1
|
Rubio-Ruiz B, Serrán-Aguilera L, Hurtado-Guerrero R, Conejo-García A. Recent advances in the design of choline kinase α inhibitors and the molecular basis of their inhibition. Med Res Rev 2020; 41:902-927. [PMID: 33103259 DOI: 10.1002/med.21746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Upregulated choline metabolism, characterized by an increase in phosphocholine (PCho), is a hallmark of oncogenesis and tumor progression. Choline kinase (ChoK), the enzyme responsible for PCho synthesis, has consequently become a promising drug target for cancer therapy and as such a significant number of ChoK inhibitors have been developed over the last few decades. More recently, due to the role of this enzyme in other pathologies, ChoK inhibitors have also been used in new therapeutic approaches against malaria and rheumatoid arthritis. Here, we review research results in the field of ChoKα inhibitors from their synthesis to the molecular basis of their binding mode. Strategies for the development of inhibitors and their selectivity on ChoKα over ChoKβ, the plasticity of the choline-binding site, the discovery of new exploitable binding sites, and the allosteric properties of this enzyme are highlighted. The outcomes summarized in this review will be a useful guide to develop new multifunctional potent drugs for the treatment of various human diseases.
Collapse
Affiliation(s)
- Belén Rubio-Ruiz
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| | - Lucía Serrán-Aguilera
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.,Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.,Laboratorio de Microscopías Avanzada, University of Zaragoza, Zaragoza, Spain.,ARAID Foundation, Zaragoza, Spain
| | - Ana Conejo-García
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| |
Collapse
|
2
|
Onopchenko OV, Kosiakova HV, Horid'ko TM, Klimashevskyĭ VM, Hula NM. [The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity]. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 86:101-10. [PMID: 24834723 DOI: 10.15407/ubj86.01.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We used alimentary obesity-induced insulin resistance (IR) model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic) and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic) fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight) caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influence of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.
Collapse
|
3
|
Al Quobaili F, Montenarh M. CK2 and the regulation of the carbohydrate metabolism. Metabolism 2012; 61:1512-7. [PMID: 22917893 DOI: 10.1016/j.metabol.2012.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
Protein kinase CK2 was originally identified by analyzing carbohydrate metabolism. Now it is clear that life without CK2 is impossible. Moreover, CK2 activity was found elevated in rapidly proliferating cells when compared to slowly proliferating or resting cells. Proliferating cells have an elevated need for energy which is generated from an elevated carbohydrate metabolism. From early observations and the emerging role of CK2 in cellular regulation, it is not surprising that CK2 plays a role in hormonal regulation of carbohydrate metabolism as well as modulating activities of enzymes directly involved in carbohydrate storage and metabolism. The aim of the present review is to summarize the knowledge about the role of CK2 in the regulation of the carbohydrate metabolism.
Collapse
Affiliation(s)
- Faizeh Al Quobaili
- Department of Biochemistry and Microbiology, Damascus University, 6735 Damascus, Syria
| | | |
Collapse
|
4
|
Miyake T, Parsons SJ. Functional interactions between Choline kinase α, epidermal growth factor receptor and c-Src in breast cancer cell proliferation. Oncogene 2011; 31:1431-41. [PMID: 21822308 PMCID: PMC3213328 DOI: 10.1038/onc.2011.332] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epidermal growth factor receptor (EGFR) family members and c-Src are co-overexpressed in many cancers. The synergistic effect of EGFR and c-Src has been shown in the tumorigenesis of breast and other cancers. Reported mechanisms of synergy include transcriptional regulation by STAT5b and the regulation of cellular ATP production by mitochondrial protein COX II. Here, we report a new mechanism of EGFR-c-Src synergy through choline kinase α (CHKA). The first enzyme of the phosphatidyl choline production pathway, CHKA, is overexpressed in many cancers, and the product of the enzyme, phosphocholine, is also increased in tumor cells. In this report, we find that CHKA forms a complex with EGFR in a c-Src-dependent manner. Endogenous CHKA and EGFR co-immunoprecipitated from a variety of breast cancer cell lines and immortalized mammary epithelial cells. CHKA interacted with the EGFR kinase domain upon c-Src co-overexpression and was phosphorylated in a c-Src-dependent manner on Y197 and Y333. Overexpression of EGFR and c-Src increased total cellular activity and protein levels of CHKA. Mutation of CHKA Y197 and Y333 reduced complex formation, EGFR-dependent activation of CHKA enzyme activity and epidermal growth factor (EGF)-dependent DNA synthesis. Furthermore, small interfering RNA-mediated knockdown of CHKA in MCF-7 and MCF-10A cells reduced EGF-dependent cell proliferation. Together, these results strongly implicate a new c-Src-dependent link between CHKA and EGFR, which contributes to the regulation of cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- T Miyake
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
5
|
A novel small molecule antagonist of choline kinase-α that simultaneously suppresses MAPK and PI3K/AKT signaling. Oncogene 2011; 30:3370-80. [PMID: 21423211 PMCID: PMC3136659 DOI: 10.1038/onc.2011.51] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Choline kinase-α expression and activity are increased in multiple human neoplasms as a result of growth factor stimulation and activation of cancer-related signaling pathways. The product of choline kinase-α, phosphocholine, serves as an essential metabolic reservoir for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the production of lipid second messengers. Using in silico screening for small molecules that may interact with the choline kinase-α substrate binding domain, we identified a novel competitive inhibitor, N-(3,5-dimethylphenyl)-2-[[5-(4-ethylphenyl)-1H-1,2,4-triazol-3-yl]sulfanyl] acetamide (termed CK37) that inhibited purified recombinant human choline kinase-α activity, reduced the steady-state concentration of phosphocholine in transformed cells, and selectively suppressed the growth of neoplastic cells relative to normal epithelial cells. Choline kinase-α activity is required for the downstream production of phosphatidic acid, a promoter of several Ras signaling pathways. CK37 suppressed MAPK and PI3K/AKT signaling, disrupted actin cytoskeletal organization, and reduced plasma membrane ruffling. Finally, administration of CK37 significantly decreased tumor growth in a lung tumor xenograft mouse model, suppressed tumor phosphocholine, and diminished activating phosphorylations of ERK and AKT in vivo. Together, these results further validate choline kinase-α as a molecular target for the development of agents that interrupt Ras signaling pathways, and indicate that receptor-based computational screening should facilitate the identification of new classes of choline kinase-α inhibitors.
Collapse
|
6
|
Gallego-Ortega D, Gómez del Pulgar T, Valdés-Mora F, Cebrián A, Lacal JC. Involvement of human choline kinase alpha and beta in carcinogenesis: a different role in lipid metabolism and biological functions. ACTA ACUST UNITED AC 2010; 51:183-94. [PMID: 21035492 DOI: 10.1016/j.advenzreg.2010.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/05/2010] [Indexed: 10/18/2022]
Abstract
We have summarized here the importance of ChoKα1 in human carcinogenesis. ChoKα1 displays its oncogenic activity through activation of specific signaling pathways that influence on cell proliferation and survival. It is overexpressed in a large number of human tumors with an incidence of 40-60% of all tumors investigated. Currently, there is an active effort in the development of strategies to knockdown the activity of ChoKα through specific siRNA or small molecules inhibitors. Results from genetic silencing or from treatment with MN58b, a well characterized ChoKα inhibitor showing antiproliferative and antitumoral effect in mice xenografts, provide strong support to this concept, indicating that the design of new antitumoral drugs must be selective against this isoform. However, affecting the other two known isoforms of ChoK may have also therapeutic consequences since the physiologically active form of ChoK may be constituted by homo or heterodimers. Furthermore, alteration of the ChoKβ activity might lead to a change in the lipid content of the cells of particular tissues such as skeletal muscle as described in the ChoKβ null mice (Sher et al., 2006). Finally, the identification of the ChoKα1 isoform as an excellent novel tool for the diagnosis and prognosis of cancer patients may have clinical consequences of immediate usefulness. On one hand, the use of specific monoclonal antibodies against ChoKα1 as a tool for diagnosis in paraffin embedded samples from patient biopsies, through standard immunohistochemistry techniques, can now be achieved (Gallego-Ortega et al., 2006). On the other hand, it has been recently described the prognostic value of determination of ChoKα1 expression levels in non-small cell lung cancer using real time quantitative PCR technology (Ramírez de Molina et al., 2007). Therefore, further research should be supported on the utility of ChoK isoforms as a promising area to improve cancer diagnosis and treatment.
Collapse
|
7
|
Huang C, Liu S, Miller RT. Role of p115RhoGEF in the regulation of extracellular Ca2+-induced choline kinase activation and prostate cancer cell proliferation. Int J Cancer 2010; 128:2833-42. [DOI: 10.1002/ijc.25633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/03/2010] [Accepted: 08/10/2010] [Indexed: 01/10/2023]
|
8
|
Shah T, Wildes F, Penet MF, Winnard PT, Glunde K, Artemov D, Ackerstaff E, Gimi B, Kakkad S, Raman V, Bhujwalla ZM. Choline kinase overexpression increases invasiveness and drug resistance of human breast cancer cells. NMR IN BIOMEDICINE 2010; 23:633-42. [PMID: 20623626 PMCID: PMC3115627 DOI: 10.1002/nbm.1510] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A direct correlation exists between increased choline kinase (Chk) expression, and the resulting increase of phosphocholine levels, and histological tumor grade. To better understand the function of Chk and choline phospholipid metabolism in breast cancer we have stably overexpressed one of the two isoforms of Chk-alpha known to be upregulated in malignant cells, in non-invasive MCF-7 human breast cancer cells. Dynamic tracking of cell invasion and cell metabolism were studied with a magnetic resonance (MR) compatible cell perfusion assay. The MR based invasion assay demonstrated that MCF-7 cells overexpressing Chk-alpha (MCF-7-Chk) exhibited an increase of invasion relative to control MCF-7 cells (0.84 vs 0.3). Proton MR spectroscopy studies showed significantly higher phosphocholine and elevated triglyceride signals in Chk overexpressing clones compared to control cells. A test of drug resistance in MCF-7-Chk cells revealed that these cells had an increased resistance to 5-fluorouracil and higher expression of thymidylate synthase compared to control MCF-7 cells. To further characterize increased drug resistance in these cells, we performed rhodamine-123 efflux studies to evaluate drug efflux pumps. MCF-7-Chk cells effluxed twice as much rhodamine-123 compared to MCF-7 cells. Chk-alpha overexpression resulted in MCF-7 human breast cancer cells acquiring an increasingly aggressive phenotype, supporting the role of Chk-alpha in mediating invasion and drug resistance, and the use of phosphocholine as a biomarker of aggressive breast cancers.
Collapse
Affiliation(s)
- Tariq Shah
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Flonne Wildes
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Marie-France Penet
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul T. Winnard
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kristine Glunde
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Dmitri Artemov
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ellen Ackerstaff
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- Memorial Sloan-Kettering Cancer Center 1275 York Ave., New York, NY
| | - Barjor Gimi
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- 708 Vail, Dartmouth Medical School, Hanover, NH, 03755
| | - Samata Kakkad
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Venu Raman
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Zaver M. Bhujwalla
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- Correspondence to: Z. M. Bhujwalla, Department of Radiology, The Johns Hopkins University School of Medicine, 208C Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205, USA.,
| |
Collapse
|
9
|
Huang C, Hydo LM, Liu S, Miller RT. Activation of choline kinase by extracellular Ca2+ is Ca(2+)-sensing receptor, Galpha12 and Rho-dependent in breast cancer cells. Cell Signal 2009; 21:1894-900. [PMID: 19716891 DOI: 10.1016/j.cellsig.2009.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/07/2009] [Accepted: 08/19/2009] [Indexed: 11/25/2022]
Abstract
Breast cancer cell metastases to bone result in osteolysis and release of large quantities of Ca2+ into the bone microenviroment. Extracellular Ca2+ (Ca(o)2+) acting through the Ca(2+)-sensing receptor (CaR), a member of G protein-coupled receptor superfamily, plays an important role in the regulation of multiple signaling pathways. Here, we find that expression of the CaR and Galpha(12) is significantly up-regulated in breast cancer cells (MDA-MB-231 and MCF-7) compared with nonmalignant breast cells (Hs 578Bst and MCF-10A). Ca(o)2+ induces a significant increase in extracellular [(3)H]phosphocholine (P-cho) production in breast cancer cells. Using an anti-CaR antibody to block Ca(o)2+ binding to the CaR and small interfering RNA (siRNA) to silence CaR gene expression, our data demonstrate that [(3)H]P-cho production in response to Ca(o)(2+)-stimulation is CaR-dependent. By analyzing cellular lipid profiles and using siRNA to silence choline kinase (ChoK) expression, we determine that the production of [3H]P-cho is primarily related to CaR-induced ChoK activation, and not degradation of choline phospholipids. Finally, by pretreatment of the cells with either pertussis toxin or C3 exoenzyme, co-immunoprecipiation of Galpha(i), Galpha(q) or Galpha12 with the CaR, and RhoA translocation, we found that the enhancement of ChoK activation and P-cho production in breast cancer cells occurs via a CaR-Galpha12-Rho signaling pathway.
Collapse
Affiliation(s)
- Chunfa Huang
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, Ohio 44106, United States.
| | | | | | | |
Collapse
|
10
|
Glunde K, Shah T, Winnard PT, Raman V, Takagi T, Vesuna F, Artemov D, Bhujwalla ZM. Hypoxia regulates choline kinase expression through hypoxia-inducible factor-1 alpha signaling in a human prostate cancer model. Cancer Res 2008; 68:172-80. [PMID: 18172309 PMCID: PMC5606139 DOI: 10.1158/0008-5472.can-07-2678] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The intensity of the total choline (tCho) signal in spectroscopic images of tumors is spatially heterogeneous. The likewise heterogeneous physiologic tumor microenvironment may contribute to this heterogeneity. We therefore investigated the relationship between hypoxia, choline metabolites, and choline kinase (Chk) in a human prostate cancer model. Human PC-3 prostate cancer cells were engineered to express enhanced green fluorescent protein (EGFP) under hypoxic conditions. These PC-3-5HRE-EGFP cells were characterized in culture and as tumors transplanted in mice using (1)H magnetic resonance spectroscopy (MRS) and MRS imaging (MRSI) combined with EGFP fluorescence microscopy and imaging. Hypoxic EGFP-fluorescing tumor regions colocalized with regions of high tCho in combined MRSI and optical imaging studies. Cellular phosphocholine (PC) and tCho concentrations as well as Chk expression levels significantly increased following exposure of PC-3 cells to hypoxia. A putative promoter region located 5' of the translation start site of the human chk-alpha gene was cloned and luciferase (Luc)-based reporter vector constructs were generated. Luc reporter assays provided evidence that some of the putative hypoxia response elements (HRE) within this putative chk-alpha promoter region functioned in vitro. Chromatin immunoprecipitation assays using an antibody against hypoxia-inducible factor (HIF)-1 alpha showed that HIF-1 can directly bind this region of the endogenous chk-alpha promoter in hypoxic PC-3-5HRE-EGFP cells. These data suggest that HIF-1 activation of HREs within the putative chk-alpha promoter region can increase Chk-alpha expression within hypoxic environments, consequently increasing cellular PC and tCho levels within these environments.
Collapse
Affiliation(s)
- Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Catalone BJ, Ferguson ML, Miller SR, Malamud D, Kish-Catalone T, Thakkar NJ, Krebs FC, Howett MK, Wigdahl B. Prolonged exposure to the candidate microbicide C31G differentially reduces cellular sensitivity to agent re-exposure. Biomed Pharmacother 2006; 59:460-8. [PMID: 16154719 DOI: 10.1016/j.biopha.2005.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Indexed: 10/25/2022] Open
Abstract
Comparative assays of in vitro cytotoxicity using nonoxynol-9 (N-9) and the candidate microbicides C31G and sodium dodecyl sulfate (SDS) demonstrated that these agents, which are, respectively, characterized as nonionic, amphoteric, and anionic surfactants, differed in their concentration-dependent effects on cell viability, especially after prolonged exposure. We hypothesized that differences in cellular sensitivity may have been due, in part, to cellular changes induced by long-term exposure to each agent. To examine this possibility, HeLa cells were exposed to N-9, C31G, or SDS for extended periods of time and subsequently reassessed for sensitivity to each of these agents. Following 10 continuous days of C31G exposure, HeLa cells were less sensitive to a subsequent C31G exposure compared to cells that had not undergone long-term C31G treatment. Interestingly, long-term C31G exposure also changed subsequent sensitivity to N-9 but not SDS. In contrast, prolonged exposure to either N-9 or SDS did not reduce sensitivity to re-exposure. The effect of long-term C31G exposure was both concentration-dependent and transient, as treated cells reverted to pre-exposure sensitivity in a time-dependent manner following the cessation of C31G exposure. Lipid analyses of cells exposed to C31G for extended durations revealed altered phospholipid profiles relative to C31G-naïve cells. Experiments examining the individual components of C31G demonstrated the involvement of the amine oxide moiety in reductions in cellular sensitivity. These studies, which provide new information concerning the cytotoxicity of surfactant microbicides, suggest that cervicovaginal epithelial cells may have greater in vivo tolerance for products containing C31G through unique interactions between C31G and components of the cellular membranes.
Collapse
Affiliation(s)
- Bradley J Catalone
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Glunde K, Raman V, Mori N, Bhujwalla ZM. RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation. Cancer Res 2006; 65:11034-43. [PMID: 16322253 DOI: 10.1158/0008-5472.can-05-1807] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Choline kinase is overexpressed in breast cancer cells and activated by oncogenes and mitogenic signals, making it a potential target for cancer therapy. Here, we have examined, for the first time, the effects of RNA interference (RNAi)-mediated down-regulation of choline kinase in nonmalignant and malignant human breast epithelial cell lines using magnetic resonance spectroscopy (MRS) as well as molecular analyses of proliferation and differentiation markers. RNAi knockdown of choline kinase reduced proliferation, as detected by proliferating cell nuclear antigen and Ki-67 expression, and promoted differentiation, as detected by cytosolic lipid droplet formation and expression of galectin-3. The functional importance of RNAi-mediated choline kinase down-regulation on choline phospholipid metabolism was confirmed by the significant reduction of phosphocholine detected by MRS. These results strongly support the targeting of choline kinase in breast cancer cells with RNAi and show the potential ability of noninvasive MRS to detect and evaluate future treatments incorporating such strategies.
Collapse
Affiliation(s)
- Kristine Glunde
- John Hopkins University In Vivo Cellular Molecular Imaging Center Program, Russell H. Morgan Department of Radiology and Radiological Science, John Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
13
|
Collison LW, Jolly CA. Phosphorylation regulates mitochondrial glycerol-3-phosphate-1 acyltransferase activity in T-lymphocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:129-39. [PMID: 16431156 DOI: 10.1016/j.bbalip.2005.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/25/2022]
Abstract
Recently, we have shown that stimulation and recombinant ACBP increase mitochondrial glycerol-3-phosphate acyltransferase (mtGPAT) activity in rat splenic T-lymphocytes and that this effect is blunted in aged T-lymphocytes. In addition to decreased mtGPAT activity, aged T-lymphocytes also have altered membrane lipid composition and decreased proliferation in response to antigen. Therefore, we wanted to determine the mechanism by which mtGPAT activity is regulated in aged T-lymphocytes. We show that aged T-lymphocyte mtGPAT activity is not increased by ex vivo stimulation or in vitro phosphorylation with casein kinase II and protein kinase C theta as is seen in young T-lymphocytes. However, other factors that might impact mtGPAT activity such as reduced mtGPAT protein levels, gene expression or alterations in the soluble acyl-CoA pool were not affected by age or stimulation. The age effect was also not compensated for by increased acyl-CoA binding protein expression in aged T-lymphocytes. Currently, two mitochondrial GPAT (mtGPAT) isoforms (mtGPAT1 and mtGPAT2) have been identified. We found that T-lymphocytes express mtGPAT1, but not mtGPAT2, suggesting that at least mtGPAT1 is sensitive to phosphorylation in vitro. Support for direct phosphorylation of mtGPAT1 in young T-lymphocytes is shown by mtGPAT1 immunoprecipitation where a phosphoprotein band was detected migrating at the same molecular weight (85 kDa) as mtGPAT1. This is significant because we also show that T-lymphocytes from mtGPAT1 KO mice have reduced proliferation ex vivo as is seen in aged T-lymphocytes. These data provide evidence for a novel mechanism by which T-lymphocyte proliferation may be regulated and, for the first time, give a potential mechanistic explanation for the correlation between reduced proliferation and membrane lipid changes seen in aged T-lymphocytes.
Collapse
Affiliation(s)
- Lauren W Collison
- Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
14
|
Albright CD, da Costa KA, Craciunescu CN, Klem E, Mar MH, Zeisel SH. Regulation of choline deficiency apoptosis by epidermal growth factor in CWSV-1 rat hepatocytes. Cell Physiol Biochem 2005; 15:59-68. [PMID: 15665516 PMCID: PMC2424026 DOI: 10.1159/000083653] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/19/2022] Open
Abstract
Previous studies show that acute choline deficiency (CD) triggers apoptosis in cultured rat hepatocytes (CWSV-1 cells). We demonstrate that prolonged EGF stimulation (10 ng/mL x 48 hrs) restores cell proliferation, as assessed by BrdU labeling, and protects cells from CD-induced apoptosis, as assessed by TUNEL labeling and cleavage of poly(ADP-ribose) polymerase. However, EGF rescue was not accompanied by restoration of depleted intracellular concentrations of choline, glycerphosphocholine, phosphocholine, or phosphatidylcholine. In contrast, we show that EGF stimulation blocks apoptosis by restoring mitochondrial membrane potential (Delta Psi(m)), as determined using the potential-sensitive dye chloromethyl-X-rosamine, and by preventing the release and nuclear localization of cytochrome c. We investigated whether EGF rescue involves EGF receptor phosphorylation and activation of the down-stream cell survival factor Akt. Compared to cells in control medium (CT, 70 micromol choline x 48 hrs), cells in CD medium (5 micromol choline) were less sensitive to EGF-induced (0-300 ng/mL x 5 min) receptor tyrosine phosphorylation. Compared to cells in CT medium, cells in CD medium treated with EGF (10 ng/mL x 5 min) exhibited higher levels of phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of AktSer473. Inactivation of PI3K was sufficient to block EGF-stimulated activation of Akt, restoration of mitochondrial Delta Psi(m), and prevention of cytochrome c release. These studies indicate that stimulation with EGF activates a cell survival response against CD-apoptosis by restoring mitochondrial membrane potential and preventing cytochrome c release and nuclear translocation which are mediated by activation of Akt in hepatocytes.
Collapse
Affiliation(s)
- Craig D Albright
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7461, USA
| | | | | | | | | | | |
Collapse
|
15
|
Onorato TM, Chakraborty S, Haldar D. Phosphorylation of Rat Liver Mitochondrial Glycerol-3-phosphate Acyltransferase by Casein Kinase 2. J Biol Chem 2005; 280:19527-34. [PMID: 15778226 DOI: 10.1074/jbc.m410422200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown rat liver mitochondrial glycerol-3-phosphate acyltransferase (mtGAT), which catalyzes the first step in de novo glycerolipid biosynthesis, is stimulated by casein kinase 2 (CK2) and that a phosphorylated protein of approximately 85 kDa is present in CK2-treated mitochondria. In this paper, we have identified the (32)P-labeled 85-kDa protein as mtGAT. We have also investigated whether the phosphorylation of mtGAT is because of CK2. Mitochondria were treated with CK2 and [gamma-(32)P]GTP as the phosphate donor. Autoradiography, Western blot, and immunoprecipitation results showed mtGAT was phosphorylated by CK2. Next, we incubated mitochondria with CK2 and either ATP or GTP, in the presence of heparin, a known inhibitor of CK2. Heparin inhibited CK2-induced stimulation of mtGAT activity; this inhibition resulted in decreased (32)P-labeling of mtGAT. Additionally, mitochondria were treated with CK2 and [gamma-(32)P]ATP in the presence of staurosporine (a serine/threonine protein kinase inhibitor), genistein (a tyrosine kinase inhibitor), and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB, a CK2 inhibitor). Only DRB, the CK2 inhibitor, greatly reduced the amount of (32)P-incorporation into mtGAT by CK2. Finally, isolated mitochondrial outer membrane was incubated with cytosol in the presence of [gamma-(32)P]GTP; (32)P-labeled mtGAT was detected. Collectively, these data suggest that CK2 phosphorylates mtGAT. The impact of our results in the regulation of mtGAT and other anabolic processes is discussed.
Collapse
Affiliation(s)
- Thomas M Onorato
- Department of Biological Sciences, St. John's University, Queens, New York 11439, USA
| | | | | |
Collapse
|
16
|
Collison LW, Kannan L, Onorato TM, Knudsen J, Haldar D, Jolly CA. Aging reduces glycerol-3-phosphate acyltransferase activity in activated rat splenic T-lymphocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1687:164-72. [PMID: 15708364 DOI: 10.1016/j.bbalip.2004.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 10/20/2004] [Accepted: 11/19/2004] [Indexed: 11/25/2022]
Abstract
T-lymphocyte proliferation declines with age. Phosphatidic acid (PA) is the precursor to all glycerophospholipids, which serve as important membrane structural components and signaling molecules. Therefore, we tested the hypothesis that aged T-lymphocyte proliferation may be reduced, in part, suppressing phosphatidic acid (PA) biosynthesis. We showed, for the first time, that anti-CD3 stimulation in rat splenic T-lymphocytes selectively increased mitochondrial glycerol-3-phosphate acyltransferase (GPAT) activity. GPAT activity could be further increased by the addition of recombinant acyl-CoA binding protein (rACBP), but the amplification of GPAT activity was blunted by aging. This is important because PA is the precursor lipid for phospholipid synthesis and GPAT is the rate-limiting enzyme in PA biosynthesis. The mechanism by which stimulation and rACBP increased GPAT activity may involve phosphorylation since incubating Jurkat T-lymphocyte mitochondria with casein kinase 2 in vitro significantly increased GPAT activity. The data presented here suggest a novel mechanism by which aging may reduce activation-dependent mitochondrial GPAT activity. This age-induced alteration would result in reduced PA biosynthesis and could explain, in part, the diminished phospholipid content of the membrane and subsequent loss of proliferative capacity in the aged T-lymphocyte.
Collapse
Affiliation(s)
- Lauren W Collison
- Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A2700, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
17
|
Rodríguez-González A, Ramirez de Molina A, Fernández F, Lacal JC. Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene 2004; 23:8247-59. [PMID: 15378008 DOI: 10.1038/sj.onc.1208045] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Choline kinase (ChoK, E.C. 2.7.1.32) is involved in the synthesis of phosphatidylcholine (PC), and has been found to be increased in human tumors and tumor-derived cell lines. Furthermore, ChoK inhibitors have been reported to show a potent and selective antitumoral activity both in vitro and in vivo. Here, we provide the basis for a rational understanding of the antitumoral activity of ChoK inhibitors. In normal cells, blockage of de novo phosphorylcholine (PCho) synthesis by inhibition of ChoK promotes the dephosphorylation of pRb, resulting in a reversible cell cycle arrest at G0/G1 phase. In contrast, ChoK inhibition in tumor cells renders cells unable to arrest in G0/G1 as manifested by a lack of pRb dephosphorylation. Furthermore, tumor cells specifically suffer a drastic wobble in the metabolism of main membrane lipids PC and sphingomyelin (SM). This lipid disruption results in the enlargement of the intracellular levels of ceramides. As a consequence, normal cells remain unaffected, but tumor cells are promoted to apoptosis. Thus, we provide in this study the rationale for the potential clinical use of ChoK inhibitors.
Collapse
Affiliation(s)
- Agustín Rodríguez-González
- Translational Oncology Unit, Department of Molecular and Cellular Biology of Cancer, Instituto de Investigaciones Biomédicas, CSIC, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Rodríguez-González A, Ramírez de Molina A, Fernández F, Ramos MA, del Carmen Núñez M, Campos J, Lacal JC. Inhibition of choline kinase as a specific cytotoxic strategy in oncogene-transformed cells. Oncogene 2004; 22:8803-12. [PMID: 14654777 DOI: 10.1038/sj.onc.1207062] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer treatment is in the need of selective drugs that can interfere specifically with signalling pathways affected during the carcinogenic process. Identification of new potential molecular targets is the key event in the design of new anticancer strategies. Once identified, attempts for the generation of specific molecules to regulate their function can be achieved. The relevance of deregulation of choline kinase (ChoK, E.C. 2.7.1.32) in oncogene-driven cell transformation has been previously demonstrated. Here we provide strong evidence that MN58b, a selective inhibitor of ChoK, is rather specific to this enzyme, with no effect on a variety of oncogene-activated signalling pathways involved in the regulation of cell proliferation. MN58b does not affect MAPKs, PI3K, and other enzymes involved in the regulation of phospholipid metabolism such as phospholipases C, D, and A2, CTP:phosphocholine cytidylyltransferase, or diacylglycerol choline-phosphotransferase. Consistent with this specificity, ectopic expression of ChoK resulted in resistance to its inhibitor. Finally, nontransformed cells were able to resume cell proliferation after removal of the drug, while transformed cells were irreversibly affected. These results indicate that inhibition of ChoK is a rather specific strategy for the cytotoxic treatment of transformed cells.
Collapse
Affiliation(s)
- Agustín Rodríguez-González
- Department of Molecular and Cellular Biology of Cancer, Instituto de Investigaciones Biomédicas (CSIC), Arturo Duperier 4, Madrid 28029, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Gee P, Kent C. Multiple isoforms of choline kinase from Caenorhabditis elegans: cloning, expression, purification, and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1648:33-42. [PMID: 12758145 DOI: 10.1016/s1570-9639(03)00106-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Choline kinase is the first enzymatic step in the CDP-choline pathway for phosphatidylcholine biosynthesis. The genome of the nematode, Caenorhabditis elegans, contains seven genes that appear likely to encode choline and/or ethanolamine kinases. We cloned five and expressed four of these genes, and purified or partially purified three of the encoded enzymes. All expressed proteins had choline kinase activity; those that most closely resemble the mammalian choline kinases were the most active. CKA-2, a very active form, was purified to near homogeneity. The K(m) values for CKA-2 were 1.6 and 2.4 mM for choline and ATP, respectively, and k(cat) was 74 s(-1). CKA-2 was predominantly a homodimer as assessed by glycerol gradient sedimentation and dynamic light scattering. CKB-2, which was less similar to mammalian choline kinases, had K(m) values for choline and ATP of 13 and 0.7 mM, and k(cat) was 3.8 s(-1). Both of these highly purified enzymes required magnesium, had very alkaline pH optima, and were much more active with choline as substrate than with ethanolamine. These results provide a foundation for future studies on the structure and function of choline kinases, as well as studies on the genetic analysis of the function of the multiple isoforms in this organism.
Collapse
Affiliation(s)
- Patricia Gee
- Department of Biological Chemistry, 4417 Medical Science I, University of Michigan Medical Center, 1301 Catherine Road, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
20
|
Onorato TM, Haldar D. Casein kinase II stimulates rat liver mitochondrial glycerophosphate acyltransferase activity. Biochem Biophys Res Commun 2002; 296:1091-6. [PMID: 12207885 DOI: 10.1016/s0006-291x(02)02064-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rat liver mitochondrial glycerophosphate acyltransferase (mtGAT) possesses 14 consensus sites for casein kinase II (CKII) phosphorylation. To study the functional relevance of phosphorylation to the activity of mtGAT, we treated isolated rat liver mitochondria with CKII and found that CKII stimulated mtGAT activity approximately 2-fold. Protein phosphatase-lambda treatment reversed the stimulation of mtGAT by CKII. Labeling of both solubilized and non-solubilized mitochondria with CKII and [gamma-32P]ATP resulted in a 32P-labeled protein of 85kDa, the molecular weight of mtGAT. Our findings suggest that CKII stimulates mtGAT activity by phosphorylation of the acyltransferase. The significance of this observation with respect to hormonal control of the enzyme is discussed.
Collapse
Affiliation(s)
- Thomas M Onorato
- Department of Biological Sciences, St. John's University, 8000 Utopia Pkwy, 11439, Jamaica, NY, USA
| | | |
Collapse
|
21
|
Zeghari N, Younsi M, Meyer L, Donner M, Drouin P, Ziegler O. Adipocyte and erythrocyte plasma membrane phospholipid composition and hyperinsulinemia: a study in nondiabetic and diabetic obese women. Int J Obes (Lond) 2000; 24:1600-7. [PMID: 11126212 DOI: 10.1038/sj.ijo.0801459] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The cell functions involved in the action of insulin--receptor binding, enzyme and transporter activities--are controlled by membrane properties. We have previously shown that the fasting plasma insulin (FPI) concentration and the homeostasis model assessment (HOMA) estimate of insulin resistance are associated with the sphingomyelin concentration in the erythrocyte membranes of obese women. OBJECTIVES (1) To study the distribution of phospholipid classes in the plasma membrane and their association with insulin resistance markers in the adipocyte, an insulin-sensitive cell in obese women. (2) To investigate the influence of diabetes in a small group of obese women treated by diet alone. (3) To compare the distribution of phospholipids in erythrocyte membranes in a subgroup of obese nondiabetic and diabetic women. SUBJECTS Subcutaneous fat biopsies were taken from the abdominal region of 19 obese non-diabetic and seven obese type 2 diabetic women. Erythrocyte membrane assessment was performed in a subgroup of 10 of the 19 obese nondiabetic and in the seven diabetic patients. METHODS The phospholipid composition of adipocyte and erythrocyte plasma membranes was analyzed by high performance liquid chromatography. RESULTS FPI was positively correlated with the adipocyte membrane contents of sphingomyelin (P < 0.001), phosphatidylethanolamine (P < 0.05), and phosphatidylcholine (P < 0.01) in the obese nondiabetic women. Similar correlations were obtained with HOMA. A stepwise multiple regression analysis indicated that sphingomyelin accounted for 45.6 and 43.8% of the variance in FPI and HOMA values as an independent predictor. There was a similar positive independent association between FPI and SM in the erythrocyte membranes of the studied subgroup. Diabetes per se did not influence the independent association between SM membrane contents and FPI in both cell types. CONCLUSION These results suggest a link between membrane phospholipid composition, especially SM, and hyperinsulinemia in obese women.
Collapse
Affiliation(s)
- N Zeghari
- Université Henri Poincaré-Nancy 1, Vandoeuvre les Nancy, France
| | | | | | | | | | | |
Collapse
|
22
|
Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Morishita Y. Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer. Jpn J Cancer Res 1999; 90:1212-7. [PMID: 10622531 PMCID: PMC5926018 DOI: 10.1111/j.1349-7006.1999.tb00698.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.
Collapse
Affiliation(s)
- K Nakagami
- Second Department of Surgery, Gunma University School of Medicine, Maebashi
| | | | | | | | | |
Collapse
|
23
|
Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, Sekine T, Morishita Y. Increased choline kinase activity and elevated phosphocholine levels in human colon cancer. Jpn J Cancer Res 1999; 90:419-24. [PMID: 10363580 PMCID: PMC5926083 DOI: 10.1111/j.1349-7006.1999.tb00764.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nuclear magnetic resonance spectroscopy has detected elevated phosphocholine levels in human tumor tissues and cells, and in cells that were transformed with the activated Ha-ras gene and stimulated in vitro with growth-promoting factors such as platelet-derived growth factor, epidermal growth factor, and phorbol ester. However, the mechanism of the elevation and the function of the increased phosphocholine levels have not been clearly demonstrated. We studied phosphocholine levels enzymatically and analyzed the activity of choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in human colon cancer and adenoma. Both choline kinase activity and phosphocholine levels were increased in colon cancer and adenoma tissue. The activation of choline kinase and the increased levels of choline kinase alpha were partly responsible for the elevated phosphocholine levels. This study suggests that choline kinase might play a role in growth promotion or signal transduction in carcinogenesis.
Collapse
Affiliation(s)
- K Nakagami
- Second Department of Surgery, Gunma University School of Medicine, Maebashi
| | | | | | | | | | | | | |
Collapse
|
24
|
Igal RA, Coleman RA. Neutral lipid storage disease: a genetic disorder with abnormalities in the regulation of phospholipid metabolism. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)34200-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Uchida T. A novel high-molecular mass mammalian ethanolamine kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1349:13-24. [PMID: 9421192 DOI: 10.1016/s0005-2760(97)00059-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present report describes, for the first time, a mammalian kinase highly specific for ethanolamine (Km = 41 microM). Ethanolamine kinase catalyzes the initial step in the CDP-ethanolamine pathway for phosphatidylethanolamine synthesis. Although plant and protozoan kinases are known to exhibit remarkable specificity for ethanolamine, no equivalent mammalian kinase has been characterized previously. The easily shocked (eas) mutant of Drosophila has been characterized and found to lack ethanolamine kinase activity while still possessing normal choline kinase activity (Pavlidis, P., Ramaswami, M., and Tanouye, M.A. (1994) Cell 79, 23-33). The gene compensating this mutation encodes a sequence resembling that of choline kinase. In the present report, the eas gene product, expressed in Escherichia coli as fusion protein, is found to have highly specific ethanolamine kinase activity. Anti-eas antibody revealed a protein with a molecular mass of approximately 86 kDa in rat tissues and human HeLa cells by Western blotting, but did not bind rat choline kinase isozymes. Rat liver kinase activity specific for ethanolamine was separated chromatographically and by an immunological procedure using anti-choline kinase antibody, associated with the 86 kDa protein, and immunoprecipitated by anti-eas antibody. This 86 kDa protein is characterized as ethanolamine kinase. Relations with previously reported kinases are discussed.
Collapse
Affiliation(s)
- T Uchida
- Department of Biochemistry, Gunma University School of Medicine, Maebashi, Japan.
| |
Collapse
|