrane, have a significant impact on fusion efficiency in our models.
Collapse
Affiliation(s)
- Bart Mh Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, Netherlands
| | - Paulo Ct Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, Netherlands
| | - Helgi Ingolfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, Netherlands
| |
Collapse
|
6
|
Radchatawedchakoon W, Thongbamrer C, Konbamrung W, Khattawee P, Sakee U, Roobsoong W, Sattabongkot J, Opanasopit P, Yingyongnarongkul BE. The effect of polar headgroups and spacer length on the DNA transfection of cholesterol-based cationic lipids. RSC Med Chem 2020; 11:212-224. [PMID: 33479628 PMCID: PMC7484938 DOI: 10.1039/c9md00459a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/11/2019] [Indexed: 01/31/2023] Open
Abstract
This article is related to the effects of the headgroups and spacer length of cationic lipids on transfection efficiency. To develop highly potent cationic lipids, a series of divalent lysine-diamine conjugated cholesterol-based cationic lipids with three different headgroups (ammonium, trimethyl ammonium, and guanidinium) were synthesized. The newly synthesized cationic lipids (1-6)A formed cationic liposomes in the presence and absence of a zwitterionic helper lipid, DOPE (dioleoylphosphatidylethanolamine). A gel retardation assay showed that most of the prepared lipoplexes could retard DNA migration in the presence of DOPE. We attempted to modify the diverse cationic headgroups to improve the transfection efficiency. However, the lysine-1,3-diaminopropane-conjugated cholesterol-based lipid 4A, having divalent ammonium of unmodified lysine headgroup, exhibited high relative transfection efficiency in HEK293. When the transfection efficiency of 4A was formulated with DOPE (1 : 1 weight ratio), it produced the same range in comparison with that of a commercially available transfection agent, Lipofectamine™ 2000 (L2k). The lipid 4A was studied to optimize the conditions with respect to the lipid/DOPE and DNA/lipid ratios and the amount of DNA. The transfection efficiency of the highly potent lipid 4A was also studied to determine the transfection efficiency of HeLa, PC3, and HC-04 cell lines. This lipid also protected the DNA from a serum and had low toxicity. Lipoplexes 4A with DOPE had the particle size of around 300-600 nm and the zeta potential of around 0-45 mV. In summary, cationic liposomes 4A demonstrated a high performance as DNA carriers.
Collapse
Affiliation(s)
- Widchaya Radchatawedchakoon
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Chopaka Thongbamrer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| | - Wuttiphong Konbamrung
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Phakamas Khattawee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| | - Uthai Sakee
- Creative Chemistry and Innovation Research Unit , Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Mahasarakham University , Maha Sarakham , 44150 , Thailand . ; ; ; Tel: +66 43 754246
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit , Faculty of Tropical Medicine , Mahidol University , Bangkok , 10400 , Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit , Faculty of Tropical Medicine , Mahidol University , Bangkok , 10400 , Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG) , Faculty of Pharmacy , Silpakorn University , Nakhon Pathom , 73000 , Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Faculty of Science , Ramkhamhaeng University , Bangkok , 10240 , Thailand
| |
Collapse
|
7
|
Dey S, Gupta A, Saha A, Pal S, Kumar S, Manna D. Sunlight-Mediated Thiol-Ene/Yne Click Reaction: Synthesis and DNA Transfection Efficiency of New Cationic Lipids. ACS OMEGA 2020; 5:735-750. [PMID: 31956824 PMCID: PMC6964310 DOI: 10.1021/acsomega.9b03413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The design of green synthetic reaction conditions is very challenging, especially for biomaterials, but worthwhile if the compounds can be easily synthesized in the aqueous medium. Herein, we report the development of sunlight-mediated thiol-ene/yne click reaction in the presence of a catalytic amount of tert-butyl hydroperoxide (TBHP) in an aqueous medium. The optimized reaction conditions were successfully applied to synthesize a series of small molecules and lipids in a single step in the aqueous medium. The synthetic cationic lipid/co-lipid formed positively charged stable nanosized liposomes that effectually bind with the genetic materials. The in vitro DNA transfection and cellular uptake assays showed that the synthesized cationic lipids have comparable efficiency to commercially available Lipofectamine 2000. This mild synthetic strategy can also be used for smart design of novel or improvement of prevailing lipid-based nonviral gene delivery systems. Such chemical transformations in the aqueous medium are more environment-friendly than other reported thiol-ene/yne click reactions performed in an organic solvent medium.
Collapse
Affiliation(s)
- Subhasis Dey
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Gupta
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Abhishek Saha
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudipa Pal
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debasis Manna
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Attia N, Mashal M, Grijalvo S, Eritja R, Puras G, Pedraz JL. Cationic niosome-based hBMP7 gene transfection of neuronal precursor NT2 cells to reduce the migration of glioma cells in vitro. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
10
|
Bansal A, Gamal W, Wu X, Yang Y, Olson V, D'Souza MJ. Evaluation of an adjuvanted hydrogel-based pDNA nanoparticulate vaccine for rabies prevention and immunocontraception. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102049. [PMID: 31279062 PMCID: PMC11287484 DOI: 10.1016/j.nano.2019.102049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Immunocontraceptive vaccination is becoming an acceptable strategy in managing animal populations. Mass vaccination of dogs is the most cost-effective and efficient method to control rabies, and combination of rabies vaccination and animal population control will be an added advantage. In this study, we developed an adjuvanted hydrogel-based pDNA nanoparticulate vaccine for rabies protection and immunocontraception. In vivo, we observed an immune response skewed toward a Th2 type, in contrast to the Th1 type in our previous pDNA study. The observation was verified by the IgG2a/IgG1 ratio (<1), and cytokine expression profile of IL-4 and IFN-γ. The humoral immune response is key for rabies protection and a GnRH antibody-based immunocontraception. In mice, anti-GnRH antibody titers were detected 4 weeks after immunization and lasted for 12 weeks, post animal experiment was terminated. The adjuvanted pDNA nanoparticulate vaccine shows promise for future studies evaluating protection from rabies challenge and prevention of animal breeding.
Collapse
Affiliation(s)
- Amit Bansal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA, USA.
| | - Wael Gamal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA, USA
| | - Xianfu Wu
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yong Yang
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Victoria Olson
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA, USA
| |
Collapse
|
11
|
Xu X, Liu A, Bai Y, Li Y, Zhang C, Cui S, Piao Y, Zhang S. Co-delivery of resveratrol and p53 gene via peptide cationic liposomal nanocarrier for the synergistic treatment of cervical cancer and breast cancer cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Kulkarni JA, Witzigmann D, Leung J, van der Meel R, Zaifman J, Darjuan MM, Grisch-Chan HM, Thöny B, Tam YYC, Cullis PR. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. NANOSCALE 2019; 11:9023-9031. [PMID: 31021343 DOI: 10.1039/c9nr02004g] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The success of Onpattro™ (patisiran) clearly demonstrates the utility of lipid nanoparticle (LNP) systems for enabling gene therapies. These systems are composed of ionizable cationic lipids, phospholipid, cholesterol, and polyethylene glycol (PEG)-lipids, and are produced through rapid-mixing of an ethanolic-lipid solution with an acidic aqueous solution followed by dialysis into neutralizing buffer. A detailed understanding of the mechanism of LNP formation is crucial to improving LNP design. Here we use cryogenic transmission electron microscopy and fluorescence techniques to further demonstrate that LNP are formed through the fusion of precursor, pH-sensitive liposomes into large electron-dense core structures as the pH is neutralized. Next, we show that the fusion process is limited by the accumulation of PEG-lipid on the emerging particle. Finally, we show that the fusion-dependent mechanism of formation also applies to LNP containing macromolecular payloads including mRNA, DNA vectors, and gold nanoparticles.
Collapse
Affiliation(s)
- Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Taheri-Araghi S, Chen DW, Kohandel M, Sivaloganathan S, Foldvari M. Tuning optimum transfection of gemini surfactant-phospholipid-DNA nanoparticles by validated theoretical modeling. NANOSCALE 2019; 11:1037-1046. [PMID: 30569915 DOI: 10.1039/c8nr06442c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gemini nanoparticles (NPs) are a family of non-viral gene delivery systems with potential for applications in non-invasive gene therapy. Translation of these non-viral gene delivery systems requires improvement of transfection efficiency (TE) through fine-tuning of their physicochemical properties such as electric charge and exact ratios of their components. Since high-throughput experimental screening of minute differences in NP compositions is not routinely feasible, we have developed a coarse-grained model to quantitatively study the energetics of the formation of gene delivery complexes with cationic gemini surfactants (G) (m-s-m type) and helper lipids (H) (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and DOPE/1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC)), in order to use it as a tool to predict effective compositions. The model is based on the polymorphic structural conformational flip of NPs and incorporates the electrostatic, entropic and elastic energies, to predict the formation energy and stability of different polymorphic structures as a function of the electric charge of cationic surfactants and concentration of constituent helper lipids. Our results show that these two factors are intertwined in determining the behavior of gene delivery vectors. Specifically, we show that increasing H/G lowers free energy per DNA base pair and increases the stability of the complex. At pH 7, low H/G and charge ratio (ρ±), where the lamellar structure is favored, the formation free energy per DNA base pair is between 0 and -14kBT. At higher values of H/G (2-3) and ρ±, where HII and cubic structures are formed, the formation free energy drops down to values ≈-50kBT, indicating the stable existence of these polymorphic structures in the NPs. At pH 5, the structural transformation of NPs in the endosomes to the lamellar/HII structure with free energy values of about -40kBT is beneficial for endosomal escape, and correlates with increased transfection efficiency. The theoretical model is supported by transfection data in A7 astrocytes with a panel of 16-3-16 gemini NPs, which validates the mathematical model and supports the hypothesis that the NP polymorphic phase transition increases transfection efficiency.
Collapse
Affiliation(s)
- Sattar Taheri-Araghi
- School of Pharmacy, University of Waterloo, 10 Victoria St S., Kitchener, ON N2G 1C5, Canada.
| | | | | | | | | |
Collapse
|
14
|
Attia N, Mashal M, Soto-Sánchez C, Martínez-Navarrete G, Fernández E, Grijalvo S, Eritja R, Puras G, Pedraz JL. Gene transfer to rat cerebral cortex mediated by polysorbate 80 and poloxamer 188 nonionic surfactant vesicles. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3937-3949. [PMID: 30510402 PMCID: PMC6248232 DOI: 10.2147/dddt.s178532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Gene therapy can be an intriguing therapeutic option in wide-ranging neurological disorders. Though nonviral gene carriers represent a safer delivery system to their viral counterparts, a thorough design of such vehicles is crucial to enhance their transfection properties. Purpose This study evaluated the effects of combined use of two nonionic surfactants, poloxamer 188 (P) and polysorbate 80 (P80) into nanovesicles – based on 2,3-di(tetradecyloxy)propan-1-amine cationic lipid (D) – destined for gene delivery to central nervous system cells. Methods Niosome formulations without and with poloxamer 188 (DP80 and DPP80, respectively) were prepared by the reverse-phase evaporation technique and characterized in terms of size, surface charge, and morphology. After the addition of pCMS-EGFP plasmid, the binding efficiency to the niosomes was evaluated in agarose gel electrophoresis assays. Additionally, transfection efficiency of complexes was also evaluated in in vitro and in vivo conditions. Results In vitro experiments on NT2 cells revealed that the complexes based on a surfactant combination (DPP80) enhanced cellular uptake and viability when compared with the DP80 counterparts. Interestingly, DPP80 complexes showed protein expression in glial cells after administration into the cerebral cortices of rats. Conclusion These data provide new insights for glia-centered approach for gene therapy of nervous system disorders using cationic nanovesicles, where nonionic surfactants play a pivotal role.
Collapse
Affiliation(s)
- Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, ; .,Medical Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.,Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda
| | - Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, ;
| | - Cristina Soto-Sánchez
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - Gema Martínez-Navarrete
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - Eduardo Fernández
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - Santiago Grijalvo
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Ramón Eritja
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, ; .,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, ; .,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ;
| |
Collapse
|
15
|
Mandal H, Katiyar SS, Swami R, Kushwah V, Katare PB, Kumar Meka A, Banerjee SK, Popat A, Jain S. ε-Poly-l-Lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. Int J Pharm 2018; 542:142-152. [PMID: 29550568 DOI: 10.1016/j.ijpharm.2018.03.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 11/27/2022]
Abstract
The present work addresses the development and characterization of ε-Poly-l-Lysine/pDNA polyplexes and evaluation for their improved transfection efficacy and safety as compared to polyplexes prepared using Poly-l-Lysine and SuperFect®. Self-assembling polyplexes were prepared by varying the N/P ratio to obtain the optimum size, a net positive zeta potential and gel retardation. The stability in presence of DNase I and serum was assured using gel retardation assay. Their appreciable uptake in MCF-7 and 3.5, 3.79 and 4.79-fold higher transfection compared to PLL/pDNA polyplexes and 1.60, 1.53 and 1.79-fold higher transfection compared to SuperFect®/pDNA polyplexes in MCF-7, HeLa and HEK-293 cell lines respectively, affirmed the enhanced transfection of ε-PLL/pDNA polyplexes which was well supported with in vivo transfection and gene expression studies. The <8% in vitro hemolysis and >98% viability of MCF-7, HeLa and HEK-293 cells in presence of ε-PLL/pDNA polyplexes addressed their safety, which was also ensured using in vivo toxicity studies, where hemocompatibility, unaltered levels of biochemical markers and histology of vital organs confirmed ε-PLL to be an effective and safer alternative for non-viral genetic vectors.
Collapse
Affiliation(s)
- Haimanti Mandal
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India
| | - Rajan Swami
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India
| | - Parmeshwar B Katare
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Anand Kumar Meka
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sanjay K Banerjee
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Amirali Popat
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India.
| |
Collapse
|
16
|
Giselbrecht J, Janich C, Pinnapireddy SR, Hause G, Bakowsky U, Wölk C, Langner A. Overcoming the polycation dilemma - Explorative studies to characterise the efficiency and biocompatibility of newly designed lipofection reagents. Int J Pharm 2018; 541:81-92. [PMID: 29462683 DOI: 10.1016/j.ijpharm.2018.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/16/2018] [Indexed: 01/05/2023]
Abstract
In this explorative study of the novel cationic lipid OO4 in two different formulations the complex formation with DNA, the biopharmaceutical stability of the lipid/DNA complexes in physiological media, and the transfection efficiency were analysed. We investigated liposomes composed of two binary mixtures of OO4 with either DOPE or DPPE as co-lipids in the molar ratio of 1:3. These formulations were compared with regard to their ability to bind the DNA using gel retardation electrophoresis, ethidium bromide exclusion and zeta potential measurements. Colloidal stability of the lipoplexes in foetal bovine serum (FBS) and the protective effect against degradation by endonucleases were studied. Furthermore, the influence of different salt concentrations on the complex formation with DNA was examined. The DOPE mixture was markedly superior compared to the DPPE mixture. Finally, haemocompatibility studies and gene silencing experiments were performed on OO4:DOPE 1:3 (n:n). The experiments demonstrate that the lipoplex formulation OO4:DOPE 1:3 (n:n) at N/P 4 is a promising candidate for systemic application because of the high colloidal stability in serum without PEGylated lipids, high transfection efficiency, superior resistance against nucleases, reproducible complexation independent of ionic effects, and haemocompatibility.
Collapse
Affiliation(s)
- Julia Giselbrecht
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Christopher Janich
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Gerd Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, 06120 Halle, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Christian Wölk
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| | - Andreas Langner
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Vitor MT, Sart S, Barizien A, Torre LGDL, Baroud CN. Tracking the Evolution of Transiently Transfected Individual Cells in a Microfluidic Platform. Sci Rep 2018; 8:1225. [PMID: 29352253 PMCID: PMC5775383 DOI: 10.1038/s41598-018-19483-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/28/2017] [Indexed: 11/09/2022] Open
Abstract
Transient gene expression (TGE) technology enables the rapid production of large amount of recombinant proteins, without the need of fastidious screening of the producing cells required for stable transfection (ST). However, several barriers must be overcome before reaching the production yields using ST. For optimizing the production yields from suspended cells using TGE, a better understanding of the transfection conditions at the single cell level are required. In this study, a universal droplet microfluidic platform was used to assess the heterogeneities of CHO-S population transiently transfected with cationic liposomes (CL) (lipoplexes) complexed with GFP-coding plasmid DNA (pDNA). A single cell analysis of GFP production kinetics revealed the presence of a subpopulation producing higher levels of GFP compared with the main population. The size of high producing (HP) cells, their relative abundance, and their specific productivity were dependent on the charge and the pDNA content of the different lipoplexes: HPs showed increased cell size in comparison to the average population, lipoplexes with positive charge produced more HPs, and lipoplexes carrying a larger amount of pDNA yielded a higher specific productivity of HPs. This study demonstrates the potential for time-resolved single-cell measurements to explain population dynamics from a microscopic point of view.
Collapse
Affiliation(s)
- Micaela Tamara Vitor
- LadHyX and Department of Mechanics, Ecole Polytechnique, 91128, Palaiseau, France.,School of Chemical Engineering, Department of Bioprocesses and Materials Engineering, University of Campinas (Unicamp), Av. Albert Einstein, 500, Campinas, SP, 13083-852, Brazil
| | - Sébastien Sart
- LadHyX and Department of Mechanics, Ecole Polytechnique, 91128, Palaiseau, France.,Institut Pasteur, Physical Microfluidics and Bioengineering laboratory, Département Génomes et Génétique, 25-28 rue du Dr. Roux, 75015, Paris, France
| | - Antoine Barizien
- LadHyX and Department of Mechanics, Ecole Polytechnique, 91128, Palaiseau, France
| | - Lucimara Gaziola De La Torre
- School of Chemical Engineering, Department of Bioprocesses and Materials Engineering, University of Campinas (Unicamp), Av. Albert Einstein, 500, Campinas, SP, 13083-852, Brazil
| | - Charles N Baroud
- LadHyX and Department of Mechanics, Ecole Polytechnique, 91128, Palaiseau, France. .,Institut Pasteur, Physical Microfluidics and Bioengineering laboratory, Département Génomes et Génétique, 25-28 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
18
|
Zhu P, Ding Y, Guo R. Coil-globule structure transition and binding characteristics of DNA molecules induced by isoquinoline-based photoactive ionic liquid surfactant. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Rasoulianboroujeni M, Kupgan G, Moghadam F, Tahriri M, Boughdachi A, Khoshkenar P, Ambrose J, Kiaie N, Vashaee D, Ramsey J, Tayebi L. Development of a DNA-liposome complex for gene delivery applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:191-197. [DOI: 10.1016/j.msec.2017.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
|
20
|
Kulkarni JA, Myhre JL, Chen S, Tam YYC, Danescu A, Richman JM, Cullis PR. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1377-1387. [DOI: 10.1016/j.nano.2016.12.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 01/10/2023]
|
21
|
Zhao YN, Piao YZ, Zhang CM, Jiang YM, Liu A, Cui SH, Zhi DF, Zhen YH, Zhang SB. Replacement of quaternary ammonium headgroups by tri-ornithine in cationic lipids for the improvement of gene delivery in vitro and in vivo. J Mater Chem B 2017; 5:7963-7973. [DOI: 10.1039/c7tb01915g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Replacement of quaternary ammonium headgroups by tri-ornithine in lipids improved gene delivery in vitro and in vivo with little toxicity.
Collapse
Affiliation(s)
- Y. N. Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. Z. Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - C. M. Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. M. Jiang
- College of Phamacy
- Dalian Medical University
- Dalian
- China
| | - A. Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - S. H. Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - D. F. Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. H. Zhen
- College of Phamacy
- Dalian Medical University
- Dalian
- China
| | - S. B. Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| |
Collapse
|
22
|
Pu L, Wang J, Li N, Chai Q, Irache JM, Wang G, Tang JZ, Gu Z. Synthesis of Electroneutralized Amphiphilic Copolymers with Peptide Dendrons for Intramuscular Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13724-13734. [PMID: 27181258 DOI: 10.1021/acsami.6b02592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Intramuscular gene delivery materials are of great importance in plasmid-based gene therapy system, but there is limited information so far on how to design and synthesize them. A previous study showed that the peptide dendron-based triblock copolymer with its components arranged in a reversed biomembrane architecture could significantly increase intramuscular gene delivery and expression. Herein, we wonder whether copolymers with biomembrane-mimicking arrangement may have similar function on intramuscular gene delivery. Meanwhile, it is of great significance to uncover the influence of electric charge and molecular structure on the function of the copolymers. To address the issues, amphiphilic triblock copolymers arranged in hydrophilic-hydrophobic-hydrophilic structure were constructed despite the paradoxical characteristics and difficulties in synthesizing such hydrophilic but electroneutral molecules. The as-prepared two copolymers, dendronG2(l-lysine-OH)-poly propylene glycol2k(PPG2k)-dendronG2(l-lysine-OH) (rL2PL2) and dendronG3(l-lysine-OH)-PPG2k-dendronG3(l-lysine-OH) (rL3PL3), were in similar structure but had different hydrophilic components and surface charges, thus leading to different capabilities in gene delivery and expression in skeletal muscle. rL2PL2 was more efficient than Pluronic L64 and rL3PL3 when mediating luciferase, β-galactosidase, and fluorescent protein expressions. Furthermore, rL2PL2-mediated growth-hormone-releasing hormone expression could significantly induce mouse body weight increase in the first 21 days after injection. In addition, both rL2PL2 and rL3PL3 showed good in vivo biosafety in local and systemic administration. Altogether, rL2PL2-mediated gene expression in skeletal muscle exhibited applicable potential for gene therapy. The study revealed that the molecular structure and electric charge were critical factors governing the function of the copolymers for intramuscular gene delivery. It can be concluded that, combined with the previous study, both structural arrangements either reverse or similar to the biomembrane are effective in designing such copolymers. It also provides an innovative way in designing and synthesizing new electroneutralized triblock copolymers, which could be used safely and efficiently for intramuscular gene delivery.
Collapse
Affiliation(s)
- Linyu Pu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
- School of Materials Science and Engineering, Southwest University of Science and Technology , Mianyang 621010, China
| | - Jiali Wang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Na Li
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Qiuxia Chai
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Juan M Irache
- School of Pharmacy, University of Navarra , Pamplona 31008, Spain
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - James Zhenggui Tang
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton , Wolverhampton WV11SB, United Kingdom
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
23
|
Xie A, Wu MD, Cigarroa G, Belcik JT, Ammi A, Moccetti F, Lindner JR. Influence of DNA-Microbubble Coupling on Contrast Ultrasound-Mediated Gene Transfection in Muscle and Liver. J Am Soc Echocardiogr 2016; 29:812-818. [PMID: 27267307 DOI: 10.1016/j.echo.2016.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Contrast ultrasound-mediated gene delivery (CUMGD) is a promising approach for enhancing gene therapy that relies on microbubble (MB) cavitation to augment complementary deoxyribonucleic acid (cDNA) transfection. The aims of this study were to determine optimal conditions for charge-coupling cDNA to MBs and to evaluate the advantages of surface loading for gene transfection in muscle and liver. METHODS Charge coupling of fluorescently labeled cDNA to either neutral MBs (MBN) or cationic MBs (MB+) in low- to high-ionic conditions (0.3%-1.8% NaCl) was assessed by flow cytometry. MB aggregation from cDNA coupling was determined by electrozone sensing. Tissue transfection of luciferase in murine hindlimb skeletal muscle and liver was made by CUMGD with MBN or MB+ combined with subsaturated, saturated, or supersaturated cDNA concentrations (2.5, 50, and 200 μg/10(8) MBs). RESULTS Charge-coupling of cDNA was detected for MB+ but not MBN. Coupling occurred over almost the entire range of ionic conditions, with a peak at 1.2% NaCl, although electrostatic interference occurred at >1.5% NaCl. DNA-mediated aggregation of MB+ was observed at ≤0.6% NaCl but did not reduce the ability to produce inertial cavitation. Transfection with CUMGD in muscle and liver was low for both MBs at subsaturation concentrations. In muscle, higher cDNA concentrations produced a 10-fold higher degree of transfection with MB+, which was approximately fivefold higher (P < .05) than that for MBN. There was no effect of DNA supersaturation. The same pattern was seen for liver except that supersaturation further increased transfection with MBN equal to that of MB+. CONCLUSIONS Efficient charge-coupling of cDNA to MB+ but not MBN occurs over a relatively wide range of ionic conditions without aggregation. Transfection with CUMGD is much more efficient with charge-coupling of cDNA to MBs and is not affected by supersaturation except in the liver, which is specialized for macromolecular and cDNA uptake.
Collapse
Affiliation(s)
- Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Melinda D Wu
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Gabriella Cigarroa
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Azzdine Ammi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Federico Moccetti
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
24
|
Sharma P, Banerjee R, Narayan KP. Data for stable formulation of steroid hormone receptor-targeted liposomes for cancer therapeutics. Data Brief 2016; 7:428-31. [PMID: 27006974 PMCID: PMC4786751 DOI: 10.1016/j.dib.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022] Open
Abstract
A detailed description of steroid hormone ligand containing liposomes and their stability has been given. Liposomes were complexed with β-gal DNA and used to transfect cancer and non-cancer cells. The stability of the liposomes and lipoplexes were analysed using dynamic light scattering and DNA-binding gel images. The formulations were used to assess the delivery of anticancer gene, p53 in cancer cells. The dataset consists of DNA-binding gel images, transfection, cytotoxicity and reverse transcriptase PCR images.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rajkumar Banerjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
25
|
Prenyl Ammonium Salts--New Carriers for Gene Delivery: A B16-F10 Mouse Melanoma Model. PLoS One 2016; 11:e0153633. [PMID: 27088717 PMCID: PMC4835110 DOI: 10.1371/journal.pone.0153633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Prenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents. METHODS AP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively) were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells. RESULTS All the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation--considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination. CONCLUSION Obtained results indicate that APs have a potential as non-viral vectors for cell transfection.
Collapse
|
26
|
Composites of malonic acid diamides and phospholipids — Impact of lipoplex stability on transfection efficiency. J Control Release 2015; 220:295-307. [DOI: 10.1016/j.jconrel.2015.10.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 01/09/2023]
|
27
|
Bhuvana M, Dharuman V. Tethering of spherical DOTAP liposome gold nanoparticles on cysteamine monolayer for sensitive label free electrochemical detection of DNA and transfection. Analyst 2015; 139:2467-75. [PMID: 24652193 DOI: 10.1039/c4an00017j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Construction of spherical liposomes is critical for developing tools for targeted gene and drug delivery applications in biotechnology and medicine, however, it has been demonstrated only in solution phase until now. Spherical liposome tethering on pristine thiol monolayer on gold transducer and its application to label free DNA sensing and transfection has rarely been reported. Here, we report tethering of spherical 1,2-dioleoyltrimethylammoniumpropane liposome-gold nanoparticle (DOTAP-AuNP) on amine terminated monolayer by simple electrostatic interaction on gold transducer for the first time. Cuddling of cationic liposome by AuNP prevents spherical vesicle fusion in both liquid and solid phases, an essential criterion required for gene and drug delivery applications. The spherical nature of DOTAP-AuNPs on a gold surface is confirmed electrochemically using both [Fe(CN)6](3-/4-) and [Ru(NH3)6](3+) redox probes. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS) and ultraviolet-visible (UV) spectroscopic techniques confirm the robust nature of spherical liposome-AuNPs on solid and in liquid phases. The surface is applied for label free DNA hybridization and single nucleotide polymorphism detections sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 100 attomole. DNA transfection is made simply by dropping E. coli cells on DOTAP-AuNP-DNA immobilized transducer surface. The difference between the fluorescent image of transfected E. coli and the differential interference contrast image of E. coli cells by confocal laser scanning microscopy (CLSM) confirms the efficiency and simplicity of the transfection method developed in terms of reduced cost and reagents.
Collapse
Affiliation(s)
- Mohanlal Bhuvana
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Block, Alagappa University, Karaikudi, 630 004, India.
| | | |
Collapse
|
28
|
Serum resistant and enhanced transfection of plasmid DNA by PEG-stabilized polyplex nanoparticles of L-histidine substituted polyethyleneimine. Macromol Res 2015. [DOI: 10.1007/s13233-015-3074-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Zhang R, Wang SB, Chen AZ, Chen WG, Liu YG, Wu WG, Kang YQ, Ye SF. Codelivery of paclitaxel and small interfering RNA by octadecyl quaternized carboxymethyl chitosan-modified cationic liposome for combined cancer therapy. J Biomater Appl 2015; 30:351-60. [PMID: 25838353 DOI: 10.1177/0885328215579297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3β-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Shi-Bin Wang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Ai-Zheng Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Wei-Guang Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Yuan-Gang Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Wen-Guo Wu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Yong-Qiang Kang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Shi-Fu Ye
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| |
Collapse
|
30
|
Majzoub RN, Chan CL, Ewert KK, Silva BFB, Liang KS, Safinya CR. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1308-18. [PMID: 25753113 DOI: 10.1016/j.bbamem.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 11/19/2022]
Abstract
Endosomal entrapment is known to be a major bottleneck to successful cytoplasmic delivery of nucleic acids (NAs) using cationic liposome-NA nanoparticles (NPs). Quantitative measurements of distributions of NPs within early endosomes (EEs) have proven difficult due to the sub-resolution size and short lifetime of wildtype EEs. In this study we used Rab5-GFP, a member of the large family of GTPases which cycles between the plasma membrane and early endosomes, to fluorescently label early endosomes. Using fluorescence microscopy and quantitative image analysis of cells expressing Rab5-GFP, we found that at early time points (t<1h), only a fraction (≈35%) of RGD-tagged NPs (which target cell surface integrins) colocalize with wildtype EEs, independent of the NP's membrane charge density. In comparison, a GTP-hydrolysis deficient mutant, Rab5-Q79L, which extends the size and lifetime of EEs yielding giant early endosomes (GEEs), enabled us to resolve and localize individual NPs found within the GEE lumen. Remarkably, nearly all intracellular NPs are found to be trapped within GEEs implying little or no escape at early time points. The observed small degree of colocalization of NPs and wildtype Rab5 is consistent with recycling of Rab5-GDP to the plasma membrane and not indicative of NP escape from EEs. Taken together, our results show that endosomal escape of PEGylated nanoparticles occurs downstream of EEs i.e., from late endosomes/lysosomes. Our studies also suggest that Rab5-Q79L could be used in a robust imaging assay which allows for direct visualization of NP interactions with the luminal membrane of early endosomes.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Chia-Ling Chan
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Institute of Physics, Academica Sinica, Taipei 11529, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Kai K Ewert
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Bruno F B Silva
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Division of Physical Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Keng S Liang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Cyrus R Safinya
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
31
|
de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release 2015; 201:1-13. [DOI: 10.1016/j.jconrel.2015.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/19/2023]
|
32
|
Self-Amplifying mRNA Vaccines. NONVIRAL VECTORS FOR GENE THERAPY - PHYSICAL METHODS AND MEDICAL TRANSLATION 2015; 89:179-233. [DOI: 10.1016/bs.adgen.2014.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Shankara Narayanan J, Bhuvana M, Dharuman V. Sandwiching spherical 1,2-dioleoyltrimethylammoniumpropane liposome in gold nanoparticle on solid transducer for electrochemical ultrasensitive DNA detection and transfection. Biosens Bioelectron 2014; 58:326-32. [DOI: 10.1016/j.bios.2014.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/30/2014] [Accepted: 02/14/2014] [Indexed: 12/17/2022]
|
34
|
Novel serum-tolerant lipoplexes target the folate receptor efficiently. Eur J Pharm Sci 2014; 59:83-93. [PMID: 24769039 DOI: 10.1016/j.ejps.2014.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/12/2014] [Accepted: 04/15/2014] [Indexed: 12/18/2022]
Abstract
Gene transfer using non-viral vectors is a promising approach for the safe delivery of nucleic acid therapeutics. In this study, we investigate a lipid-based system for targeted gene delivery to malignant cells overexpressing the folate receptor (FR). Cationic liposomes were formulated with and without the targeting ligand folate conjugated to distearoylphosphatidyl ethanolamine polyethylene glycol 2000 (DSPE-PEG2000), the novel cytofectin 3β[N(N(1),N(1)-dimethlaminopropylsuccinamidoethane)-carbamoyl]cholesterol (SGO4), which contains a 13atom, 15Å spacer element, and the helper lipid, dioleoylphosphatidylethanolamine (DOPE). Physicochemical parameters of the liposomes and lipoplexes were obtained by zeta sizing, zeta potential measurement and cryo-TEM. DNA-binding and protection capabilities of liposomes were confirmed by gel retardation assays, EtBr intercalation and nuclease protection assays. The complexes were assessed in an in vitro system for their effect on cell viability using the MTT assay, and gene transfection activity using the luciferase assay in three cell lines; HEK293 (FR-negative), HeLa (FR(+)-positive), KB (FR(++)-positive). Low cytotoxicities were observed in all cell lines, while transgene activity promoted by folate-tagged lipoplexes in FR-positive lines was tenfold greater than that by untargeted constructs and cell entry by folate complexes was demonstrably by FR mediation. These liposome formulations have the design capacity for in vivo application and may therefore be promising candidates for further development.
Collapse
|
35
|
Divalent Metal Cations in DNA–Phospholipid Binding. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-12-418698-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Dey D, Kumar S, Maiti S, Dhara D. Stopped-flow kinetic studies of poly(amidoamine) dendrimer-calf thymus DNA to form dendriplexes. J Phys Chem B 2013; 117:13767-74. [PMID: 24087941 DOI: 10.1021/jp406973t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(amidoamine) (PAMAM) dendrimers are known to be highly efficient nonviral carriers in gene delivery. Dendrimer-mediated transfection is known to be a function of the dendrimer to DNA charge ratio as well as the size of the dendrimer. In the present study, the binding kinetics of four PAMAM dendrimers (G1, G2, G3, and G4) with calf thymus DNA (CT-DNA) has been studied using stopped-flow fluorescence spectroscopy. The effect of dendrimer-to-DNA charge ratio and dendrimer generation on the binding kinetics was investigated. In most cases, the results of dendrimer-CT-DNA binding can be explained by a two-step reaction mechanism: a rapid electrostatic binding between the dendrimer and DNA, followed by a conformational change of the dendrimer-DNA complex that ultimately leads to DNA condensation. It was observed that the charge ratio on the dendrimer and the DNA phosphate groups, as well as the dendrimer generation (size), has a marked effect on the kinetics of binding between the DNA and the dendrimers. The rate constant (k'1) of the first step was much higher compared to that of the second step (k'2), and both were found to increase with an increase in dendrimer concentration. Among the four generations of dendrimers, G4 exhibited significantly faster binding kinetics compared to the three smaller generation dendrimers.
Collapse
Affiliation(s)
- Debabrata Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur , West Bengal 721302 India
| | | | | | | |
Collapse
|
37
|
Ghanbari Safari M, Hosseinkhani S. Lipid composition of cationic nanoliposomes implicate on transfection efficiency. J Liposome Res 2013; 23:174-86. [PMID: 23594237 DOI: 10.3109/08982104.2013.779703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cationic liposome (CL)-DNA complexes (lipoplexes) have appeared as leading nonviral gene carriers in worldwide gene therapy clinical trials. Arriving at therapeutic dosages requires the full understanding of the mechanism of transfection. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs have some problems, including low transfection efficiency. The aim of this study was developing novel CLs containing four neutral lipids; cholesterol, 1,2-dioleoyl phosphatidylethanolamine, distearoylphosphatidylcholine and dipalmitoylphosphatidylcholine as a helper lipid and dimethyl dioctadecyl ammonium bromide as a cationic lipid to increase transfection efficiency. We have investigated the correlation between number of lipid composition and transfection efficiency. The morphology, size and zeta potential of liposomes and lipoplexes were measured and lipoplexes formation was monitored by gel retardation assay. Transfection efficiency was assessed using firefly luciferase reporter assay. It was found that transfection efficiency markedly depended on liposome to plasmid DNA (pDNA) weight ratio, lipid composition and efficiency of pDNA entrapment. High transfection efficiency of plasmid by four component lipoplexes was achieved. Moreover, lipoplexes showed lower transfection efficiency and less cytotoxicity compared to Lipofectamine™. These results suggest that lipid composition of nanoliposomes is an important factor in control of their physical properties and also yield of transfection.
Collapse
Affiliation(s)
- Maryam Ghanbari Safari
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
38
|
Grueso E, Kuliszewska E, Prado-Gotor R, Perez-Tejeda P, Roldan E. Improving the understanding of DNA–propanediyl-1,3-bis(dodecyldimethylammonium) dibromide interaction using thermodynamic, structural and kinetic approaches. Phys Chem Chem Phys 2013; 15:20064-74. [DOI: 10.1039/c3cp53299b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Abstract
Nonviral vector technology is attracting increasing importance in the biomedical community owing to unique advantages and prospects for the treatment of severe diseases by gene therapy. In this review, synthetic vectors that allow the controlled design of efficient and biocompatible carriers are highlighted. The current benefits, potentials, problems and unmet needs of synthetic gene delivery systems, as well as the strategies to overcome the obstacles are also discussed. Common design principles and structure–activity trends have been established that are important for stable and targeted transport to regions of interest in the body, efficient uptake into cells as well as controlled release of drugs inside the cells, for example, in specialized compartments. The status quo of the use of these systems in preclinical and clinical trials is also considered.
Collapse
|
40
|
Even-Chen S, Cohen R, Barenholz Y. Factors affecting DNA binding and stability of association to cationic liposomes. Chem Phys Lipids 2012; 165:414-23. [PMID: 22715503 DOI: 10.1016/j.chemphyslip.2012.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.
Collapse
Affiliation(s)
- Simcha Even-Chen
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, IMRIC, The Hebrew University, Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
41
|
Alabi CA, Love KT, Sahay G, Stutzman T, Young WT, Langer R, Anderson DG. FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes. ACS NANO 2012; 6:6133-41. [PMID: 22693946 PMCID: PMC3404193 DOI: 10.1021/nn3013838] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The assembly, stability, and timely disassembly of short interfering RNA (siRNA) nanocomplexes have the potential to affect the efficiency of siRNA delivery and gene silencing. As such, the design of new probes that can measure these properties without significantly perturbing the nanocomplexes or their environment may facilitate the study and further development of new siRNA nanocomplexes. Herein, we study Förster resonance energy transfer (FRET)-labeled siRNA probes that can track the assembly, stability, and disassembly of siRNA nanocomplexes in different environments. The probe is composed of two identical siRNAs, each labeled with a fluorophore. Upon nanocomplex formation, the siRNA-bound fluorophores become locally aggregated within the nanocomplex and undergo FRET. A key advantage of this technique is that the delivery vehicle (DV) need not be labeled, thus enabling the characterization of a large variety of nanocarriers, some of which may be difficult or even impossible to label. We demonstrate proof-of-concept by measuring the assembly of various DVs with siRNAs and show good agreement with gel electrophoresis experiments. As a consequence of not having to label the DV, we are able to determine nanocomplex biophysical parameters such as the extracellular apparent dissociation constants (K(D)) and intracellular disassembly half-life for several in-house and proprietary commercial DVs. Furthermore, the lack of DV modification allows for a true direct comparison between DVs as well as correlation between their biophysical properties and gene silencing.
Collapse
Affiliation(s)
- Christopher A. Alabi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin T. Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Gaurav Sahay
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Tina Stutzman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Whitney T. Young
- Department of Biological Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT divison of Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT divison of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Hyaluronic acid-bearing lipoplexes: physico-chemical characterization and in vitro targeting of the CD44 receptor. J Control Release 2012; 162:545-52. [PMID: 22820451 DOI: 10.1016/j.jconrel.2012.07.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 12/31/2022]
Abstract
The mechanism by which hyaluronic acid (HA)-bearing lipoplexes target the A549 lung cancer cell line was evaluated. For this purpose, cationic liposomes targeting the CD44 receptor were designed thanks to the incorporation in their composition of a conjugate between high molecular weight HA and the lipid DOPE (HA-DOPE). Liposomes containing HA-DOPE were complexed at different lipids:DNA ratios with a reporter plasmid encoding the green fluorescent protein (GFP). Diameter, zeta potential, lipoplex stability and DNA protection from nucleases have been determined. Lipids:DNA ratios of 2, 4 and 6 provided a diameter around 250 nm with a zeta potential of -30 mV. The strength of lipids:DNA interaction and the fraction of DNA protected from enzymatic degradation increased with the lipids:DNA ratio. 2D-immunoelectrophoresis demonstrated the low capacity to activate the C3 fraction of the complement system of any of these three ratios, with and without HA-DOPE. Transfection efficiency in the presence of 0, 10 and 15% of HA-DOPE or unconjugated HA, was determined on the CD44-expressing A549 cells by flow cytometry. Lipoplexes at a lipids:DNA ratio of 2 containing 10% (w/w) of HA-DOPE were the most efficient for transfection. The maximal level of GFP expression was obtained after 6h of incubation demonstrating a slow transfection kinetics of lipoplexes. Finally, lipoplex cellular uptake, measured indirectly by the level of transfection using flow cytometry and validated by fluorescence microscopy, was shown to be mediated by the CD44 receptor and caveolae. These results demonstrate the strong specificity of DNA targeting through the CD44 receptor using HA of high molecular weight as a ligand.
Collapse
|
43
|
Kapoor M, Burgess DJ. Physicochemical characterization of anionic lipid-based ternary siRNA complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1603-12. [DOI: 10.1016/j.bbamem.2012.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/30/2023]
|
44
|
de Paula Rigoletto T, Silva CL, Santana MHA, Rosada RS, de la Torre LG. Effects of extrusion, lipid concentration and purity on physico-chemical and biological properties of cationic liposomes for gene vaccine applications. J Microencapsul 2012; 29:759-69. [DOI: 10.3109/02652048.2012.686530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int J Pharm 2012; 427:35-57. [DOI: 10.1016/j.ijpharm.2011.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 01/24/2023]
|
46
|
Rosada RS, Silva CL, Santana MHA, Nakaie CR, de la Torre LG. Effectiveness, against tuberculosis, of pseudo-ternary complexes: Peptide-DNA-cationic liposome. J Colloid Interface Sci 2012; 373:102-9. [DOI: 10.1016/j.jcis.2011.09.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 12/31/2022]
|
47
|
Synthesis and preliminary investigations of the siRNA delivery potential of novel, single-chain rigid cationic carotenoid lipids. Molecules 2012; 17:3484-500. [PMID: 22426529 PMCID: PMC6268619 DOI: 10.3390/molecules17033484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 12/01/2022] Open
Abstract
The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the single-chain lipid series was compared with that of known cationic lipid vectors, 3β-[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol) and 1,2-dimyristoyl-sn-glyceryl-3-phosphoethanolamine (EPC) as positive controls. All cationic lipids (controls and single-chain lipids) were co-formulated into liposomes with the neutral co-lipid, 1,2-dioleolyl-sn-glycerol-3-phosphoethanolamine (DOPE). Cationic lipid-siRNA complexes of varying (+/−) molar charge ratios were formulated for delivery into HR5-CL11 cells. Of the five single-chain carotenoid lipids investigated, lipids 1, 2, 3 and 5 displayed significant knockdown efficiency with HR5-CL11 cells. In addition, lipid 1 exhibited the lowest levels of cytotoxicity with cell viability greater than 80% at all (+/−) molar charge ratios studied. This novel, single-chain rigid carotenoid-based cationic lipid represents a new class of transfection vector with excellent cell tolerance, accompanied with encouraging siRNA delivery efficiency.
Collapse
|
48
|
Specific interactions between nucleolipid doped liposomes and DNA allow a more efficient polynucleotide condensation. J Colloid Interface Sci 2012; 365:184-90. [DOI: 10.1016/j.jcis.2011.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022]
|
49
|
Pullmannová P, Bastos M, Bai G, Funari SS, Lacko I, Devínsky F, Teixeira J, Uhríková D. The ionic strength effect on the DNA complexation by DOPC — gemini surfactants liposomes. Biophys Chem 2012; 160:35-45. [DOI: 10.1016/j.bpc.2011.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 11/25/2022]
|
50
|
Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev 2012; 64:40-52. [PMID: 21971337 DOI: 10.1016/j.addr.2011.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/29/2011] [Accepted: 09/18/2011] [Indexed: 01/08/2023]
Abstract
Genetic medicines that induce angiogenesis represent a promising strategy for the treatment of ischemic diseases. Many types of nonviral delivery systems have been tested as therapeutic angiogenesis agents. However, their delivery efficiency, and consequently therapeutic efficacy, remains to be further improved, as few of these technologies are being used in clinical applications. This article reviews the diverse nonviral gene delivery approaches that have been applied to the field of therapeutic angiogenesis, including plasmids, cationic polymers/lipids, scaffolds, and stem cells. This article also reviews clinical trials employing nonviral gene therapy and discusses the limitations of current technologies. Finally, this article proposes a future strategy to efficiently develop delivery vehicles that might be feasible for clinically relevant nonviral gene therapy, such as high-throughput screening of combinatorial libraries of biomaterials.
Collapse
|