1
|
Agaras BC, Grossi CEM, Ulloa RM. Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3398. [PMID: 37836138 PMCID: PMC10574481 DOI: 10.3390/plants12193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The role of Calcium ions (Ca2+) is extensively documented and comprehensively understood in eukaryotic organisms. Nevertheless, emerging insights, primarily derived from studies on human pathogenic bacteria, suggest that this ion also plays a pivotal role in prokaryotes. In this review, our primary focus will be on unraveling the intricate Ca2+ toolkit within prokaryotic organisms, with particular emphasis on its implications for plant growth-promoting rhizobacteria (PGPR). We undertook an in silico exploration to pinpoint and identify some of the proteins described in the existing literature, including prokaryotic Ca2+ channels, pumps, and exchangers that are responsible for regulating intracellular Calcium concentration ([Ca2+]i), along with the Calcium-binding proteins (CaBPs) that play a pivotal role in sensing and transducing this essential cation. These investigations were conducted in four distinct PGPR strains: Pseudomonas chlororaphis subsp. aurantiaca SMMP3, P. donghuensis SVBP6, Pseudomonas sp. BP01, and Methylobacterium sp. 2A, which have been isolated and characterized within our research laboratories. We also present preliminary experimental data to evaluate the influence of exogenous Ca2+ concentrations ([Ca2+]ex) on the growth dynamics of these strains.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Cecilia Eugenia María Grossi
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rita María Ulloa
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
- Biochemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
2
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
3
|
Prevalence of Ca²⁺-ATPase-mediated carbonate dissolution among cyanobacterial euendoliths. Appl Environ Microbiol 2011; 78:7-13. [PMID: 22038600 DOI: 10.1128/aem.06633-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent physiological work has shown that the filamentous euendolithic cyanobacterium Mastigocoleus testarum (strain BC008) is able to bore into solid carbonates using Ca²⁺-ATPases to take up Ca²⁺ from the medium at the excavation front, promoting dissolution of CaCO₃ there. It is not known, however, if this is a widespread mechanism or, rather, a unique capability of this model strain. To test this, we undertook a survey of multispecies euendolithic microbial assemblages infesting natural carbonate substrates in marine coastal waters of the Caribbean, Mediterranean, South Pacific, and Sea of Cortez. Microscopic examination revealed the presence of complex assemblages of euendoliths, encompassing 3 out of the 5 major cyanobacterial orders. 16S rRNA gene clone libraries detected even greater diversity, particularly among the thin-filamentous forms, and allowed us to categorize the endoliths in our samples into 8 distinct phylogenetic clades. Using real-time Ca²⁺ imaging under a confocal laser scanning microscope, we could show that all communities displayed light-dependent formation of Ca²⁺-supersaturated zones in and around boreholes, a staple of actively boring phototrophs. In 3 out of 4 samples, boring activity was sensitive to at least one of two inhibitors of Ca²⁺-ATPase transporters (thapsigargin or tert-butylhydroquinone), indicating that the Ca²⁺-ATPase mechanism is widespread among cyanobacterial euendoliths but perhaps not universal. Function-community structure correlations point to one particular clade of baeocyte-forming euendoliths as the potential exception.
Collapse
|
4
|
Moon YJ, Park YM, Chung YH, Choi JS. Calcium Is Involved in Photomovement of Cyanobacterium Synechocystis sp. PCC 6803¶. Photochem Photobiol 2011. [DOI: 10.1111/j.1751-1097.2004.tb09865.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Soontharapirakkul K, Incharoensakdi A. Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism. BMC BIOCHEMISTRY 2010; 11:30. [PMID: 20691102 PMCID: PMC2928168 DOI: 10.1186/1471-2091-11-30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 08/07/2010] [Indexed: 11/10/2022]
Abstract
Background When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions. Results The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent Km values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent Km values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m - chlorophenylhydrazone (CCCP) but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes. Conclusion The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na+ pump which transports only Na+ upon hydrolysis of ATP. A secondary event, Na+- and ATP-dependent H+ efflux from proteoliposomes, is driven by the electric potential generated by Na+-stimulated ATPase.
Collapse
|
6
|
Moon YJ, Park YM, Chung YH, Choi JS. Calcium Is Involved in Photomovement of Cyanobacterium Synechocystis sp. PCC 6803¶. Photochem Photobiol 2004. [DOI: 10.1562/0031-8655(2004)79<114:ciiipo>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Raeymaekers L, Wuytack E, Willems I, Michiels CW, Wuytack F. Expression of a P-type Ca(2+)-transport ATPase in Bacillus subtilis during sporulation. Cell Calcium 2002; 32:93. [PMID: 12161109 DOI: 10.1016/s0143-4160(02)00125-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The open reading frame designated yloB in the genomic sequence of Bacillus subtilis encodes a putative protein that is most similar to the typically eukaryotic type IIA family of P-type ion-motive ATPases, including the endo(sarco)plasmic reticulum (SERCA) and PMR1 Ca(2+)-transporters, located respectively in the SERCA and the Golgi apparatus. The overall amino acid sequence is more similar to that of the Pmr1s than to the SERCAs, whereas the inverse is seen for the 10 amino acids that form the two Ca(2+)-binding sites in SERCA. Sporulating but not vegetative B. subtilis cells express the predicted protein, as shown by Western blotting and by the formation of a Ca(2+)-dependent phosphorylated intermediate. Half-maximal activation of phosphointermediate formation occurred at 2.5 microM Ca(2+). Insertion mutation of the yloB gene did not affect the growth of vegetative cells, did not prevent the formation of viable spores, and did not significantly affect 45Ca accumulation during sporulation. However, spores from knockouts were less resistant to heat and showed a slower rate of germination. It is concluded that the P-type Ca(2+)-transport ATPase from B. subtilis is not essential for survival, but assists in the formation of resistant spores. The evolutionary relationship of the transporter to the eukaryotic P-type Ca(2+)-transport ATPases is discussed.
Collapse
Affiliation(s)
- L Raeymaekers
- Laboratorium voor Fysiologie, K.U. Leuven, Campus Gasthuisberg O/N, B3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
8
|
Michiels J, Xi C, Verhaert J, Vanderleyden J. The functions of Ca(2+) in bacteria: a role for EF-hand proteins? Trends Microbiol 2002; 10:87-93. [PMID: 11827810 DOI: 10.1016/s0966-842x(01)02284-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In bacteria, Ca(2+) is implicated in a wide variety of cellular processes, including the cell cycle and cell division. Dedicated influx and efflux systems tightly control the low cytoplasmic Ca(2+) levels in prokaryotes. Additionally, the growing number of proteins containing various Ca(2+)-binding motifs supports the importance of Ca(2+), which controls various protein functions by affecting protein stability, enzymatic activity or signal transduction. The existence of calmodulin-like proteins (containing EF-hand motifs) in bacteria is a long-standing hypothesis. Analysis of the prokaryotic protein sequences available in the databases has revealed the presence of several calmodulin-like proteins containing two or more authentic EF-hand motifs, suggesting that calmodulin-like proteins could be involved in Ca(2+) regulation in bacteria.
Collapse
Affiliation(s)
- Jan Michiels
- Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | | | | | | |
Collapse
|
9
|
Geisler M, Frangne N, Gomès E, Martinoia E, Palmgren MG. The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. PLANT PHYSIOLOGY 2000; 124:1814-27. [PMID: 11115896 PMCID: PMC59877 DOI: 10.1104/pp.124.4.1814] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2000] [Revised: 07/02/2000] [Accepted: 09/12/2000] [Indexed: 05/17/2023]
Abstract
Several lines of evidence suggest that regulation of intracellular Ca(2+) levels is crucial for adaptation of plants to environmental stress. We have cloned and characterized Arabidopsis auto-inhibited Ca(2+)-ATPase, isoform 4 (ACA4), a calmodulin-regulated Ca(2+)-ATPase. Confocal laser scanning data of a green fluorescent protein-tagged version of ACA4 as well as western-blot analysis of microsomal fractions obtained from two-phase partitioning and Suc density gradient centrifugation suggest that ACA4 is localized to small vacuoles. The N terminus of ACA4 contains an auto-inhibitory domain with a binding site for calmodulin as demonstrated through calmodulin-binding studies and complementation experiments using the calcium transport yeast mutant K616. ACA4 and PMC1, the yeast vacuolar Ca(2+)-ATPase, conferred protection against osmotic stress such as high NaCl, KCl, and mannitol when expressed in the K616 strain. An N-terminally modified form of ACA4 specifically conferred increased NaCl tolerance, whereas full-length ATPase had less effect.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins
- Binding Sites
- Calcium/metabolism
- Calcium/pharmacology
- Calcium-Transporting ATPases/chemistry
- Calcium-Transporting ATPases/genetics
- Calcium-Transporting ATPases/metabolism
- Calmodulin/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- Mutation
- Potassium Chloride/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Salts/pharmacology
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Signal Transduction
- Sodium Chloride/pharmacology
- Tissue Distribution
- Vacuoles/enzymology
Collapse
Affiliation(s)
- M Geisler
- Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
10
|
Geisler M, Axelsen KB, Harper JF, Palmgren MG. Molecular aspects of higher plant P-type Ca(2+)-ATPases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:52-78. [PMID: 10748247 DOI: 10.1016/s0005-2736(00)00131-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent genomic data in the model plant Arabidopsis thaliana reveal the existence of at least 11 Ca(2+)-ATPase genes, and an analysis of expressed sequence tags suggests that the number of calcium pumps in this organism might be even higher. A phylogenetic analysis shows that 11 Ca(2+)-ATPases clearly form distinct groups, type IIA (or ECA for ER-type Ca(2+)-ATPase) and type IIB (ACA for autoinhibited Ca(2+)-ATPase). While plant IIB calcium pumps characterized so far are localized to internal membranes, their animal homologues are exclusively found in the plasma membrane. However, Arabidopsis type IIB calcium pump isoforms ACA8, ACA9 and ACA10 form a separate outgroup and, based on the high molecular masses of the encoded proteins, are good candidates for plasma membrane bound Ca(2+)-ATPases. All known plant type IIB calcium ATPases seem to employ an N-terminal calmodulin-binding autoinhibitor. Therefore it appears that the activity of type IIB Ca(2+)-ATPases in plants and animals is controlled by N-terminal and C-terminal autoinhibitory domains, respectively. Possible functions of plant calcium pumps are described and - beside second messenger functions directly linked to calcium homeostasis - new data on a putative involvement in secretory and salt stress functions are discussed.
Collapse
Affiliation(s)
- M Geisler
- Department of Plant Biology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
11
|
Van Den Brink GR, Bloemers SM, Van Den Blink B, Tertoolen LG, Van Deventer SJ, Peppelenbosch MP. Study of calcium signaling in non-excitable cells. Microsc Res Tech 1999; 46:418-33. [PMID: 10504218 DOI: 10.1002/(sici)1097-0029(19990915)46:6<418::aid-jemt9>3.0.co;2-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fundamental importance of calcium signaling in the control of cellular physiology is widely recognized. A dramatic illustration of this is the fact that a Medline search for review articles containing the word "calcium" in the title reveals 4,629 hits, whereas the whole body of calcium signaling literature (approximately 2 x 10(6) pages) is more than enough to fill a decent-sized library. Most of this literature deals with calcium signaling in excitable cells types (mainly neurons and muscle cells), but non-excitable cell types are capable of calcium signaling as well. Although calcium fluxes in the latter cell types have attracted much less interest, the literature involved is still vast. Nevertheless, in this review article we hope to contribute some valuable insights to the field. First we shall discuss the experimental techniques available to the researcher interested in calcium signaling in non-excitable cell types with special attention to patch clamp electrophysiology. Subsequently, we shall review some of the results obtained with these techniques by focussing on the calcium-regulating mechanisms in non-excitable cells and discussing the importance of these mechanisms for physiology.
Collapse
Affiliation(s)
- G R Van Den Brink
- Laboratory for Experimental Internal Medicine, Academic Medical Center, NL-1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Geisler M. Expression of a prokaryotic P-type ATPase in E. coli Plasma Membranes and Purification by Ni2+-affinity chromatography. Biol Proced Online 1998; 1:70-80. [PMID: 12734587 PMCID: PMC140125 DOI: 10.1251/bpo9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Indexed: 11/30/2022] Open
Abstract
In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993) et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20-25% of the membrane protein. The purification of the Synecho-cystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC(50)= 119 &mgr;M) and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.
Collapse
Affiliation(s)
- Markus Geisler
- Institut für Biochemie der Pflanzen. Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf. Germany.
| |
Collapse
|