1
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
2
|
Allouche S, Schaeffer S, Chapon F. [Mitochondrial diseases in adults: An update]. Rev Med Interne 2021; 42:541-557. [PMID: 33455836 DOI: 10.1016/j.revmed.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial diseases, characterized by a respiratory chain deficiency, are considered as rare genetic diseases but are the most frequent among inherited metabolic disorders. The complexity of their diagnosis is due to the dual control by the mitochondrial (mtDNA) and the nuclear DNA (nDNA), and to the heterogeneous clinical presentations; illegitimate association of symptoms should prompt the clinician to evoke a mitochondrial disorder. The goals of this review are to provide clinicians a better understanding of mitochondrial diseases in adults. After a brief overview on the mitochondrial origin and functions, especially their role in the energy metabolism, we will describe the genetic bases for mitochondrial diseases, then we will describe the various clinical presentations with the different affected tissues as well as the main symptoms encountered. Even if the new sequencing approaches have profoundly changed the diagnostic process, the brain imaging, the biological, the biochemical, and the histological explorations are still important highlighting the need for a multidisciplinary approach. While for most of the patients with a mitochondrial disease, only supportive and symptomatic therapies are available, recent advances in the understanding of the pathophysiological mechanisms have been made and new therapies are being developed and are evaluated in human clinical trials.
Collapse
Affiliation(s)
- S Allouche
- Laboratoire de biochimie, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France.
| | - S Schaeffer
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| | - F Chapon
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| |
Collapse
|
3
|
Orekhov AN, Nikiforov NN, Ivanova EA, Sobenin IA. Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on Atherosclerosis. J Clin Med 2020; 9:jcm9040978. [PMID: 32244740 PMCID: PMC7230212 DOI: 10.3390/jcm9040978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronification of inflammation is the process that lies at the basis of several human diseases that make up to 80% of morbidity and mortality worldwide. It can also explain a great deal of processes related to aging. Atherosclerosis is an example of the most important chronic inflammatory pathology in terms of public health impact. Atherogenesis is based on the inflammatory response of the innate immunity arising locally or focally. The main trigger for this response appears to be modified low-density lipoprotein (LDL), although other factors may also play a role. With the quick resolution of inflammation, atherosclerotic changes in the arterial wall do not occur. However, a violation of the innate immunity response can lead to chronification of local inflammation and, as a result, to atherosclerotic lesion formation. In this review, we discuss possible mechanisms of the impaired immune response with a special focus on mitochondrial dysfunction. Some mitochondrial dysfunctions may be due to mutations in mitochondrial DNA. Several mitochondrial DNA mutations leading to defective mitophagy have been identified. The regulatory role of mitophagy in the immune response has been shown in recent studies. We suggest that defective mitophagy promoted by mutations in mitochondrial DNA can cause innate immunity disorders leading to chronification of inflammation.
Collapse
Affiliation(s)
- Alexander N. Orekhov
- Laboratory for Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Nikita N. Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia;
| |
Collapse
|
4
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|
5
|
Kaheel H, Breß A, Hassan MA, Shah AA, Amin M, Bakhit YHY, Kniper M. Frequency of mitochondrial m.1555A > G mutation in Syrian patients with non-syndromic hearing impairment. BMC EAR, NOSE, AND THROAT DISORDERS 2018; 18:7. [PMID: 29942192 PMCID: PMC5963064 DOI: 10.1186/s12901-018-0055-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
Abstract
Background Mitochondrial maternally inherited hearing impairment (HI) appears to be increasing in frequency. The incidence of mitochondrial defects causing HI is estimated to be between 6 and 33% of all hearing deficiencies. Mitochondrial m.1555A > G mutation is the first mtDNA mutation associated with non-syndromic sensorineural deafness and also with aminoglycoside induced HI. Its prevalence varied geographically between different populations. Methods We carried out PCR, restriction enzyme based screening, and sequencing of 337 subjects (including 132 patients diagnosed clinically with hereditary deafness) from 54 families from Syria for m.1555A > G mitochondrial mutation. Results Mitochondrial m.1555A > G mutation was detected in one of fifty-four families (1.85%), six out of the 132 (4.5%) of all patients with NSHI and one propositus of the 205 individuals with normal hearing (0.48%). Conclusion This is the first study to report prelingual deafness causative gene mutations identified by sequencing technology in Syrian families. It is obvious from the results that the testing for the m.1555A > G mutation is useful for diagnosis of hearing loss in Syrian patients and should also be considered prior to treatment with aminoglycosides in predisposed individuals.
Collapse
Affiliation(s)
- Hazem Kaheel
- University, HNO -universities Klink-Tubingen, Tubingen, Germany
| | - Andreas Breß
- University, HNO -universities Klink-Tubingen, Tubingen, Germany
| | - Mohamed A Hassan
- University, HNO -universities Klink-Tubingen, Tubingen, Germany.,Department of Bioinformatics, Africa city of technology, Khartoum, Sudan.,Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany, African city of Technology, Khartoum, Sudan
| | - Aftab Ali Shah
- 3Faculty of Biotechnology, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Mutaz Amin
- 4Department of Biochemistry, Faculty of Medicine, University of Khartoum, P. O. Box 102, Khartoum, Sudan
| | - Yousuf H Y Bakhit
- 5Department of Basic Medical Sciences, Faculty of Dentistry-University of Khartoum, Khartoum, Sudan
| | - Marlies Kniper
- University, HNO -universities Klink-Tubingen, Tubingen, Germany
| |
Collapse
|
6
|
Wang Y, Smith C, Parboosingh JS, Khan A, Innes M, Hekimi S. Pathogenicity of two COQ7 mutations and responses to 2,4-dihydroxybenzoate bypass treatment. J Cell Mol Med 2017; 21:2329-2343. [PMID: 28409910 PMCID: PMC5618687 DOI: 10.1111/jcmm.13154] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/10/2017] [Indexed: 01/22/2023] Open
Abstract
Primary ubiquinone (co‐enzyme Q) deficiency results in a wide range of clinical features due to mitochondrial dysfunction. Here, we analyse and characterize two mutations in the ubiquinone biosynthetic gene COQ7. One mutation from the only previously identified patient (V141E), and one (L111P) from a 6‐year‐old girl who presents with spasticity and bilateral sensorineural hearing loss. We used patient fibroblast cell lines and a heterologous expression system to show that both mutations lead to loss of protein stability and decreased levels of ubiquinone that correlate with the severity of mitochondrial dysfunction. The severity of L111P is enhanced by the particular COQ7 polymorphism (T103M) that the patient carries, but not by a mitochondrial DNA mutation (A1555G) that is also present in the patient and that has been linked to aminoglycoside‐dependent hearing loss. We analysed treatment with the unnatural biosynthesis precursor 2,4‐dihydroxybenzoate (DHB), which can restore ubiquinone synthesis in cells completely lacking the enzymatic activity of COQ7. We find that the treatment is not beneficial for every COQ7 mutation and its outcome depends on the extent of enzyme activity loss.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Christopher Smith
- Department of Medical Genetics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Jillian S Parboosingh
- Department of Medical Genetics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital, Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Metabolic Diseases Clinic, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital, Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
7
|
O’Sullivan ME, Perez A, Lin R, Sajjadi A, Ricci AJ, Cheng AG. Towards the Prevention of Aminoglycoside-Related Hearing Loss. Front Cell Neurosci 2017; 11:325. [PMID: 29093664 PMCID: PMC5651232 DOI: 10.3389/fncel.2017.00325] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/30/2017] [Indexed: 01/08/2023] Open
Abstract
Aminoglycosides are potent antibiotics deployed worldwide despite their known side-effect of sensorineural hearing loss. The main etiology of this sensory deficit is death of inner ear sensory hair cells selectively triggered by aminoglycosides. For decades, research has sought to unravel the molecular events mediating sensory cell demise, emphasizing the roles of reactive oxygen species and their potentials as therapeutic targets. Studies in recent years have revealed candidate transport pathways including the mechanotransducer channel for drug entry into sensory cells. Once inside sensory cells, intracellular targets of aminoglycosides, such as the mitochondrial ribosomes, are beginning to be elucidated. Based on these results, less ototoxic aminoglycoside analogs are being generated and may serve as alternate antimicrobial agents. In this article, we review the latest findings on mechanisms of aminoglycoside entry into hair cells, their intracellular actions and potential therapeutic targets for preventing aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Mary E. O’Sullivan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Adela Perez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Randy Lin
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Autefeh Sajjadi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Anthony J. Ricci Alan G. Cheng
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Anthony J. Ricci Alan G. Cheng
| |
Collapse
|
8
|
Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol 2016; 12:267-80. [PMID: 26804019 PMCID: PMC5469549 DOI: 10.1038/nrneph.2015.214] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria are increasingly recognized as key players in genetic and acquired renal diseases. Most mitochondrial cytopathies that cause renal symptoms are characterized by tubular defects, but glomerular, tubulointerstitial and cystic diseases have also been described. For example, defects in coenzyme Q10 (CoQ10) biosynthesis and the mitochondrial DNA 3243 A>G mutation are important causes of focal segmental glomerulosclerosis in children and in adults, respectively. Although they sometimes present with isolated renal findings, mitochondrial diseases are frequently associated with symptoms related to central nervous system and neuromuscular involvement. They can result from mutations in nuclear genes that are inherited according to classic Mendelian rules or from mutations in mitochondrial DNA, which are transmitted according to more complex rules of mitochondrial genetics. Diagnosis of mitochondrial disorders involves clinical characterization of patients in combination with biochemical and genetic analyses. In particular, prompt diagnosis of CoQ10 biosynthesis defects is imperative because of their potentially reversible nature. In acute kidney injury (AKI), mitochondrial dysfunction contributes to the physiopathology of tissue injury, whereas mitochondrial biogenesis has an important role in the recovery of renal function. Potential therapies that target mitochondrial dysfunction or promote mitochondrial regeneration are being developed to limit renal damage during AKI and promote repair of injured tissue.
Collapse
Affiliation(s)
- Francesco Emma
- Division of Nephrology and Dialysis, Ospedale Pediatrico Bambino Gesù-IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Giovanni Montini
- Pediatric Nephrology and Dialysis Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via della Commenda 9, Milano, Italy
| | - Samir M Parikh
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| |
Collapse
|
9
|
Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta. BIOMED RESEARCH INTERNATIONAL 2015; 2015:825468. [PMID: 25834827 PMCID: PMC4365331 DOI: 10.1155/2015/825468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/18/2014] [Accepted: 10/28/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of the present study was an analysis of heteroplasmy level in mitochondrial mutations 652delG, A1555G, C3256T, T3336C, 652insG, C5178A, G12315A, G13513A, G14459A, G14846A, and G15059A in normal and affected by atherosclerosis segments of morphologically mapped aortic walls. METHODS We investigated the 265 normal and atherosclerotic tissue sections of 5 human aortas. Intima of every aorta was divided according to morphological characteristics into segments with different types of atherosclerotic lesions: fibrous plaque, lipofibrous plaque, primary atherosclerotic lesion (fatty streak and fatty infiltration), and normal intima from human aorta. PCR-fragments were analyzed by a new original method developed in our laboratory on the basis of pyrosequence technology. RESULTS According to the obtained data, mutations G12315A and G14459A are significantly associated with total and primary atherosclerotic lesions of intimal segments and lipofibrous plaques (P ≤ 0.01 and P ≤ 0.05, accordingly). Mutation C5178A is significantly associated with fibrous plaques and total atherosclerotic lesions (P ≤ 0.01). A1555G mutation shows an antiatherosclerotic effect in primary lesion in lipofibrous plaques (P ≤ 0.05). Meanwhile, G14846A mutation is antiatherogenic for lipofibrous plaques (P ≤ 0.05). CONCLUSION Therefore, mutations C5178A, G14459A, G12315A, A1555G, and G14846A were found to be associated with atherosclerotic lesions.
Collapse
|
10
|
Emperador S, Pacheu-Grau D, Bayona-Bafaluy MP, Garrido-Pérez N, Martín-Navarro A, López-Pérez MJ, Montoya J, Ruiz-Pesini E. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations. Front Genet 2015; 5:469. [PMID: 25642242 PMCID: PMC4294204 DOI: 10.3389/fgene.2014.00469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/19/2014] [Indexed: 01/22/2023] Open
Abstract
Several homoplasmic pathologic mutations in mitochondrial DNA, such as those causing Leber hereditary optic neuropathy or non-syndromic hearing loss, show incomplete penetrance. Therefore, other elements must modify their pathogenicity. Discovery of these modifying factors is not an easy task because in multifactorial diseases conventional genetic approaches may not always be informative. Here, we have taken an evolutionary approach to unmask putative modifying factors for a particular homoplasmic pathologic mutation causing aminoglycoside-induced and non-syndromic hearing loss, the m.1494C>T transition in the mitochondrial DNA. The mutation is located in the decoding site of the mitochondrial ribosomal RNA. We first looked at mammalian species that had fixed the human pathologic mutation. These mutations are called compensated pathogenic deviations because an organism carrying one must also have another that suppresses the deleterious effect of the first. We found that species from the primate family Cercopithecidae (old world monkeys) harbor the m.1494T allele even if their auditory function is normal. In humans the m.1494T allele increases the susceptibility to aminoglycosides. However, in primary fibroblasts from a Cercopithecidae species, aminoglycosides do not impair cell growth, respiratory complex IV activity and quantity or the mitochondrial protein synthesis. Interestingly, this species also carries a fixed mutation in the mitochondrial ribosomal protein S12. We show that the expression of this variant in a human m.1494T cell line reduces its susceptibility to aminoglycosides. Because several mutations in this human protein have been described, they may possibly explain the absence of pathologic phenotype in some pedigree members with the most frequent pathologic mutations in mitochondrial ribosomal RNA.
Collapse
Affiliation(s)
- Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain ; Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza Zaragoza, Spain ; Centros de Investigación Biomédica en Red de Enfermedades Raras, Universidad de Zaragoza Zaragoza, Spain
| | - David Pacheu-Grau
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | - Nuria Garrido-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | - Antonio Martín-Navarro
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | - Manuel J López-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain ; Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza Zaragoza, Spain ; Centros de Investigación Biomédica en Red de Enfermedades Raras, Universidad de Zaragoza Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain ; Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza Zaragoza, Spain ; Centros de Investigación Biomédica en Red de Enfermedades Raras, Universidad de Zaragoza Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain ; Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza Zaragoza, Spain ; Centros de Investigación Biomédica en Red de Enfermedades Raras, Universidad de Zaragoza Zaragoza, Spain ; Fundación ARAID, Universidad de Zaragoza Zaragoza, Spain
| |
Collapse
|
11
|
Singh R, Sripada L, Singh R. Side effects of antibiotics during bacterial infection: mitochondria, the main target in host cell. Mitochondrion 2013; 16:50-4. [PMID: 24246912 DOI: 10.1016/j.mito.2013.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/24/2022]
Abstract
Antibiotics are frontline therapy against microbial infectious diseases. Many antibiotics are known to cause several side effects in humans. Ribosomal RNA (rRNA) is the main target of antibiotics that inhibit protein synthesis. According to the endosymbiont theory, mitochondrion is of bacterial origin and their molecular and structural components of the protein expression system are almost similar. It has been observed that the rate of mutations in mitochondrial rRNA is higher as compared to that of nuclear rRNA. The presence of these mutations may mimic prokaryotic rRNA structure and bind to antibiotics targeted to ribosomes of bacteria. Mitochondrial functions are compromised hence may be one of the major causes of side effects observed during antibiotic therapy. The current review had summarized the studies on the role of antibiotics on mitochondrial functions and its relevance to the observed side effects in physiological and pathological conditions.
Collapse
Affiliation(s)
- Rochika Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| | - Lakshmi Sripada
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Rajesh Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
12
|
Iglesias E, Llobet L, Pacheu-Grau D, Gómez-Durán A, Ruiz-Pesini E. Cybrids for Mitochondrial DNA Pharmacogenomics. Drug Dev Res 2012. [DOI: 10.1002/ddr.21037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Turchetta R, Mazzei F, Celani T, Cammeresi MG, Orlando MP, Altissimi G, de Vincentiis C, D'Ambrosio F, Messineo D, Ferraris A, Cianfrone G. Audiological and radiological characteristics of a family with T961G mitochondrial mutation. Int J Audiol 2012; 51:870-9. [PMID: 23013294 DOI: 10.3109/14992027.2012.712721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to describe audiological and radiological characteristics, and other secondary aspects, in a family carrying a T961G mutation in the 12S rRNA mitochondrial gene. DESIGN Case report. STUDY SAMPLE Six members of a family participated in an audiological evaluation that included pure-tone audiometry, immittance tests, auditory brainstem responses (ABR), and otoacoustic emissions (OAE). The radiological evaluation was conducted through temporal bone CT scans using a Toshiba 16 channels Aquilon Spirale. Neuropsychiatric evaluation was also administered. RESULTS Three participants were diagnosed with severe sensorineural hearing loss of cochlear origin and cochlear malformations visible in CT scans. One participant had a mild mixed-hearing loss and no cochlear malformations. Two participants had normal audiological and radiological findings. CONCLUSIONS We believe our study can provide helpful insight on the clinical findings of a rare mutation, of which few data have been presented in literature.
Collapse
Affiliation(s)
- Rosaria Turchetta
- Department of Sensory Systems, Policlinico Umberto I Hospital, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Guo ZF, Guo WS, Xiao L, Gao GQ, Lan F, Lu XG, Li K, Liao DF. Discrimination of A1555G and C1494T point mutations in the mitochondrial 12S rRNA gene by on/off switch. Appl Biochem Biotechnol 2011; 166:234-42. [PMID: 22068689 DOI: 10.1007/s12010-011-9419-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/18/2011] [Indexed: 11/30/2022]
Abstract
The objective of this study was to apply the "on/off" switch consisting of 3' phosphorothioate-modified allele specific primers and exo(+) polymerase in single base discrimination of A1555G and C1494T mutations in the highly conserved sites of the mitochondrial 12S rRNA. The two point mutations are the hotspot mutations associated with either aminoglycoside antibiotics induced deafness or inherited nonsyndromic hearing loss. The PCR products of mitochondrial DNA (mtDNA) 12S rRNA gene were inserted into the pMD19-T vector for transformation into Escherichia coli JM109 competent cells for preparing wild-type pMD19-T/mt vector. Inverse PCR was carried out for mtDNA 12S rRNA gene C1494T and A1555G mutagenesis and DpnI endonuclease degradating methylated pMD19-T/mt vector existing in the inverse PCR products was carried out to construct the mutation-type pMD19-T/mtM vector. These constructed vectors were confirmed by DNA sequencing. Allelic specific primers targeting wild-type and mutation-type templates were designed with 3' terminal phosphorothioate modification. Two-directional primer extension was performed using Pfu polymerases. Amplified by exo(+) polymerase, allelic specific primers perfectly matching wild-type allele were extended while no products were produced from primers targeting point-mutated deafness-related allele. Similarly, allelic specific primers perfectly matching point-mutated deafness-related mutation-type allele were extended and no products were yielded from primers targeting wild-type allele. No specific product was observed in the primer extension reaction mediated by on/off switch in screening the mtDNA 12S rRNA gene harboring either C1494T or A1555G mutation in 40 healthy volunteers tested. These data suggest that the "off switch" mediated by exo(+) polymerase is highly reliable in the diagnosis of monogenic diseases and the novel "on/off" switch has enormous applications in systematic and extended screening of the12S rRNA gene A1555G and C1494T mutations. The established assay can be widely used not only for hearing loss patients but also for normal subjects before the use of aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Zi-Fen Guo
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pacheu-Grau D, Gómez-Durán A, López-Gallardo E, Pinós T, Andreu AL, López-Pérez MJ, Montoya J, Ruiz-Pesini E. 'Progress' renders detrimental an ancient mitochondrial DNA genetic variant. Hum Mol Genet 2011; 20:4224-31. [PMID: 21828074 DOI: 10.1093/hmg/ddr350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A human mitochondrial DNA (mtDNA) transition, m.1555A>G, in the 12S rRNA gene causes non-syndromic hearing loss. However, this pathological mutation is the wild-type allele in orangutan mtDNA. Here we rule out different genetic factors as the reason for its fixation in orangutans and show that aminoglycosides negatively affect the oxidative phosphorylation function by decreasing the synthesis of mtDNA-encoded proteins and the amount and activity of respiratory complex IV. These drugs also diminish the growth rate of orangutan cells. The m.1555G nucleotide is also the wild-type allele in other mammal species and they might be at risk of suffering a mitochondrial disorder if treated with aminoglycosides. Therefore, pharmacogenomic approaches should be used to confirm this possibility. These observations are important for human health. Due to the fact that old age and high frequency are criteria widely used in mitochondrial medicine to rule out a genetic change as being a pathological mutation, our results prevent against simplistic genetic approaches that do not consider the potential effect of environmental conditions. Hence, these results suggest that some ancient and highly frequent human population polymorphisms, such as those defining mtDNA haplogroups, in mitochondrial rRNA genes can be deleterious in association with new environmental conditions. Therefore, as the discovery of ribosomal antibiotics has allowed to fight infectious diseases and this breakthrough can be considered an important scientific advance or 'progress', our results suggest that 'progress' can also have a negative counterpart and render detrimental many of these mtDNA genotypes.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Maniglia LP, Moreira BCL, da Silva MAOM, Piatto VB, Maniglia JV. Screening of the mitochondrial A1555G mutation in patients with sensorineural hearing loss. Braz J Otorhinolaryngol 2009; 74:731-736. [PMID: 19082356 PMCID: PMC9445927 DOI: 10.1016/s1808-8694(15)31384-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/28/2007] [Indexed: 11/29/2022] Open
Abstract
The A1555G mitochondrial mutation is the main alteration associated with aminoglycoside-induced deafness. Aim to investigate the prevalence of the A1555G mutation in patients sensorineural hearing loss patients with and without aminoglycosides antibiotic use. Material and Method a study of 27 cases with deafness as the sample, and 100 neonates with normal hearing as the control group. DNA was extracted from blood leukocyte samples, and specific oligonucleotide primers were designed to amplify the cytochrome b gene and the region which encloses the A1555G mutation of the mitocondrial DNA using the polymerase chain reaction and restriction fragment length polymorphism. Design a cross-sectional case study. Results a region of the cytochrome b gene was amplified and the presence of the mtDNA was confirmed in all of the 127 cases. The A1555G mutation was not found in any of the 27 patients with hearing loss or the control group with 100 neonates. Conclusion the results agree with studies stating that the A1555G mutation is not prevalent in the Americas. There is interest in establishing the real prevalence of this mutation and to investigate other mutations that may cause hearing loss, associated or not with the use of aminoglycosides, in the Brazilian population.
Collapse
Affiliation(s)
- Luciano Pereira Maniglia
- Master's degree student, faculty member of the Otorhinolaryngology and Head & Neck Surgery Department, Medical School, S. J. Rio Preto, SP, FAMERP.
| | | | | | | | - José Victor Maniglia
- Livre-docente (habilitation) professor, head of the Otorhinolaryngology and Head & Neck Surgery Department, Medical School, S. J. Rio Preto, SP, FAMERP. Medical School, São José do Rio Preto, SP, FAMERP
| |
Collapse
|
17
|
Davidson MM, Walker WF, Hernandez-Rosa E, Nesti C. Evidence for nuclear modifier gene in mitochondrial cardiomyopathy. J Mol Cell Cardiol 2009; 46:936-42. [PMID: 19233192 PMCID: PMC2741011 DOI: 10.1016/j.yjmcc.2009.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA) inheritance and maintenance and function of the respiratory chain are the result of a synergistic action of the nuclear and the mitochondrial genomes. Mutations in either or both genomes can result in a wide range of multisystemic disorders. We have studied a homoplasmic mtDNA mutation in the tRNA(Ile) gene that segregates exclusively with cardiomyopathy in two unrelated families. Cytochrome c oxidase (COX) deficiency was selectively observed only in the heart tissue and in patient's cardiomyocyte cultures and not in any other cell type, indicating that the defect is tissue specific. To understand the pathogenic mechanism of cardiomyopathy associated with a homoplasmic, tissue specific mtDNA mutation, we constructed transnuclear cardiomyocyte cell lines with normal or patient's nucleus and containing wild type or mutant mtDNA. Of the four cell lines analyzed, COX activity was low only in patient's cardiomyocytes illustrating that both the patient's nucleus and mitochondria are essential for expression of the phenotype. In cells with either wild type nucleus or wild type mtDNA, COX activity was normal. From these results it is evident that a tissue specific nuclear modifier gene may interact synergistically with the mtDNA mutation to cause COX deficiency.
Collapse
Affiliation(s)
- Mercy M Davidson
- Department of Neurology, Columbia University, Russ Berrie Medical Pavilion, NY 10032, USA.
| | | | | | | |
Collapse
|
18
|
Cotney J, McKay SE, Shadel GS. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet 2009; 18:2670-82. [PMID: 19417006 DOI: 10.1093/hmg/ddp208] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial biogenesis is controlled by signaling networks that relay information to and from the organelles. However, key mitochondrial factors that mediate such pathways and how they contribute to human disease are not understood fully. Here we demonstrate that the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 are key downstream effectors of mitochondrial biogenesis that perform unique, yet cooperative functions. The primary function of h-mtTFB2 is mtDNA transcription and maintenance, which is independent of its rRNA methyltransferase activity, while that of h-mtTFB1 is mitochondrial 12S rRNA methylation needed for normal mitochondrial translation, metabolism and cell growth. Over-expression of h-mtTFB1 causes 12S rRNA hypermethylation, aberrant mitochondrial biogenesis and increased sorbitol-induced cell death. These phenotypes are recapitulated in cells harboring the pathogenic A1555G mtDNA mutation, implicating a deleterious rRNA methylation-dependent retrograde signal in maternally inherited deafness pathology and shedding significant insight into how h-mtTFB1 acts as a nuclear modifier of this disease.
Collapse
Affiliation(s)
- Justin Cotney
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA
| | | | | |
Collapse
|
19
|
Elstner M, Schmidt C, Zingler V, Prokisch H, Bettecken T, Elson J, Rudolph G, Bender A, Halmagyi G, Brandt T, Strupp M, Klopstock T. Mitochondrial 12S rRNA susceptibility mutations in aminoglycoside-associated and idiopathic bilateral vestibulopathy. Biochem Biophys Res Commun 2008; 377:379-383. [DOI: 10.1016/j.bbrc.2008.09.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 09/28/2008] [Indexed: 11/29/2022]
|
20
|
Maniglia LP, Moreira BCL, Silva MAOMD, Piatto VB, Maniglia JV. Rastreamento da mutação mitocondrial A1555G em pacientes com deficiência auditiva sensorioneural. ACTA ACUST UNITED AC 2008. [DOI: 10.1590/s0034-72992008000500015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutação mitocondrial A1555G é a principal alteração associada à surdez ocasionada pelo uso de aminoglicosídeos. OBJETIVO: Investigar a prevalência da mutação A1555G em pacientes com deficiência auditiva sensorioneural com e sem uso de antibióticos aminoglicosídeos. MATERIAL E MÉTODO: Estudo em amostras de 27 pacientes com surdez, como casos, e em 100 neonatos, com audição normal, como grupo controle. O DNA foi extraído de leucócitos de amostras de sangue e "primers" específicos foram utilizados para amplificar o gene do citocromo b e a região que abrange a mutação A1555G do DNA mitocondrial, usando as técnicas da Reação em Cadeia da Polimerase e do Polimorfismo no Comprimento de Fragmentos de Restrição. DESENHO CIENTÍFICO: Estudo de casos em corte transversal. RESULTADOS: A região do gene do citocromo b foi amplificada, sendo confirmada a presença do DNA mitocondrial em todas as 127 amostras do estudo. A mutação A1555G não foi identificada nos 27 pacientes com deficiência auditiva e no grupo controle (100 neonatos). CONCLUSÕES: Os resultados são concordantes com estudos que relatam que a mutação A1555G não é prevalente nas Américas. Há interesse na determinação da real prevalência dessa mutação e na investigação de outras mutações que possam ocasionar deficiência auditiva associada ou não ao uso de aminoglicosídeos na população brasileira.
Collapse
|
21
|
Pupo AC, Pirana S, Spinelli M, Lezirovitz K, Netto RCM, Macedo LS. Study of a Brazilian Family Presenting Non-syndromic hearing loss with mitochondrial inheritance. Braz J Otorhinolaryngol 2008; 74:786-789. [PMID: 19082364 PMCID: PMC9445942 DOI: 10.1016/s1808-8694(15)31392-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 09/12/2005] [Indexed: 11/09/2022] Open
Abstract
We hereby report on the audiological and genetic findings in individuals from a Brazilian family, with the following mitochondrial mutation A1555G in the 12SrRNA gene (MT-RNR-1). Nine individuals underwent speech, audiologic (tonal audiometry and logoaudiometry) and genetic evaluations. Eight individuals among the A1555G carriers were affected by hearing impairment and one person had normal hearing thresholds till the end of the present study. The audiologic evaluation results indicated normal hearing thresholds all the way to bilateral profound hearing loss with post-lingual onset and variable configuration. Two affected siblings presented progressive hearing loss. It was impossible to precise the time of hearing loss onset; however, the impairment was present in both children and adults. The genetic study revealed the A1555G mitochondrial mutation
Collapse
|
22
|
|
23
|
Zhao H, Young WY, Yan Q, Li R, Cao J, Wang Q, Li X, Peters JL, Han D, Guan MX. Functional characterization of the mitochondrial 12S rRNA C1494T mutation associated with aminoglycoside-induced and non-syndromic hearing loss. Nucleic Acids Res 2005; 33:1132-9. [PMID: 15722487 PMCID: PMC549421 DOI: 10.1093/nar/gki262] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we report the biochemical characterization of the deafness-associated mitochondrial 12S rRNA C1494T mutation using 27 cybrid cell lines constructed by transferring mitochondria from 9 lymphoblastoid cell lines derived from a Chinese family into human mitochondrial DNA (mtDNA)-less (ρ°) cells. Six cybrids derived from two asymptomatic members, and nine cybrids derived from three symptomatic members of the Chinese family carrying the C1494T mutation exhibited ∼38 and 43% decrease in the rate of mitochondrial protein labeling, respectively, compared with twelve cybrids derived from four Chinese control individuals. These defects are apparently a primary contributor to significant reductions in the rate of overall respiratory capacity or the rate of malate/glutamate promoted respiration, or succinate/G3P-promoted respiration, or TMPD/ascorbate-promoted respiration in mutant cybrid cell lines derived from either symptomatic or asymptomatic individuals. Furthermore, the very significant/nearly identical increase in the ratio of doubling times in DMDM medium in the presence/absence of high concentration of paromomycin was observed in symptomatic or asymptomatic cybrid cell lines carrying the C1494T mutation as compared with the average rate in control cell lines. These observations provide the direct biochemical evidences that the C1494T mutation is a pathogenic mtDNA mutation associated with aminoglycoside-induced and non-syndromic hearing loss. In addition, these data provide the first biochemical evidence that nuclear background plays a critical role in the phenotypic manifestation of non-syndromic hearing loss and aminoglycoside toxicity associated with the C1494T mutation.
Collapse
Affiliation(s)
- Hui Zhao
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Wie-Yen Young
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Qingfeng Yan
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Ronghua Li
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Juyang Cao
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Qiuju Wang
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Xiaoming Li
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Jennifer L. Peters
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Dongyi Han
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
| | - Min-Xin Guan
- Division and Program in Human Genetics and Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General HospitalBeijing 100853, China
- To whom correspondence should be addressed. Tel: +1 513 636 3337; Fax: +1 513 636 2261;
| |
Collapse
|
24
|
Li R, Xing G, Yan M, Cao X, Liu XZ, Bu X, Guan MX. Cosegregation of C-insertion at position 961 with the A1555G mutation of the mitochondrial 12S rRNA gene in a large Chinese family with maternally inherited hearing loss. Am J Med Genet A 2004; 124A:113-7. [PMID: 14699607 DOI: 10.1002/ajmg.a.20305] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in the mitochondrial DNA have been shown to be one of the most important causes of sensorineural hearing loss. Here, we report the characterization of a large Chinese family (507 members in six generations) with maternally inherited non-syndromic hearing loss. Members of this family showed variable severity and age-of-onset of hearing impairment. In particular, the average age at onset of hearing loss in this family changed from 49 years (generation III) to 3 years (generation VI). Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of a homoplasmic A1555G mutation in the 12S rRNA gene and other nucleotide changes. Of these changes, a C insertion at position 961 in the 12S rRNA gene is of special interest as mutations at this position have been found to be associated with aminoglycoside induced deafness in several genetically unrelated families. These data imply that the C insertion at position 961 in the 12S rRNA gene, acting as a secondary factor, could play a role in the phenotypic expression of the deafness associated A1555G mutation.
Collapse
Affiliation(s)
- Ronghua Li
- Division and Program in Human Genetics, Center for Hearing and Deafness Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Carelli V, Giordano C, d'Amati G. Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear-mitochondrial interaction. Trends Genet 2003; 19:257-62. [PMID: 12711217 DOI: 10.1016/s0168-9525(03)00072-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we define a category of human, maternally inherited disorders that are characterized by a homoplasmic mtDNA pathogenic mutation with variable penetrance and a stereotypical clinical expression, usually restricted to a single tissue. Examples of such disorders include Leber's hereditary optic neuropathy, mitochondrial non-syndromic sensorineural hearing loss, and a form of mitochondrial hypertrophic cardiomyopathy. The mtDNA mutation is necessary, but not sufficient to induce the pathology, and multiple lines of evidence suggest a two-locus genetic model involving a primary mitochondrial mutation and a nuclear modifier. The nuclear modifier does not induce any pathology per se, but it contributes to the pathogenic effect of the mitochondrial mutation. The nuclear modifier could be a common functional polymorphism in a tissue-specific protein, possibly with mitochondrial location.
Collapse
Affiliation(s)
- Valerio Carelli
- Dipartimento di Scienze Neurologiche, Universita' di Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy.
| | | | | |
Collapse
|