1
|
Abstract
Leukemia is a common hematological malignancy with overall poor prognosis. Novel therapies are needed to improve the outcome of leukemia patients. Cholesterol metabolism reprogramming is a featured alteration in leukemia. Many metabolic-related genes and metabolites are essential to the progress and drug resistance of leukemia. Exploring potential therapeutical targets related to cholesterol homeostasis is a promising area. This review summarized the functions of cholesterol and its derived intermediate metabolites, and also discussed potential agents targeting this metabolic vulnerability in leukemia.
Collapse
|
2
|
16-Hydroxy-Lycopersene, a Polyisoprenoid Alcohol Isolated from Tournefortia hirsutissima, Inhibits Nitric Oxide Production in RAW 264.7 Cells and Induces Apoptosis in Hep3B Cells. Molecules 2019; 24:molecules24132366. [PMID: 31248041 PMCID: PMC6651038 DOI: 10.3390/molecules24132366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023] Open
Abstract
Three polyisoprenoid alcohols were isolated from the leaves of Tournefortia hirsutissima by a bioassay-guided phytochemical investigation. The compounds were identified as 16-hydroxy-lycopersene (Compound 1), (Z8,E3,ω)-dodecaprenol (Compound 2) and (Z9,E3,ω)-tridecaprenol (Compound 3). Compound 1, an unusual polyisoprenoid, was characterized by 1D and 2D NMR. We also determined the absolute configuration at C-16 by the modified Mosher’s method. The in vitro antiproliferative and anti-inflammatory activities of the isolated compounds were evaluated. Among isolates, Compound 1 moderately inhibited the nitric oxide production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. On the other hand, Compound 1 displayed selective antiproliferative activity against HeLa, PC3, HepG2 and Hep3B cancer cells and was less potent against IHH non-cancerous cells. Compound 1 in Hep3B cells showed significant inhibition of cell cycle progression increasing the sub-G1 phase, suggesting cell death. Acridine orange/ethidium bromide staining and Annexin V-FITC/PI staining demonstrated that cell death induced by Compound 1 in cells Hep3B was by apoptosis. Further study showed that apoptosis induced by Compound 1 in Hep3b cells is associated with the increase of the ratio of Bax/Bcl-2, and caspase 3/7 activation. These results suggest that Compound 1 induce apoptotic cell death by the mitochondrial pathway. To our knowledge, this is the first report about the presence of polyprenol Compounds 1–3 in T. hirsutissima, and the apoptotic and anti-inflammatory action of Compound 1.
Collapse
|
3
|
Kera K, Takahashi S, Sutoh T, Koyama T, Nakayama T. Identification and characterization of a cis,trans-mixed heptaprenyl diphosphate synthase from Arabidopsis thaliana. FEBS J 2012; 279:3813-27. [PMID: 22883514 DOI: 10.1111/j.1742-4658.2012.08742.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 08/03/2012] [Accepted: 08/08/2012] [Indexed: 11/29/2022]
Abstract
In eukaryotes, dolichols (C(70-120)) play indispensable roles as glycosyl carrier lipids in the biosynthesis of glycoproteins on endoplasmic reticulum. In addition to dolichols, seed plants have other types of Z,E-mixed polyisoprenoids termed ficaprenol (tri-trans,poly-cis-polyprenol, C(45-75)) and betulaprenol (di-trans,poly-cis-polyprenol, C(30-45) and C(≥70)) in abundance. However, the physiological significance of these polyprenols has not been elucidated because of limited information regarding cis-prenyltransferases (cPTs) which catalyze the formation of the structural backbone of Z,E-mixed polyisoprenoids. In the comprehensive identification and characterization of cPT homologues from Arabidopsis thaliana, AtHEPS was identified as a novel cis,trans-mixed heptaprenyl diphosphate synthase. AtHEPS heterologously expressed in Escherichia coli catalyzed the formation of C(35) polyisoprenoid as a major product, independent of the chain lengths of all-trans allylic primer substrates. Kinetic analyses revealed that farnesyl diphosphate was the most favorable for AtHEPS among the allylic substrates tested suggesting that AtHEPS was responsible for the formation of C(35) betulaprenol. AtHEPS partially suppressed the phenotypes of a yeast cPT mutant deficient in the biosynthesis of dolichols. Moreover, in A. thaliana cells, subcellular localization of AtHEPS on the endoplasmic reticulum was shown by using green fluorescent protein fused proteins. However, a cold-stress-inducible expression of AtHEPS suggested that AtHEPS and its product might function in response to abiotic stresses rather than in cell maintenance as a glycosyl carrier lipid on the endoplasmic reticulum.
Collapse
Affiliation(s)
- Kota Kera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
4
|
Yokoyama Y, Nohara K, Okubo T, Kano I, Akagawa K, Kano K. Generation of reactive oxygen species is an early event in dolichyl phosphate-induced apoptosis. J Cell Biochem 2007; 100:349-61. [PMID: 16924672 DOI: 10.1002/jcb.21024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mechanism of induction of apoptosis by dolichyl phosphate (Dol-P) was investigated in U937 cells. Studies using isolated mitochondria revealed that the respiratory complex II activity was almost completely inhibited by 20 microg/ml of Dol-P but not by the same concentration of dolichol. Activities of complex I and III were also inhibited by Dol-P, but nearly 50% of activity still remained at 20 microg/ml. Dol-P induced release of cytochrome-c from the isolated mitochondria. Fluorometric microtiter plate assay revealed that generation of reactive oxygen species (ROS) increased in a time-dependent manner. Flow cytometric analysis also indicated that Dol-P caused loss of mitochondrial membrane potential (Deltapsi(m)) and increased ROS generation. The addition of the antioxidant pyrrolidine dithiocarbamate (PDTC) significantly inhibited Dol-P-induced ROS generation and activation of caspase-3. A specific inhibitor of respiratory complex II, thenoyltrifluoroacetone (TTFA), increased ROS generation, potentially mimicking the consequence of inhibition of electron flow at complex II by Dol-P in U937 cells. Electron microscopy revealed that mitochondria became swollen and spherical in shape by the treatment with Dol-P. Neither the tyrosine kinase inhibitor k252a nor mitogen activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitors PD98059 and U0126 inhibited the Dol-P-induced apoptosis. Together, these results suggest that the direct disruption of mitochondrial respiratory complexes and the consequent ROS generation play a critical role in the initiation of Dol-P-induced apoptosis.
Collapse
Affiliation(s)
- Yoshiko Yokoyama
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
The isoprenoid biosynthetic pathway is the source of a wide array of products. The pathway has been highly conserved throughout evolution, and isoprenoids are some of the most ancient biomolecules ever identified, playing key roles in many life forms. In this review we focus on C-10 mono-, C-15 sesqui-, and C-20 diterpenes. Evidence for interconversion between the pathway intermediates farnesyl pyrophosphate and geranylgeranyl pyrophosphate and their respective metabolites is examined. The diverse functions of these molecules are discussed in detail, including their ability to regulate expression of the beta-HMG-CoA reductase and Ras-related proteins. Additional topics include the mechanisms underlying the apoptotic effects of select isoprenoids, antiulcer activities, and the disposition and degradation of isoprenoids in the environment. Finally, the significance of pharmacological manipulation of the isoprenoid pathway and clinical correlations are discussed.
Collapse
Affiliation(s)
- Sarah A Holstein
- Departments of Internal Medicine and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
6
|
HORIUCHI A, YASUGI E, IWASAKI C, FUJIMOTO K, OSHIMA M. Changes in Cell Membrane and Cellular Lipids in Apoptotic Cells Induced by Dolichyl Phosphate Differ from Findings in Cells Induced by Etoposide. J Oleo Sci 2002. [DOI: 10.5650/jos.51.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Yasugi E, Uemura I, Kumagai T, Nishikawa Y, Yasugi S, Yuo A. Disruption of mitochondria is an early event during dolichyl monophosphate-induced apoptosis in U937 cells. Zoolog Sci 2002; 19:7-13. [PMID: 12025407 DOI: 10.2108/zsj.19.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dolichyl monophosphate (Dol-P) is involved in the attachment of carbohydrate chains to proteins in the formation of N-linked glycoprotein. We found that this compound induces apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5-20 min), reduction in mitochondrial transmembrane potential (delta psi m) and translocation of apoptosis-inducing factor (1-3 hr), caspase-3-like protease activation (2-4 hr), chromatin condensation and DNA ladder formation (3-4 hr) were observed successively. In this study, we examined mitochondrial morphological changes by electron microscopy and delta psi m by JC-1 from immediately after treatment of Dol-P. After 5 min of treatment, we observed clearly that mitochondrial cristae began to be disrupted ultrastructurally and almost all the cristae were disintegrated after 1 hr of treatment. The delta psi m of Dol-P treated cells was reduced to 34% as compared with that of control cells immediately after treatment and was quartered within 1 hr. The reduction in delta psi m was not inhibited by cyclosporin A, N-acetyl-L-cysteine and vitamin E. These results indicate that mitochondrial disruption is one of the first triggering events of Dol-P-induced apoptosis.
Collapse
Affiliation(s)
- Etsuko Yasugi
- Department of Hematology, Research Institute, International Medical Center of Japan, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Marangolo M, McGee MM, Tipton KF, Williams DC, Zisterer DM. Oxidative stress induces apoptosis in C6 glioma cells: involvement of mitogen-activated protein kinases and nuclear factor kappa B. Neurotox Res 2001; 3:397-409. [PMID: 14715469 DOI: 10.1007/bf03033200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excessive oxidative stress has been implicated in the induction of cell death in a variety of neurodegenerative diseases. In the present study, hydrogen peroxide (H2O2)-induced cell death in rat C6 glioma cells was used as a model system for studying the molecular events associated with oxidative stress-induced cell death in glial cells. We demonstrate that exposure of C6 glioma cells to H2O2 results in apoptotic cell death in a concentration-dependent manner, and caused activation of a member of the caspase-3-like family of proteases resulting in cleavage of the DNA repair enzyme poly(ADP-ribose)polymerase, PARP. Furthermore, H2O2 induced a transient activation of the transcription factor, nuclear factor kappa B (NF(Kappa)B). Pre-treatment of cells with the antioxidant N-acetylcysteine, (NAC), prevented both the activation of NF(Kappa)B and the induction of apoptosis by H2O2, suggesting a possible role for this transcription factor in oxidant-induced apoptosis in glial cells. Exposure of the cells to H2O2 led to transient activation of both c-Jun N-terminal kinase (JNK) and p38 kinase but has no effect on extracellular regulated kinase (ERK) activity. Inhibition of p38 by SB203580 did not protect the cells against H2O2-induced apoptosis suggesting that activation of p38 is not essential for H2O2-mediated cell death in C6 glioma cells.
Collapse
Affiliation(s)
- M Marangolo
- Department of Biochemistry, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
9
|
Yuo A. Differentiation, apoptosis, and function of human immature and mature myeloid cells: intracellular signaling mechanism. Int J Hematol 2001; 73:438-452. [PMID: 11503957 DOI: 10.1007/bf02994005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human myeloid cells include hematopoietic cells at various stages of differentiation, from immature myeloid cells to mature phagocytes. Normal immature myeloid cells undergo differentiation concomitantly with proliferation in response to hematopoietic growth factors, and terminally differentiated cells, ie, mature phagocytes, exert their effector functions and then die a natural death via apoptosis. However, leukemic myeloid cells are induced to differentiate with growth suppression by several inducers, such as retinoic acid. This review describes differentiation, apoptosis, and functionality of human myeloid cells. mainly focusing on the intracellular signaling mechanism. The signal transduction system for these biological events of the life cycle of myeloid cells has recently been studied, and several characteristics have been elucidated. First, the signaling pathway for myeloid differentiation is mainly focused in the mitogen-activated protein kinases, such as extracellular signal-regulated kinase and p38, and transcriptional factors such as the signal transducers and activators of transcription PU.1 and CCAAT enhancer binding protein. Second, the signaling mechanism for myeloid cell apoptosis is fundamentally identical to that found in other cells. Caspases, caspase-activated DNase, and mitochondrial molecules such as apoptosis-inducing factor have been reported to be important, and mitogen-activated protein kinases such as p38 appear to be less important. Finally, p38 and phosphatidylinositol 3-kinase play critical roles in the signaling cascade for functional activation of mature phagocytes. The reasons why the same signaling molecules play distinct roles according to the differentiation stage and biological event await future clarification.
Collapse
Affiliation(s)
- Akira Yuo
- Department of Hematology, Research Institute, International Medical Center of Japan, Tokyo, Japan.
| |
Collapse
|
10
|
Yasugi E, Kumagai T, Nishikawa Y, Okuma E, Saeki K, Oshima M, Susin SA, Kroemer G, Yuo A. Involvement of apoptosis-inducing factor during dolichyl monophosphate-induced apoptosis in U937 cells. FEBS Lett 2000; 480:197-200. [PMID: 11034328 DOI: 10.1016/s0014-5793(00)01925-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dolichyl monophosphate (Dol-P) has been found to induce apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5-20 min), caspase-3-like protease activation (2-4 h), chromatin condensation and DNA ladder formation (3-4 h) were observed successively. Here, we report that reduction in mitochondrial transmembrane potential and translocation of apoptosis-inducing factor (AIF) are early events (1-3 h) in the apoptotic process induced by Dol-P in U937 cells. The AIF was concentrated around nuclei and partly translocated to the nuclei, which was confirmed by immunocytochemistry using specific anti-AIF antibody. Both caspase-8 and caspase-3 inhibitors blocked only DNA fragmentation but not mitochondrial processes, AIF migration and chromatin condensation. These results indicate that mitochondrial changes are an early step in the apoptosis induced by Dol-P and AIF is one of the important factors which induce chromatin condensation in nuclei.
Collapse
Affiliation(s)
- E Yasugi
- Department of Hematology, Research Institute, International Medical Center of Japan, Tokyo.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Carlson T, Skorupinska-Tudek K, Hertel J, Chojnacki T, Olsson JM, Swiezewska E. Single polyprenol and dolichol isolation by semipreparative high-performance liquid chromatography technique. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32025-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Okuma E, Saeki K, Shimura M, Ishizaka Y, Yasugi E, Yuo A. Induction of apoptosis in human hematopoietic U937 cells by granulocyte-macrophage colony-stimulating factor: possible existence of caspase 3-like pathway. Leukemia 2000; 14:612-9. [PMID: 10764146 DOI: 10.1038/sj.leu.2401716] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) induced apoptosis in human hematopoietic U937 cells by itself and in a synergistic manner with tumor necrosis factor (TNF). GM-CSF-induced apoptosis was not inhibited by caspase inhibitors YVAD-CMK, DEVD-CHO and z-VAD-FMK, under the condition that these inhibitors potently suppressed TNF-induced apoptosis. Both GM-CSF and TNF induced caspase 3-like activity in this cell line though the time course was distinct between two cytokines, and combined stimulation of cells with GM-CSF plus TNF induced additive or synergistic activation of caspase 3-like activity. Amount of immunoreactive cleaved forms of caspase 3 recognized by specific antibody was completely dissociated with its enzymatic activity when the cells were stimulated with GM-CSF, but not with TNF. These results indicate that GM-CSF induces apoptosis of U937 cells via unknown pathway, which seems to be mediated by caspase 3-like activity, yet not caspase 3 itself, resistant to the caspase inhibitors, and synergistically interacts with conventional caspase 3 pathway of TNF. Possible involvement of caspases 1 and 8 (-like activity) but not caspase 7 in this pathway was also suggested.
Collapse
Affiliation(s)
- E Okuma
- Department of Hematology, Research Institute, International Medical Center of Japan, Tokyo
| | | | | | | | | | | |
Collapse
|
13
|
Shimura M, Okuma E, Yuo A, Sasaki T, Mukai C, Takaku F, Ishizaka Y. Room temperature-induced apoptosis of Jurkat cells sensitive to both caspase-1 and caspase-3 inhibitors. Cancer Lett 1998; 132:7-16. [PMID: 10397447 DOI: 10.1016/s0304-3835(98)00116-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that HL-60 cells underwent apoptosis when exposed to room temperature (RT) (21 degrees C). RT-induced apoptosis of HL-60 cells is inhibited by the caspase-1 inhibitor (YVAD-CMK), but not by the caspase-3 inhibitor (DEVD-CHO). In this study, we studied RT-induced apoptosis in 15 human cell lines of hematopoietic lineage and found that the Jurkat cell line also responded to RT by a different apoptotic process. RT-induced apoptosis of Jurkat cells was attenuated by YVAD-CMK as well as DEVD-CHO. Increased caspase activity on DEVD-AMC, which was inhibited by both YVAD-CMK and DEVD-CHO added to the cell culture, was also detected. The involvement of caspase-3 itself, however, was not recognized by Western blot analysis. In contrast, the processing of caspase-3 was observed in the apoptotic HL-60 cells. These data implicate the presence of the redundant processes of apoptosis induced by RT treatment.
Collapse
Affiliation(s)
- M Shimura
- Department of Haematology, International Medical Center of Japan, Tokyo
| | | | | | | | | | | | | |
Collapse
|