1
|
Tsukahara T, Tsukahara R, Yasuda S, Makarova N, Valentine WJ, Allison P, Yuan H, Baker DL, Li Z, Bittman R, Parrill A, Tigyi G. Different residues mediate recognition of 1-O-oleyllysophosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor gamma. J Biol Chem 2005; 281:3398-407. [PMID: 16321982 DOI: 10.1074/jbc.m510843200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Here we showed that a naturally occurring ether analog of lysophosphatidic acid, 1-O-octadecenyl-2-hydroxy-sn-glycero-3-phosphate (AGP), is a high affinity partial agonist of the peroxisome proliferator-activated receptor gamma (PPARgamma). Binding studies using the PPARgamma ligand binding domain showed that [32P]AGP and [3H]rosiglitazone (Rosi) both specifically bind to PPARgamma and compete with each other. [32P]AGP bound PPARgamma with an affinity (Kdapp 60 nm) similar to that of Rosi. However, AGP displaced approximately 40% of bound [3H]Rosi even when applied at a 2000-fold excess. Activation of PPARgamma reporter gene expression by AGP and Rosi showed similar potency, yet AGP-mediated activation was approximately 40% that of Rosi. A complex between AGP and PPARgamma was generated using molecular modeling based on a PPARgamma crystal structure. AGP-interacting residues were compared with Rosi-interacting residues identified within the Rosi-PPARgamma co-crystal complex. These comparisons showed that the two ligands occupy partially overlapping positions but make different hydrogen bonding and ion pairing interactions. Site-specific mutants of PPARgamma were prepared to examine individual ligand binding. H323A and H449A mutants showed reduced binding of Rosi but maintained binding of AGP. In contrast, the R288A showed reduced AGP binding but maintained Rosi binding. Finally, alanine replacement of Tyr-473 abolished binding and activation by Rosi and AGP. These observations indicate that the endogenous lipid mediator AGP is a high affinity ligand of PPARgamma but that it binds via interactions distinct from those involved in Rosi binding. These distinct interactions are likely responsible for the partial PPARgamma agonism of AGP.
Collapse
MESH Headings
- Adenoviridae/metabolism
- Alanine/chemistry
- Animals
- Benzophenones/chemistry
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Chlorocebus aethiops
- Crystallography, X-Ray
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Hypoglycemic Agents/pharmacology
- Kinetics
- Ligands
- Lipids/chemistry
- Lysophospholipids/chemistry
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Models, Chemical
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Oxygen/metabolism
- PPAR gamma/agonists
- PPAR gamma/chemistry
- PPAR gamma/metabolism
- Plasmids/metabolism
- Point Mutation
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Rosiglitazone
- Thiazolidinediones/pharmacology
- Transfection
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Baker RR, Chang H. Phosphatidic acid is the prominent product of endogenous neuronal nuclear lipid phosphorylation, an activity enhanced by sphingosine, linked to phospholipase C and associated with the nuclear envelope. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1534:110-20. [PMID: 11786297 DOI: 10.1016/s1388-1981(01)00182-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using endogenous lipid substrates, assays of lipid phosphorylation indicated that neuronal nuclei had a considerable superiority in phosphatidic acid (PA) formation when compared with homogenates and other subfractions of cerebral cortex. This predominance of neuronal nuclear PA labelling was linked to a sizable pool of nuclear diacylglycerols that expanded significantly with incubation. PA was also the dominant product of neuronal nuclear lipid phosphorylation reactions. Nuclear envelope preparations and the parent neuronal nuclei showed specific rates of PA formation that were comparable, based upon membrane phospholipid contents. As well, using an exogenous diacylglycerol substrate, the distribution of diacylglycerol kinase activities closely followed phospholipid contents of subfractions derived from the neuronal nucleus during envelope preparation. This evidence suggested an association between diacylglycerol kinase and the neuronal nuclear envelope. Nuclear PA formation increased in the presence of sphingosine, while sphingosine decreased PA formation in other subfractions. Likely sphingosine exerted its effect on nuclear diacylglycerol kinase, as sphingosine did not elevate levels of nuclear diacylglycerols. Phosphoinositidase C was present in the nuclei and inhibitors of this enzyme did decrease PA formation, indicating diacylglycerols from inositides as substrates for nuclear diacylglycerol kinase. The nuclear envelope fraction had a considerably lower specific phosphoinositidase C activity than the parent nuclei, and showed an activation of PA formation by sphingosine, but a less efficient handling of the exogenous diacylglycerol substrate. It is possible that phosphoinositidase C and diacylglycerol kinase are closely situated within the neuronal nuclei, and a loss of the former activity may compromise the latter.
Collapse
Affiliation(s)
- R R Baker
- Department of Biochemistry, Room 5202, Medical Sciences Bldg., University of Toronto, Toronto, ON M5S 1A8, Canada.
| | | |
Collapse
|
3
|
Baker RR, Chang HY. The regulation of CoA-independent transacylation reactions in neuronal nuclei by lysophospholipid, free fatty acid, and lysophospholipase: the control of nuclear lyso platelet-activating factor metabolism. Mol Cell Biochem 2000; 215:135-44. [PMID: 11204449 DOI: 10.1023/a:1026535611654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CoA-independent transacylase activities generating alkylacylglycerophosphocholine (AAGPC) from alkylglycerophosphocholine (1-alkyl GPC) were considerably enriched in neuronal nuclei isolated from rabbit cerebral cortex. Specific nuclear transacylation activities were 13 times the corresponding microsomal values. Several lysophospholipids, notably 1-acyl glycerophosphocholine (1-acyl GPC), 1-alkenyl GPC and 1-alkenyl GPE (1-alkenyl glycerophosphoethanolamine) inhibited the transacylation of 1-alkyl GPC. The inhibitory effects of 1-acyl GPC were seen in the presence of MAFP (methyl arachidonoylfluorophosphonate) or free oleate, compounds that inhibit neuronal nuclear lysophospholipase. When neuronal nuclei were preincubated with 1-alkyl GPC, the radioactive AAGPC product served as donor in transacylation reactions, to generate 1-alkyl GPC. In these nuclear reactions, 1-palmitoyl GPE and 1-palmitoyl GPC appeared to be poor acceptor substrates, when compared with corresponding 1-alkyl and 1-alkenyl analogues. The presence of free oleate or MAFP in the reactions containing 1-acyl GPC boosted the release of 1-alkyl GPC from AAGPC. These observations are of particular relevance to brain ischemia in which lysophospholipid, free fatty acid, and platelet-activating factor (PAF) levels rise dramatically. PAF can be made by the nuclear acetylation of 1-alkyl GPC, which is formed by nuclear transacylation mechanisms. Yet transacylase also removes 1-alkyl GPC, and thus this enzyme activity can regulate 1-alkyl GPC availability. Our observations indicate that lysophospholipids promote the formation of 1-alkyl GPC from nuclear AAGPC via transacylation, while free fatty acid likely prolongs the lifetime of 1-acyl lysophospholipids substrates by lysophospholipase inhibition. Similarly, once 1-alkyl GPC is formed, other lysophospholipids effectively compete with this 1-alkyl analogue and reduce its conversion back to AAGPC by transacylation. Free oleate, in this case, sustains 1-acyl lysophospholipid inhibitors of 1-alkyl GPC transacylation. Thus the cycle of transacylation may favour 1-alkyl GPC formation during ischemia, increasing levels of 1-alkyl GPC for nuclear acetylation reactions and PAF formation. The nuclear generation of PAF is of considerable importance as PAF can play regulatory roles in transcription events associated with inflammation.
Collapse
Affiliation(s)
- R R Baker
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Francescangeli E, Boila A, Goracci G. Properties and regulation of microsomal PAF-synthesizing enzymes in rat brain cortex. Neurochem Res 2000; 25:705-13. [PMID: 10905633 DOI: 10.1023/a:1007523422825] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Platelet-activating factor (PAF) is a phospholipid mediator of long-term potentiation, synaptic plasticity and memory formation as well as of the development of brain damage. In brain, PAF is synthesized by two distinct pathways but their relative contribution to its productions, in various physiological and pathological conditions, is not established. We have further investigated on the properties of the two enzymes that catalyze the last step of the de novo or remodeling pathways in rat brain microsomes, PAF-synthesizing phosphocholinetransferase (PAF-PCT) and lysoPAF acetyltransferase (lysoPAF-AT), respectively. The latter enzyme is fully active at microM Ca2+ concentration, inhibited by MgATP and activated by phosphorylation. Because the reversibility of the reaction catalyzed by PAF-PCT, its direction depends on the ratio [CDP-choline]/[CMP], which is related to the energy charge of the cell. These and other properties indicate that the de novo pathway should mainly contribute to PAF synthesis for maintaining its basal levels under physiological conditions. The remodeling pathway should be more involved in the production of PAF during ischemia. During reperfusion, the overproduction of PAF should be the result of the concomitant activation of both pathways.
Collapse
Affiliation(s)
- E Francescangeli
- Istituto di Biochimica e Chimica Medica, Università di Perugia, Italy
| | | | | |
Collapse
|
5
|
Abstract
In this review properties of lipid acetyltransferase enzymes are outlined. The three activities of interest are lyso PAF acetyltransferase (acetyl CoA: 1-alkyl-sn-glycero-3-phosphocholine acetyltransferase), AGP acetyltransferase (acetyl CoA: 1-alkyl sn-glycero-3-phosphate acetyltransferase) and a transacetylase activity that can transfer acetyl groups from PAF to lipid acceptors in the formation of 1-alkenyl-2-acetyl-sn-glycero-3-phosphoethanolamine and N-acetyl sphingosine (C2 ceramide). This review focuses on the role of acetyltransferases and transacetylases within the metabolism of platelet-activating factor and specifically addresses characteristics of the enzymes, including subcellular localization, substrate selectivity, and enzymatic regulation.
Collapse
Affiliation(s)
- R R Baker
- Department of Biochemistry, University of Toronto, Canada
| |
Collapse
|
6
|
Baker RR, Chang HY. A metabolic path for the degradation of lysophosphatidic acid, an inhibitor of lysophosphatidylcholine lysophospholipase, in neuronal nuclei of cerebral cortex. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:58-68. [PMID: 10601695 DOI: 10.1016/s1388-1981(99)00185-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuronal nuclei isolated from rabbit cerebral cortex were found to be enriched in an NEM-insensitive lysophosphatidic acid (lysoPA) phosphohydrolase activity. LysoPA is an inhibitor of the nuclear lysophosphatidylcholine (lysoPC) lysophospholipase, and by preserving lysoPC levels, lysoPA boosted the nuclear production of the acyl analogue of platelet-activating factor by promoting the acetylation of lysoPC (Baker and Chang, Mol. Cell Biochem., 1999, in press). The nuclear phosphohydrolase converts lysoPA to 1-monoacylglycerol, and thus eliminates this lysoPA inhibition of lysoPC lysophospholipase. The nuclear lysoPA phosphohydrolase specific activity was more than three times that observed for the nuclear lysoPA lysophospholipase (Baker and Chang, Biochim. Biophys. Acta 1438 (1999) 253-263) and represents a more active route for nuclear lysoPA removal. The neuronal nuclear lysoPA phosphohydrolase was inhibited at acidic pH, and also inhibited by calcium ions. The 1-monoacylglycerol product of the phosphohydrolase is rapidly degraded by neuronal monoacylglycerol lipase, an enzyme some sevenfold more active than the phosphohydrolase and sensitive to inhibition by arachidonoyl trifluoromethyl ketone (AACOCF(3)). Both acidic pH and free fatty acid inhibited the lipase. In the absence of AACOCF(3), production of fatty acid from lysoPA substrate could be largely attributed to the sequential actions of the nuclear phosphohydrolase and lipase. This facilitates fatty acid recycling back into phospholipid by lysophospholipid acylation when ATP levels are restored following periods of brain ischemia. At relatively low concentrations, sphingosine-1-phosphate, and alkylglycerophosphate were the most effective phosphohydrolase inhibitors while phosphatidic acid, alkylacetylglycerophosphate and ceramide were without effect. LysoPA is an interesting regulatory molecule that can potentially preserve lysophosphatidylcholine within the nuclear membrane for use in acetylation reactions. Thus conditions relevant to brain ischemia such as falling pH, falling ATP concentrations, rising fatty acid and intracellular calcium levels may, by slowing this metabolic path for lysoPA loss, promote the production of acyl PAF and contribute to the increased levels of the acetylated lipids noted in ischemia.
Collapse
Affiliation(s)
- R R Baker
- Department of Biochemistry, Room 5202, Medical Sciences Bldg., University of Toronto, Toronto, Ont., Canada.
| | | |
Collapse
|
7
|
Baker RR, Chang HY. Lysophosphatidic acid, alkylglycerophosphate and alkylacetylglycerophosphate increase the neuronal nuclear acetylation of 1-acyl lysophosphatidyl choline by inhibition of lysophospholipase. Mol Cell Biochem 1999; 198:47-55. [PMID: 10497877 DOI: 10.1023/a:1006933625802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neuronal nuclei were isolated from rabbit cerebral cortex, and lipid acetylation reactions were studied because of the high nuclear concentration of acetyltransferases that generate platelet activating factor (PAF) and its acyl analogue AcylPAF. The neuronal nuclear acetylation of 1-palmitoyl lysophosphatidylcholine (lyso PC) was found to be increased more than twofold when low concentrations of lyso PC were incubated in acetylation assays in the presence of 1-palmitoyl lysophosphatidic acid (lyso PA) or 1-hexadecyl glycerophosphate (AGP). This effect was not found for a variety of other acidic and neutral 1-acyl lysoglycerophospholipids. At 4 microM concentrations, AGP was the more effective in increasing rates of lyso PC acetylation, while lyso PA was more effective at 25-35 microM. 1-Stearoyl, 1-alkenyl and 1-decanoyl analogues of lyso PA were all less effective than 1-palmitoyl lyso PA. Phosphatidic acid was considerably less effective than lyso PA, while the acetylated analogue of AGP, AAcGP (alkylacetylglycerophosphate), increased rates of lyso PC acetylation to maxima similar to those seen with lyso PA or AGP. In addition, AAcGP promoted these maxima at considerably lower concentrations (2-4 microM). A mechanism for these effects was suggested when nuclear envelopes (NE), isolated in the presence of PMSF, showed these maximal acetylation rates at low lyso PC concentrations, and these rates were not elevated by the presence of lyso PA. PMSF is a protease inhibitor but can also inhibit lysophospholipase activity. We found a nuclear lysophospholipase that degraded lyso PC at rates more than 13 times those of nuclear lyso PC acetylation. PMSF did inhibit this nuclear lysophospholipase, as did lyso PA, AGP and AAcGP. Kinetic analyses of the effects of lyso PA, AGP and AAcGP on lyso PC lysophospholipase indicated that these three lipids acted as competitive inhibitors for the lyso PC substrate. It is possible that low rates of lyso PC acetylation seen in neuronal nuclei at low lyso PC concentrations, are caused by lyso PC loss mediated by a very strong nuclear lysophospholipase. The effects of lyso PA, AGP and AAcGP in boosting rates of lyso PC acetylation likely come from the inhibition of nuclear lysophospholipase and a preservation of lyso PC concentrations. Competing neuronal nuclear reactions for low endogenous levels of lyso PC may regulate the formation of AcylPAF, and rising lyso PA, AGP or AAcGP concentrations can increase rates of nuclear AcylPAF synthesis.
Collapse
Affiliation(s)
- R R Baker
- Department of Biochemistry, University of Toronto, ON, Canada
| | | |
Collapse
|
8
|
Baker RR, Chang HY. Evidence for two distinct lysophospholipase activities that degrade lysophosphatidylcholine and lysophosphatidic acid in neuronal nuclei of cerebral cortex. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:253-63. [PMID: 10320808 DOI: 10.1016/s1388-1981(99)00057-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal nuclei were isolated from immature rabbit cerebral cortex and nuclear lysophospholipase activities studied using two different 1-acyl lysophospholipids: lysophosphatidylcholine (lysoPC) and lysophosphatidic acid (lysoPA). Our interest in these two lysolipids arose from the observation that lysoPA could promote the acetylation of lysoPC by substantially inhibiting a very active nuclear lysoPC lysophospholipase activity, in a competitive manner (R.R. Baker, H. -y. Chang, Mol. Cell. Biochem. (1999) in press). As there was also evidence for nuclear lysoPA deacylation, it was of interest to see whether one activity could possibly utilize both lysolipid substrates. We now have evidence for two separate lysophospholipase activities in neuronal nuclei. The lysoPC lysophospholipase activity was the more active, more highly enriched in the neuronal nuclei, and showed optimal activity at pH 8.4-9, while the lysoPA lysophospholipase activity was maintained over a much broader pH range. The lysoPC activity was substantially inhibited by free fatty acid, and showed considerable stimulation by serum albumin, while the activity utilizing lysoPA was much less affected by these agents. When lysoPC was added to incubations containing radioactive lysoPA, there was no significant inhibition found in rates of release of radioactive fatty acid, indicating that the lysoPA lysophospholipase activity did not utilize the lysoPC substrate. In incubations with lysoPC, MgATP and CoA brought about a sizable formation of phosphatidylcholine whose radioactivity was equally distributed between the sn-1 and sn-2 positions suggesting labelling both directly from the lysoPC substrate and from fatty acid produced by the lysophospholipase activity. By comparison, with the radioactive lysoPA substrate, MgATP and CoA promoted relatively lower levels of phosphatidic acid formation whose principal labelling came directly from the radioactive lysoPA. Largely because of the high activity of the nuclear lysoPC lysophospholipase, there is considerable potential in the neuronal nucleus to limit the use of lysoPC in other reactions, such as the formation of acylPAF (1-acyl analogue of platelet activating factor). It is of interest that conditions associated with brain ischaemia such as increased free fatty acid levels, falling pH and declines in MgATP may allow a preservation of neuronal nuclear lysoPC levels for acetylation. The existence of a separate lysophospholipase activity for lysoPA allows an independent control of lysoPA which can serve as an important regulator of the nuclear lysoPC lysophospholipase.
Collapse
Affiliation(s)
- R R Baker
- Department of Biochemistry, Room 5202, Medical Sciences Bldg., University of Toronto, Toronto, Ont. M5S 1A8, Canada
| | | |
Collapse
|