1
|
Castel T, Léon K, Gandubert C, Gueguen B, Amérand A, Guernec A, Théron M, Pichavant-Rafini K. Comparison of Sodium Selenite and Selenium-Enriched Spirulina Supplementation Effects After Selenium Deficiency on Growth, Tissue Selenium Concentrations, Antioxidant Activities, and Selenoprotein Expression in Rats. Biol Trace Elem Res 2024; 202:685-700. [PMID: 37202582 DOI: 10.1007/s12011-023-03705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Selenium contributes to physiological functions through its incorporation into selenoproteins. It is involved in oxidative stress defense. A selenium deficiency results in the onset or aggravation of pathologies. Following a deficiency, the repletion of selenium leads to a selenoprotein expression hierarchy misunderstood. Moreover, spirulina, a microalga, exhibits antioxidant properties and can be enriched in selenium.. Our objective was to determine the effects of a sodium selenite or selenium-enriched spirulina supplementation. Thirty-two female Wistar rats were fed for 12 weeks with a selenium-deficient diet. After 8 weeks, rats were divided into 4 groups and were fed with water, sodium selenite (20 μg Se/kg body weight), spirulina (3 g/kg bw), or selenium-enriched spirulina (20 μg Se/kg bw + 3 g spirulina/kg bw). Another group of 8 rats was fed with normal diet during 12 weeks. Selenium concentration and antioxidant enzyme activities were measured in plasma, urine, liver, brain, kidney, heart, and soleus. Expression of GPx (1, 3), Sel (P, S, T, W), SEPHS2, TrxR1, ApoER2, and megalin were quantified in liver, kidney, brain, and heart. We showed that a selenium deficiency leads to a growth delay, reversed by selenium supplementation despite a minor loss of weight in week 12 for SS rats. All tissues displayed a decrease in selenium concentration following deficiency. The brain seemed protected. We demonstrated a hierarchy in selenium distribution and selenoprotein expression. A supplementation of sodium selenite improved GPx activities and selenoprotein expression while a selenium-enriched spirulina was more effective to restore selenium concentration especially in the liver, kidney, and soleus.
Collapse
Affiliation(s)
- T Castel
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France.
| | - K Léon
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - C Gandubert
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - B Gueguen
- CNRS, Univ Brest, UMS 3113, F-29280, Plouzané, France
- CNRS, Univ Brest, UMR 6538 Laboratoire Géosciences Océan, F-29280, Plouzané, France
| | - A Amérand
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - A Guernec
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - M Théron
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - K Pichavant-Rafini
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| |
Collapse
|
2
|
Nayak V, Singh KRB, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. NEW J CHEM 2021. [DOI: 10.1039/d0nj05884j] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium nanoparticles (SeNPs) have revolutionized biomedical domain and are still developing rapidly. Hence, this perspective elaborates SeNPs properties, synthesis, and biomedical applications, together with their potential for management of SARS-CoV-2.
Collapse
Affiliation(s)
- Vanya Nayak
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Kshitij RB Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ajaya Kumar Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ravindra Pratap Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
3
|
Li Q, Jia Y, Burris WR, Bridges PJ, Matthews JC. Forms of selenium in vitamin-mineral mixes differentially affect the expression of genes responsible for prolactin, ACTH, and α-MSH synthesis and mitochondrial dysfunction in pituitaries of steers grazing endophyte-infected tall fescue. J Anim Sci 2019; 97:631-643. [PMID: 30476104 DOI: 10.1093/jas/sky438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
The goal of this study was to test the hypothesis that sodium selenite (inorganic Se, ISe), SEL-PLEX (organic forms of Se, OSe), vs. a 1:1 blend (MIX) of ISe and OSe in a basal vitamin-mineral (VM) mix would differentially alter pituitary transcriptome profiles in growing beef steers grazing an endophyte-infected tall fescue (E+) pasture. Predominately Angus steers (BW = 183 ± 34 kg) were randomly selected from fall-calving cows grazing E+ pasture and consuming VM mixes that contained 35 ppm Se as ISe, OSe, or MIX forms. Steers were weaned, depleted of Se for 98 d, and subjected to summer-long common grazing of a 10.1 ha E+ pasture containing 0.51 ppm ergot alkaloids. Steers were assigned (n = 8 per treatment) to the same Se-form treatments on which they were raised. Selenium treatments were administered by daily top-dressing 85 g of VM mix onto 0.23 kg soyhulls, using in-pasture Calan gates. As previously reported, serum prolactin was greater for MIX (52%) and OSe (59%) steers vs. ISe. Pituitaries were collected at slaughter and changes in global and selected mRNA expression patterns determined by microarray and real-time reverse transcription PCR analyses, respectively. The effects of Se treatment on relative gene expression were subjected to one-way ANOVA. The form of Se affected the expression of 542 annotated genes (P < 0.005). Integrated pathway analysis found a canonical pathway network between prolactin and pro-opiomelanocortin (POMC)/ACTH/α-melanocyte-stimulating hormone (α-MSH) synthesis-related proteins and that mitochondrial dysfunction was a top-affected canonical pathway. Targeted reverse transcription-PCR analysis found that the relative abundance of mRNA encoding prolactin and POMC/ACTH/α-MSH synthesis-related proteins was affected (P < 0.05) by the form of Se, as were (P ≤ 0.05) mitochondrial dysfunction-related proteins (CYB5A, FURIN, GPX4, and PSENEN). OSe steers appeared to have a greater prolactin synthesis capacity (more PRL mRNA) vs. ISe steers through decreased dopamine type two receptor signaling (more DRD2 mRNA), whereas MIX steers had a greater prolactin synthesis capacity (more PRL mRNA) and release potential by increasing thyrotropin-releasing hormone concentrations (less TRH receptor mRNA) than ISe steers. OSe steers also had a greater ACTH and α-MSH synthesis potential (more POMC, PCSK2, CPE, and PAM mRNA) than ISe steers. We conclude that form of Se in VM mixes altered expression of genes responsible for prolactin and POMC/ACTH/α-MSH synthesis, and mitochondrial function, in pituitaries of growing beef steers subjected to summer-long grazing an E+ pasture.
Collapse
Affiliation(s)
- Qing Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - Yang Jia
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - Walter R Burris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
4
|
Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers. Antimicrob Agents Chemother 2018; 62:AAC.01263-18. [PMID: 30126958 DOI: 10.1128/aac.01263-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/10/2018] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance efflux pumps frequently present low levels of basal expression. However, antibiotic-resistant mutants that overexpress these resistance determinants are selected during infection. In addition, increased expression of efflux pumps can be induced by environmental signals/cues, which can lead to situations of transient antibiotic resistance. In this study, we have applied a novel high-throughput methodology in order to identify inducers able to trigger the expression of the Stenotrophomonas maltophilia SmeVWX and SmeYZ efflux pumps. To that end, bioreporters in which the expression of the yellow fluorescent protein (YFP) is linked to the activity of either smeVWX or smeYZ promoters were developed and used for the screening of potential inducers of the expression of these efflux pumps using Biolog phenotype microarrays. YFP production was also measured by flow cytometry, and the levels of expression of smeV and smeY in the presence of a set of selected compounds were also determined by real-time reverse transcription-PCR (RT-PCR). The expression of smeVWX was induced by iodoacetate, clioquinol, and selenite, while boric acid, erythromycin, chloramphenicol, and lincomycin triggered smeYZ expression. The susceptibility to antibiotics that are known substrates of the efflux pumps decreased in the presence of the inducers. However, the analyzed multidrug efflux systems did not contribute to S. maltophilia resistance to the studied inducers. To sum up, the use of fluorescent bioreporters in combination with Biolog plates is a valuable tool for identifying inducers of the expression of bacterial multidrug resistance efflux pumps, and likely of other bacterial systems whose expression is regulated in response to signals/cues.
Collapse
|
5
|
Shankar S, Shanker U, Shikha. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. ScientificWorldJournal 2014; 2014:304524. [PMID: 25374935 PMCID: PMC4211162 DOI: 10.1155/2014/304524] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/17/2014] [Indexed: 12/13/2022] Open
Abstract
Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater.
Collapse
Affiliation(s)
- Shiv Shankar
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Uma Shanker
- Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Shikha
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| |
Collapse
|
6
|
Nazıroğlu M, Senol N, Ghazizadeh V, Yürüker V. Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell Mol Neurobiol 2014; 34:895-903. [PMID: 24842665 DOI: 10.1007/s10571-014-0069-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/21/2014] [Indexed: 12/17/2022]
Abstract
Neurodegeneration associated with acute central nervous system injuries and diseases such as spinal cord injury and traumatic brain injury (TBI) are reported to be mediated by the regulation of apoptosis and oxidative stress through Ca(2+) influx. The thiol redox system antioxidants, such as N-acetylcysteine (NAC) and selenium (Se), display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties. However, there are no reports on hippocampal apoptosis, cytosolic reactive oxygen species (ROS), or Ca(2+) values in rats with an induced TBI. Therefore, we tested the effects of Se and NAC administration on apoptosis, oxidative stress, and Ca(2+) influx through TRPV1 channel activations in the hippocampus of TBI-induced rats. The 32 rats were divided into four groups: control, TBI, TBI + NAC, and TBI + Se groups. Intraperitoneal administrations of NAC and Se were performed at 1, 24, 48, and 72 h after TBI induction. After 3 days, the hippocampal neurons were freshly isolated from the rats. In cytosolic-free Ca(2+) analyses, the neurons were stimulated with the TRPV1 channel agonist capsaicin, a pungent compound found in hot chili peppers. Cytosolic-free Ca(2+), apoptosis, cytosolic ROS levels, and caspase-3 and -9 activities were higher in the TBI group than control. The values in the hippocampus were decreased by Se and NAC administrations. In conclusion, we observed that NAC and Se have protective effects on oxidative stress, apoptosis, and Ca(2+) entry via TRPV1 channel activation in the hippocampus of this TBI model, but the effect of NAC appears to be much greater than that of Se. They are both interesting candidates for studying the amelioration of TBIs.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, University of SuleymanDemirel, TR-32260, Isparta, Turkey,
| | | | | | | |
Collapse
|
7
|
Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ. Arsenic and selenium toxicity and their interactive effects in humans. ENVIRONMENT INTERNATIONAL 2014; 69:148-58. [PMID: 24853282 DOI: 10.1016/j.envint.2014.04.019] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 05/15/2023]
Abstract
Arsenic (As) and selenium (Se) are unusual metalloids as they both induce and cure cancer. They both cause carcinogenesis, pathology, cytotoxicity, and genotoxicity in humans, with reactive oxygen species playing an important role. While As induces adverse effects by decreasing DNA methylation and affecting protein 53 expression, Se induces adverse effects by modifying thioredoxin reductase. However, they can react with glutathione and S-adenosylmethionine by forming an As-Se complex, which can be secreted extracellularly. We hypothesize that there are two types of interactions between As and Se. At low concentration, Se can decrease As toxicity via excretion of As-Se compound [(GS3)2AsSe](-), but at high concentration, excessive Se can enhance As toxicity by reacting with S-adenosylmethionine and glutathione, and modifying the structure and activity of arsenite methyltransferase. This review is to summarize their toxicity mechanisms and the interaction between As and Se toxicity, and to provide suggestions for future investigations.
Collapse
Affiliation(s)
- Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Li-Ping Pu
- Suzhou Health College, Suzhou, Jiangsu 215000, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
8
|
Grings M, Moura AP, Amaral AU, Parmeggiani B, Gasparotto J, Moreira JCF, Gelain DP, Wyse ATS, Wajner M, Leipnitz G. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1413-22. [PMID: 24793416 DOI: 10.1016/j.bbadis.2014.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 11/16/2022]
Abstract
Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca(2+) retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca(2+) was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.
Collapse
Affiliation(s)
- Mateus Grings
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Alana P Moura
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Alexandre U Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Belisa Parmeggiani
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Juciano Gasparotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - José C F Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Daniel P Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, CEP 90035-903 Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Martiniaková M, Boboňová I, Omelka R, Grosskopf B, Stawarz R, Toman R. Structural changes in femoral bone tissue of rats after subchronic peroral exposure to selenium. Acta Vet Scand 2013; 55:8. [PMID: 23369508 PMCID: PMC3598879 DOI: 10.1186/1751-0147-55-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Background The role of selenium (Se) on bone microarchitecture is still poorly understood. The present study aims to investigate the macroscopic and microscopic structures of femoral bone tissue in adult male rats after subchronic peroral administration of Se. Methods Twenty one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group (Se group) young males were exposed to 5 mg Na2SeO3/L in drinking water, for 90 days. Ten one-month-old males without Se administration served as a control group. At the end of the experiment, macroscopic and microscopic structures of the femurs were analysed using analytical scales, sliding instrument, and polarized light microscopy. Results The body weight, femoral length and cortical bone thickness were significantly decreased in Se group rats. These rats also displayed different microstructure in the middle part of the femur, both in medial and lateral views, where vascular canals expanded into the central area of the bone while, in control rats, these canals occurred only near the endosteal surfaces. Additionally, a smaller number of primary and secondary osteons was identified in Se group rats. Histomorphometric analyses revealed significant increases for area, perimeter, maximum and minimum diameters of primary osteons’ vascular canals but significant reductions for all measured variables of Haversian canals and secondary osteons. Conclusions Se negatively affected the macroscopic and microscopic structures of femoral bone tissue in adult male rats. The results contribute to the knowledge on damaging impact of Se on bone.
Collapse
|
10
|
Taskin E, Dursun N. The protection of selenium on adriamycin-induced mitochondrial damage in rat. Biol Trace Elem Res 2012; 147:165-71. [PMID: 22237420 DOI: 10.1007/s12011-011-9273-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/13/2011] [Indexed: 11/28/2022]
Abstract
Although adriamycin (ADR) exhibits high anti-tumor efficacy in vitro, its clinical use in cancer chemotherapy is limited due to its high renal toxicity. This study investigated the mechanism of ADR nephropathy and the protective effect of selenium on ADR-induced kidney damage by analyzing of the relationship between selenium and mitochondria. Rats were divided into four groups. The first group was injected with saline i.p. for 21 days, the second group received the 4 mg/kg i.p. ADR every alternate day for 8 days, the third group received the 50 μg/kg i.p. Se for 21 days, and the fourth group received the Se. ADR co-administration i.p. blood pressures were assessed, the mitochondrial membrane potential (MMP) was assessed, and the adenosine triphosphate (ATP) levels were determined. The total antioxidant (TAS) and oxidant status (TOS) in cytosol, the mitochondria of kidney cells, and plasma were measured. Mitochondrial TAS decreased and TOS increased in the ADR group compared to the Se group. ADR-treated rats showed significantly lower MMP than did the control and Se groups. MMP was significantly restored in the Se + ADR group through selenium treatment compared to the ADR group (p < 0.01). In the ADR group, a reduction in ATP content was seen compared to the control and Se groups (p < 0.01). ATP level was significantly restored through treatment with selenium in the Se + ADR group compared to the ADR group (p < 0.01). We concluded that selenium is effective in vivo against ADR-induced kidney damage via the restoration of TAS and TOS, which prevented mitochondrial damage.
Collapse
Affiliation(s)
- Eylem Taskin
- Department of Physiology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| | | |
Collapse
|
11
|
Kim H, Kim HJ, Lee K, Kim JM, Kim HS, Kim JR, Ha CM, Choi YK, Lee SJ, Kim JY, Harris RA, Jeong D, Lee IK. α-Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway. J Cell Mol Med 2012; 16:273-86. [PMID: 21362131 PMCID: PMC3823291 DOI: 10.1111/j.1582-4934.2011.01294.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/22/2011] [Indexed: 11/30/2022] Open
Abstract
Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α-lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi-induced functional and structural mitochondrial defects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase-9 and -3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi-induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi-induced down-regulation of cell survival signals through the binding of growth arrest-specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D(3) -induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, Yeungnam University College of MedicineDaegu, Korea
| | - Han-Jong Kim
- Department of Internal Medicine, Biochemistry and Cell Biology, WCU Program, Research Institute for Aging and Metabolism, Kyungpook National University School of MedicineDaegu, Korea
| | - Kyunghee Lee
- Department of Microbiology, Aging-associated Vascular Disease Research Center, Yeungnam University College of MedicineDaegu, Korea
| | - Jin-Man Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, Yeungnam University College of MedicineDaegu, Korea
| | - Hee Sun Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, Yeungnam University College of MedicineDaegu, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, Yeungnam University College of MedicineDaegu, Korea
| | - Chae-Myeong Ha
- Department of Internal Medicine, Biochemistry and Cell Biology, WCU Program, Research Institute for Aging and Metabolism, Kyungpook National University School of MedicineDaegu, Korea
| | - Young-Keun Choi
- Department of Internal Medicine, Biochemistry and Cell Biology, WCU Program, Research Institute for Aging and Metabolism, Kyungpook National University School of MedicineDaegu, Korea
| | - Sun Joo Lee
- Department of Internal Medicine, Biochemistry and Cell Biology, WCU Program, Research Institute for Aging and Metabolism, Kyungpook National University School of MedicineDaegu, Korea
| | - Joon-Young Kim
- Department of Internal Medicine, Biochemistry and Cell Biology, WCU Program, Research Institute for Aging and Metabolism, Kyungpook National University School of MedicineDaegu, Korea
| | - Robert A Harris
- Department of Internal Medicine, Biochemistry and Cell Biology, WCU Program, Research Institute for Aging and Metabolism, Kyungpook National University School of MedicineDaegu, Korea
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, IndianapolisIN, USA
| | - Daewon Jeong
- Department of Microbiology, Aging-associated Vascular Disease Research Center, Yeungnam University College of MedicineDaegu, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Biochemistry and Cell Biology, WCU Program, Research Institute for Aging and Metabolism, Kyungpook National University School of MedicineDaegu, Korea
| |
Collapse
|
12
|
Mechanism(s) of Toxic Action of Zn and Selenite: A Study on AS-30D Hepatoma Cells and Isolated Mitochondria. Biochem Res Int 2011; 2011:387297. [PMID: 21860797 PMCID: PMC3154521 DOI: 10.1155/2011/387297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/06/2011] [Indexed: 02/05/2023] Open
Abstract
Mitochondria of AS-30D rat ascites hepatoma cells are found to be the main target for Zn2+ and sodium selenite (Na2SeO3). High [mu]M concentrations of Zn2+ or selenite were strongly cytotoxic, killing the AS-30D cells by both apoptotic and necrotic ways. Both Zn2+ and selenite produced strong changes in intracellular generation of reactive oxygen species (ROS) and the mitochondrial dysfunction via the mitochondrial electron transport chain (mtETC) disturbance, the membrane potential dissipation, and the mitochondrial permeability transition pore opening. The significant distinctions in toxic action of Zn2+ and selenite on AS-30D cells were found. Selenite induced a much higher intracellular ROS level (the early event) compared to Zn2+ but a lower membrane potential loss and a lower decrease of the uncoupled respiration rate of the cells, whereas the mtETC disturbance was the early and critical event in the mechanism of Zn2+ cytotoxicity. Sequences of events manifested in the mitochondrial dysfunction produced by the metal/metalloid under test are compared with those obtained earlier for Cd2+, Hg2+, and Cu2+ on the same model system.
Collapse
|
13
|
Peng X, Cui H, Cui Y, Deng J, Zuo Z, Fang J. Lesions of thymus and decreased percentages of the peripheral blood T-cell subsets in chickens fed on diets excess in selenium. Hum Exp Toxicol 2011; 30:1972-8. [DOI: 10.1177/0960327111403176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Selenium is an essential trace element possessing immune-stimulatory properties. The purpose of this 42-day study was to investigate the effects of excess dietary selenium on cellular immune function by determining morphological changes of thymus and peripheral blood T-cell subset. Three hundred 1-day-old avian broilers were fed on a basic diet (0.2 mg/kg selenium) or the same diet amended to contain 1, 5, 10, 15 mg/kg selenium supplied as sodium selenite ( n = 60/group). Pathological lesions were progressed with the dietary Se level increased. Grossly, the volume of thymus was decreased. Histopathologically, lymphopenia and congestion were observed. Ultrastructurally, mitochondria injury was observed. In comparison with that of control group, 5, 10 and 15 mg/kg dietary Se decreased the percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells of the peripheral blood, as measured by flow cytometry. The results showed that excess selenium (more than 5 mg/kg) intake could cause lesions of thymus and decrease of T-cell subsets. The cellular immune function was finally impaired in broilers.
Collapse
Affiliation(s)
- Xi Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yun Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
14
|
Antioxidant and Anticancer Properties and Mechanisms of Inorganic Selenium, Oxo-Sulfur, and Oxo-Selenium Compounds. Cell Biochem Biophys 2010; 58:1-23. [PMID: 20632128 DOI: 10.1007/s12013-010-9088-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Peng X, Cui Y, Cui W, Deng J, Cui H. The decrease of relative weight, lesions, and apoptosis of bursa of fabricius induced by excess dietary selenium in chickens. Biol Trace Elem Res 2009; 131:33-42. [PMID: 19274448 DOI: 10.1007/s12011-009-8345-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/02/2009] [Indexed: 02/01/2023]
Abstract
Selenium is an essential trace element possessing immune-stimulatory properties. The purpose of this 42-day study was to investigate the effects of excess dietary sodium selenite on immune function by determining morphological changes and apoptosis of bursa of Fabricius. Three hundred 1-day-old Avian broilers were fed on a basic diet (0.2 ppm selenium) or the same diet amended to contain 1, 5, 10, and 15 ppm selenium supplied as sodium selenite (n = 60/group). Relative weight of bursa was significantly decreased in the 1, 5, 10, and 15 ppm groups at 28 days of age, when compared with that of 0.2 ppm group. Pathological lesions were progressed with the dietary Se level increased. The gross lesions of bursa involved obvious atrophy with decreased volume and pale color. Histopathologically, decreased number of lymphocytes and loosely packed lymphocytes appeared in the medulla and cortex in the follicles. Ultrastructurally, mitochondria injury and increased apoptotic cells with condensed nuclei were observed. In comparison to that of control group, excess Se (5, 10, and 15 ppm) intake increased the percentage of Annexin V positive cells, as measured by flow cytometry. Terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end-labeling assay showed that there were increased frequencies of apoptotic cells in 10 and 15 ppm selenium groups. These data suggest that Se supplementation with sodium selenite should be carefully evaluated as excess selenium (more than 5 ppm) intake could cause profound immunologic inhibition.
Collapse
Affiliation(s)
- Xi Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | | | | | | | | |
Collapse
|
16
|
Li SQ, Zhang Y, Tang DB. Possible mechanisms of Cyclosporin A ameliorated the ischemic microenvironment and inhibited mitochondria stress in tree shrews' hippocampus. ACTA ACUST UNITED AC 2009; 16:279-84. [PMID: 19303263 DOI: 10.1016/j.pathophys.2009.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The ischemic brain damage is always accompanied by the significant accumulation of glutamate and calcium ions (Ca(2+)). Our objectives were to observe the effects of glutamate and Ca(2+) overloading in tree shrew's hippocampal microenvironment on mitochondrial stress resulting in cytochrome C release and caspase apoptotic gene activation, and to explore the possible mechanism of Cyclosporin A (CsA) inhibiting mitochondrial stress. METHODS The thrombotic focal cerebral ischemia was induced by photochemical reaction in tree shrews. The extracellular contents of amino acidic neurotransmitters and Ca(2+) were determined, respectively, with high performance liquid chromatography (HPLC) and atomic absorption spectrophotometry at 4, 24 and 72h after cerebral ischemia. The glutamate-calcium chloride solutions were microperfused into hippocampus by a kind of single-pumped push-pull perfusion (SPPP) system under three-dimensional orientation instrument in tree shrews. At 24h, the expression of cytochrome C was observed in perfused lateral hippocampus by immunochemistry. Also, the hippocampus was removed, then mitochondria and cytoplasmic fragment were divided by low temperature centrifugation and the distribution of cytochrome C was assessed through Western blot. Real time fluorescence polymerase chain reaction was used to evaluate the relative amounts of caspase-3 and caspase-9 mRNA. In the treated group, CsA (40mg/kg) was intravenously injected at 6h after the microperfuse or cerebral ischemia. The glutamate-calcium solutions were perfused into the hippocampus and inspected the above-mentioned items at 24h. Data were compared between the two groups (ischemia group vs. sham group, or ischemia group vs. CsA group). RESULTS Thrombotic cerebral ischemia led to significant increase in extracellular glutamate and Ca(2+) level of hippocampus (P<0.01). The cerebral ischemia group and the microperfusion group, which cytochrome C immunoreactivity increased and Western blot analysis demonstrated that the cytochrome C content in the mitochondria of hippocampal cells decreased (P<0.01), but the cytochrome C in the cytosol increased (P<0.01). When CsA was intravenously injected at 6h after the microperfusion or cerebral ischemia, the cytochrome C expression weakened and its release was diminished to a lesser extent. By real time PCR, in relation to the control group, the caspase-3 and caspase-9 mRNA was higher in the glutamate-calcium chloride solution perfused group. CsA treatment cut down the contents of caspase-3 mRNA and caspase-9 mRNA (P<0.01). CONCLUSIONS It is a primary factor that glutamate and Ca(2+) accumulate in hippocampal microenvironment, which results in proapoptotic protein cytochrome C release from mitochondria into cytoplasm and caspase cascade activation, and finally mitochondria stress and neuronal secondary injury appear. The neuroprotection of CsA is in relation to inhibiting glutamate receptor overactivation and reducing the Ca(2+) influx, which can decrease cytochrome C release and caspase mRNA transition.
Collapse
Affiliation(s)
- Shu-Qing Li
- Department of Pathophysiology, Kunming Medical College, Kunming 650031, China
| | | | | |
Collapse
|
17
|
Wang YM, Liu JB, Peng SQ. Effects ofFusariumMycotoxin Butenolide on Myocardial Mitochondria In Vitro. Toxicol Mech Methods 2009; 19:79-85. [DOI: 10.1080/15376510802322802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Hail N, Cortes M, Drake EN, Spallholz JE. Cancer chemoprevention: a radical perspective. Free Radic Biol Med 2008; 45:97-110. [PMID: 18454943 DOI: 10.1016/j.freeradbiomed.2008.04.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 12/12/2022]
Abstract
Cancer chemopreventive agents block the transformation of normal cells and/or suppress the promotion of premalignant cells to malignant cells. Certain agents may achieve these objectives by modulating xenobiotic biotransformation, protecting cellular elements from oxidative damage, or promoting a more differentiated phenotype in target cells. Conversely, various cancer chemopreventive agents can encourage apoptosis in premalignant and malignant cells in vivo and/or in vitro, which is conceivably another anticancer mechanism. Furthermore, it is evident that many of these apoptogenic agents function as prooxidants in vitro. The constitutive intracellular redox environment dictates a cell's response to an agent that alters this environment. Thus, it is highly probable that normal cells, through adaption, could acquire resistance to transformation via exposure to a chemopreventive agent that promotes oxidative stress or disrupts the normal redox tone of these cells. In contrast, transformed cells, which typically endure an oxidizing intracellular environment, would ultimately succumb to apoptosis due to an uncontrollable production of reactive oxygen species caused by the same agent. Here, we provide evidence to support the hypothesis that reactive oxygen species and cellular redox tone are exploitable targets in cancer chemoprevention via the stimulation of cytoprotection in normal cells and/or the induction of apoptosis in transformed cells.
Collapse
Affiliation(s)
- Numsen Hail
- Department of Pharmaceutical Sciences, The University of Colorado Denver School of Pharmacy, Denver, CO 80220, USA.
| | | | | | | |
Collapse
|
19
|
Zheng HT, Zhou LN, Huang CJ, Hua X, Jian R, Su BH, Fang F. Selenium inhibits high glucose- and high insulin-induced adhesion molecule expression in vascular endothelial cells. Arch Med Res 2008; 39:373-9. [PMID: 18375247 DOI: 10.1016/j.arcmed.2007.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 12/31/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Initiation of an atherosclerotic lesion requires endothelial expression of adhesion molecules. Selenium (Se), a biologically essential trace element, can inhibit cytokine (e.g., TNF-alpha)-induced expression of adhesion molecules. Atherosclerosis is accelerated in diabetic patients. This is at least partially caused by hyperglycemia and hyperinsulinemia increasing adhesion molecule expression. These experiments tested whether Se can also alter high glucose- and high insulin-induced expression of adhesion molecules. METHODS Human umbilical vein endothelial cells (HUVECs) were pretreated with Se and stimulated by high glucose or high insulin. Expression of adhesion molecules was measured by Western blot. RESULTS Se (100 nmol/L) significantly inhibited glucose (25 mmol/L)-induced expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin. Moreover, Se significantly inhibited insulin (100 nmol/L)-induced VCAM-1 and ICAM-1 expression, whereas high insulin had no inducing effect on E-selectin. Se also inhibited high glucose- and high insulin-induced activation of p38 mitogen-activated protein kinase (p38), which indicated that the preventive effects of Se on adhesion molecules may be associated with p38. The important role of p38 in Se effects was further confirmed using p38 inhibitor SB203580. CONCLUSIONS These results suggest that Se can inhibit high glucose- and high insulin-induced expression of adhesion molecules. Such antagonism is at least partially mediated through the modulation of p38 pathway. Therefore, Se may be considered as a potential preventive intervention for diabetes-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Hong-Ting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
High selenium diet protects against TNBS-induced acute inflammation, mitochondrial dysfunction, and secondary necrosis in rat colon. Nutrition 2008; 23:878-86. [PMID: 17936198 DOI: 10.1016/j.nut.2007.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/13/2007] [Accepted: 08/31/2007] [Indexed: 02/08/2023]
Abstract
OBJECTIVE We studied the protective effects of selenium in a rat model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis to elucidate a possible mechanism of action. METHOD Rats were supplemented with sodium selenite for 21 d with a normal selenium diet (0.02 microg/g body weight), an intermediate selenium diet (ISD; 0.3 microg/g body weight), or a high selenium diet (HSD; 2 microg/g body weight). On day 22, colitis was induced with TNBS. Rats were sacrificed after 24 h and colonic tissue was removed for evaluation. RESULTS Selenium supplementation (HSD) resulted in a significant increase in selenium in colonic tissue. Morphologically, the HSD resulted in the preservation of tissue architecture and attenuated neutrophil infiltration; no vasculitis or necrosis was detected. Biochemically, the HSD decreased tissue myeloperoxidase activity and protected the mitochondria in the colon of TNBS-treated animals as evaluated by preserving tissue oxygen consumption, mitochondrial DNA, and expression of cytochrome c. The HSD increased levels of nuclear respiratory factor-1 and mitochondrial transcription factor-A in normal colon tissue and under inflammatory conditions. The ISD resulted in only a minor protective effect. CONCLUSION The results indicate that tissue damage in TNBS-induced colitis is accompanied by the arrest of mitochondrial respiration, loss of mitochondrial DNA, and the expression of nuclear-encoded mitochondrial proteins. Selenium effectively protects colon mitochondria by upregulation of the expression of mitochondrial transcription factors nuclear respiratory factor-1 and mitochondrial transcription factor-A. Selenium prevented inflammatory and necrotic changes after induction of colitis. Selenium in a high dose is therefore a potential therapeutic agent in inflammatory bowel disease.
Collapse
|
21
|
Andringa KK, Bajt ML, Jaeschke H, Bailey SM. Mitochondrial protein thiol modifications in acetaminophen hepatotoxicity: effect on HMG-CoA synthase. Toxicol Lett 2008; 177:188-97. [PMID: 18313239 DOI: 10.1016/j.toxlet.2008.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/17/2008] [Accepted: 01/17/2008] [Indexed: 01/15/2023]
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug related liver failure in many countries. N-acetyl-p-benzoquinone imine (NAPQI) is a reactive metabolite that is formed by the metabolism of APAP. NAPQI preferentially binds to glutathione and then cellular proteins. NAPQI binding is considered an upstream event in the pathophysiology, especially when binding to mitochondrial proteins and therefore leads to mitochondrial toxicity. APAP caused a significant increase in liver toxicity 3h post-APAP administration as measured by increased serum alanine aminotransferase (ALT) levels. Using high-resolution mitochondrial proteomics techniques to measure thiol and protein changes, no significant change in global thiol levels was observed. However, 3-hydroxy-3-methylglutaryl coenzyme A synthase 2 (HMG-CoA synthase) had significantly decreased levels of reduced thiols and activity after APAP treatment. HMG-CoA synthase is a key regulatory enzyme in ketogenesis and possesses a number of critical cysteines in the active site. Similarly, catalase, a key enzyme in hydrogen peroxide metabolism, also showed modification in protein thiol content. These data indicate post-translational modifications of a few selected proteins involved in mitochondrial and cellular regulation of metabolism during liver toxicity after APAP overdose. The pathophysiological relevance of these limited changes in protein thiols remains to be investigated.
Collapse
Affiliation(s)
- Kelly K Andringa
- Department of Environmental Health Sciences and The Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | | | | | |
Collapse
|
22
|
Yeo JE, Kim JH, Kang SK. Selenium attenuates ROS-mediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction; in vitro and in vivo study. Cell Physiol Biochem 2008; 21:225-38. [PMID: 18209489 DOI: 10.1159/000113764] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2007] [Indexed: 11/19/2022] Open
Abstract
The primary objective of this study was to determine the possible apoptotic cell death preventive effects of the antioxidant selenium using an experimental rat spinal cord injury (SCI) model and cultured spinal cord-derived neural progenitor cells (NPCs). Sodium selenite treatment exerted a profound preventive effect on apoptotic cell death, including p-P38, p-SAPK/JNK, caspases, and PARP activity, and ameliorated astrogliosis and hypomyelination, which occurs in regions of active cell death in the spinal cords of SCI rats. The foremost protective effect of selenite in SCI would therefore be manifested in the suppression of acute secondary apoptotic cell death. However, selenite does not appear to exert an anti-inflammatory function associated with active microglia and macrophage propagation or infiltration into the lesion site. Selenite-mediated neuroprotection has been linked to selenite's attenuation or inhibition of p38 mitogen-activated protein kinase, pSAPK/JNK, and Bax activation in in vitro and in vivo SCI lesion sites. Selenite also attenuated cell death via the prevention of cytochrome c release, caspase activation, and ROS accumulation in the cytosol. Also, our study showed that selenite administered immediately after SCI significantly diminishes functional deficits. The selenite-treated group recovered hind limb reflexes more rapidly, and a higher percentage of these rats regained responses to a greater degree than was seen in the untreated injured rats. Our data indicate that the therapeutic outcome of selenite is most likely the consequence of its comprehensive apoptotic cell death blocking effects, resulting in the protection of white matter, oligodendrocytes, and neurons, and the inhibition of astrogliosis. The finding that the administration of selenite prevents secondary pathological events in traumatic spinal cord injuries, and promotes the recovery of motor function in an animal model. Its efficacy may facilitate the development of novel drug targets for the treatment of SCI.
Collapse
Affiliation(s)
- Jee Eun Yeo
- Department of Physiology, College of Medicine, Pusan National University, Busan, South Korea
| | | | | |
Collapse
|
23
|
Yeo JE, Kang SK. Selenium effectively inhibits ROS-mediated apoptotic neural precursor cell death in vitro and in vivo in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1199-210. [DOI: 10.1016/j.bbadis.2007.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 11/17/2022]
|
24
|
Huber WW, Parzefall W. Thiols and the chemoprevention of cancer. Curr Opin Pharmacol 2007; 7:404-9. [PMID: 17644484 DOI: 10.1016/j.coph.2007.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/03/2007] [Indexed: 12/13/2022]
Abstract
Thiols such as glutathione interfere with the complex carcinogenic process. Under stress conditions, they scavenge harmful molecules: Glutathione conjugation of electrophilic carcinogens may prevent tumor initiation, and reduced thiols may defend against oxidative stress. Thus, associated chemopreventive strategies involve enhancement of antioxidant or conjugating capacity by increasing the levels of, particularly, glutathione through precursor application or synthesis stimulation and by inducing the corresponding enzymes. The antioxidant potential of thiols is, however, a part of a more general capacity to regulate redox status even in the absence of unequivocal stress conditions. Redox status controls the activities of various cellular signalling proteins through oxidation or reduction of particular sensor structures that are also mostly thiols. The development of feasible chemotherapeutic strategies on the basis of this complex system of redox-sensitive messenger proteins is a goal in ongoing and future research.
Collapse
Affiliation(s)
- Wolfgang W Huber
- Research Unit of Toxicology and Prevention, Division Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria.
| | | |
Collapse
|
25
|
Shilo S, Pardo M, Aharoni-Simon M, Glibter S, Tirosh O. Selenium supplementation increases liver MnSOD expression: molecular mechanism for hepato-protection. J Inorg Biochem 2007; 102:110-8. [PMID: 17804075 DOI: 10.1016/j.jinorgbio.2007.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 11/18/2022]
Abstract
Selenium is recognized as essential in animal and human nutrition. Several hypotheses have been advanced for its biological activity. The aim of this study was to investigate the in vivo effect of selenium on rat liver manganese superoxide dismutase (MnSOD), a key antioxidant enzyme, under naïve and inflammatory conditions. Rats received sodium selenite supplementation and LPS injection. Whole-liver samples, isolated hepatocytes, Kupffer cells and blood samples were subjected to protein, RNA and biochemical analysis. Liver enrichment with selenium increased whole-liver MnSOD levels due to an increase in MnSOD transcription in hepatocytes. This was due to an increase in the ratio of specificity protein 1 to activating enhancer binding protein 2 DNA-binding activity. The inflammatory stimulus further elevated MnSOD levels in the whole-liver that was abrogated in sodium selenite supplementation due to reduced transcription of MnSOD in Kupffer cells. Moreover, selenium enrichment decreased Kupffer cells IL-6 transcription in LPS-injected animals. Anti-inflammatory activity of selenium was demonstrated by normalized blood levels of ALT and IL-6 in LPS-injected animals. In conclusion, selenium up-regulates hepatocytes MnSOD expression, probably improving their anti-oxidant defense, while decreasing MnSOD and IL-6 transcription in Kupffer cells in the presence of inflammatory stimuli, attenuating their inflammatory response. This selective mechanism may explain the anti-inflammatory and hepato-protective effect of selenium.
Collapse
Affiliation(s)
- Shani Shilo
- The School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
26
|
Chung YW, Kim TS, Lee SY, Lee SH, Choi Y, Kim N, Min BM, Jeong DW, Kim IY. Selenite-induced apoptosis of osteoclasts mediated by the mitochondrial pathway. Toxicol Lett 2006; 160:143-50. [PMID: 16111838 DOI: 10.1016/j.toxlet.2005.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 06/27/2005] [Indexed: 01/26/2023]
Abstract
The possible effects of sodium selenite on mature osteoclasts were investigated. Incubation of osteoclast-like cells differentiated from RAW 264.7 cells with sodium selenite induced apoptosis as revealed by morphological changes, internucleosomal DNA fragmentation, and activation of caspase-3. Selenite also induced generation of the superoxide anion and reduced the number of free thiol groups in the osteoclast-like cells, suggestive of a shift to a more oxidizing intracellular environment. In addition, selenite induced protein aggregation by thiol cross-linking, loss of the mitochondrial membrane potential, and cytochrome c release in mitochondria isolated from the osteoclast-like cells. Finally, selenite-induced DNA fragmentation in osteoclasts was inhibited both by cyclosporin A, a blocker of the mitochondrial permeability transition pore, and by DEVD-CHO, a cell-permeable inhibitor of caspase-3. These results thus suggest that selenite induces apoptosis mediated by the mitochondrial pathway in mature osteoclasts.
Collapse
Affiliation(s)
- Youn Wook Chung
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Su YP, Tang JM, Tang Y, Gao HY. Histological and ultrastructural changes induced by selenium in early experimental gastric carcinogenesis. World J Gastroenterol 2005; 11:4457-60. [PMID: 16052671 PMCID: PMC4398691 DOI: 10.3748/wjg.v11.i29.4457] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect and significance of selenium in early experimental gastric carcinogenesis.
METHODS: Weaning male Wistar rats were divided randomly into normal control group, experiment control group, low selenium (2 mg/L) group and high selenium (4 mg/L) group. Wistar rat gastric carcinogenesis was induced by N-methyl-N-nitro-N-nitroso guanidine (MNNG) (20 mg/kg) gavage daily for 10 d. Na2SeO3 was given by piped drinking 1 wk prior to MNNG gavage. The rats were killed at the 43rd wk. The surface characteristics of gastric mucosa were observed with naked eyes. Histopathologic changes of rat gastric mucosa were observed by HE staining and AB-PAS methods. The changes of cellular ultrastructure were observed under transmission electron microscope. Statistical analysis was carried out by SPSS.
RESULTS: The incidence rate of gastric mucosa erosion, hemorrhage and intestinal metaplasia was 0, 45.5%, 66.7%, and 92.9%, respectively (92.9% vs 45.5%, P<0.05) in the normal control group, experiment control group, low selenium group, and high selenium group. Leiomyoma formed in the process of inducement of rat gastric carcinoma. Dietary Na2SeO3 (2 and 4 mg/L) slightly increased the incidence rate of leiomyoma (0, 23%, 46.6%, and 46.6%). gastric mucosa did not change in the course of rat gastric carcinogenesis. Dietary Na2SeO3 by pipe drinking could expand the intracellular secretory canaliculus of parietal cells and increase the number of endocrine cells and lysosomes.
CONCLUSION: Dietary Na2SeO3 by pipe drinking aggravates gastric erosion, hemorrhage and promotes intestinal metaplasia of gastric mucosa. The mechanism may be related with the function of parietal cells.
Collapse
Affiliation(s)
- Yan-Ping Su
- Department of Histology and Embryology, Taishan Medical College, Taian 271000, Shandong Province, China.
| | | | | | | |
Collapse
|
28
|
Abstract
The mitochondria have emerged as a novel target for anticancer chemotherapy. This tenet is based on the observations that several conventional and experimental chemotherapeutic agents promote the permeabilization of mitochondrial membranes in cancerous cells to initiate the release of apoptogenic mitochondrial proteins. This ability to engage mitochondrial-mediated apoptosis directly using chemotherapy may be responsible for overcoming aberrant apoptosis regulatory mechanisms commonly encountered in cancerous cells. Interestingly, several putative cancer chemopreventive agents also possess the ability to trigger apoptosis in transformed, premalignant, or malignant cells in vitro via mitochondrial membrane permeabilization. This process may occur through the regulation of Bcl-2 family members, or by the induction of the mitochondrial permeability transition. Thus, by exploiting endogenous mitochondrial-mediated apoptosis-inducing mechanisms, certain chemopreventive agents may be able to block the progression of premalignant cells to malignant cells or the dissemination of malignant cells to distant organ sites as means of modulating carcinogenesis in vivo. This review will examine cancer chemoprevention with respect to apoptosis, carcinogenesis, and the proapoptotic activity of various chemopreventive agents observed in vitro. In doing so, I will construct a paradigm supporting the notion that the mitochondria are a novel target for the chemoprevention of cancer.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
29
|
Rose P, Armstrong JS, Chua YL, Ong CN, Whiteman M. Beta-phenylethyl isothiocyanate mediated apoptosis; contribution of Bax and the mitochondrial death pathway. Int J Biochem Cell Biol 2005; 37:100-19. [PMID: 15381154 DOI: 10.1016/j.biocel.2004.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/21/2004] [Accepted: 05/25/2004] [Indexed: 12/31/2022]
Abstract
The initiating events that lead to the induction of apoptosis mediated by the chemopreventative agent beta-phenyethyl isothiocyanate (PEITC) have yet to be elucidated. In the present investigation, we examined the effects of PEITC on mitochondrial function and apoptotic signaling in hepatoma HepG2 cells and isolated rat hepatocyte mitochondria. PEITC induced a conformational change in Bax leading to its translocation to mitochondria in HepG2 cells. Bax accumulation was associated with a rapid loss of mitochondrial membrane potential (Deltapsim), impaired respiratory chain enzymatic activity, release of mitochondrial cytochrome c and the activation of caspase-dependent cell death. Caspase inhibition did not prevent Bax translocation, the release of cytochrome c or the loss of Deltapsim, but blocked caspase-mediated DNA fragmentation and cell death. To determine whether PEITC dependent Bax translocation caused loss of Deltapsim by the activation of the mitochondrial permeability transition (MPT), we examined the effects of PEITC in isolated rat hepatocyte mitochondria. Interestingly, PEITC did not induce MPT in isolated rat mitochondria. Accordingly, using pharmacological inhibitors of MPT namely cyclosporine A, trifluoperazine and Bongkrekic acid we were unable to block PEITC mediated apoptosis in HepG2 cells, this suggesting that mitochondrial permeablisation is a likely consequence of Bax dependent pore formation. Taken together, our data suggest that mitochondria are a key target in PEITC induced apoptosis in HepG2 cells via the pore forming ability of pro-apoptotic Bax.
Collapse
Affiliation(s)
- Peter Rose
- Department of Biochemistry, Occupational and Family Medicine, MD3, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | | | | | | | | |
Collapse
|
30
|
Barnard PJ, Baker MV, Berners-Price SJ, Day DA. Mitochondrial permeability transition induced by dinuclear gold(I)–carbene complexes: potential new antimitochondrial antitumour agents. J Inorg Biochem 2004; 98:1642-7. [PMID: 15458827 DOI: 10.1016/j.jinorgbio.2004.05.011] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/22/2004] [Accepted: 05/27/2004] [Indexed: 11/23/2022]
Abstract
Seven dinuclear gold(I) complexes of bidentate N-heterocyclic carbene ligands have been evaluated for their ability to induce mitochondrial membrane permeabilisation (MMP) in isolated rat liver mitochondria. Six of the compounds, at concentrations of 10 microM, induced Ca(2+)-sensitive MMP as evidenced by mitochondrial swelling. In the absence of low concentrations of exogenous Ca(2+), the compounds were either inactive or their activity was significantly decreased. The mitochondrial swelling was completely blocked by the addition of cyclosporin A, a well established inhibitor of the mitochondrial permeability transition pore (MPT) that is believed to be responsible for MMP. The rates and levels of uptake of these compounds into mitochondria were estimated by measuring mitochondrial Au levels using inductively coupled plasma optical emission spectroscopy. Significant differences were found in the levels at which the different compounds accumulated in the mitochondria, but these differences did not correlate with the rate at which they induced mitochondrial swelling. These results suggest that the mechanism by which MMP is induced by these lipophilic cationic Au(I)-carbene complexes is not purely a function of the level of compound accumulation. Instead, a more specific mechanism, possibly involving disruption of the function of a particular enzyme, or interaction with a MPT component, appears to be more likely.
Collapse
Affiliation(s)
- Peter J Barnard
- Department of Chemistry, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | | | | | | |
Collapse
|
31
|
Sun K, Liu ZS, Sun Q. Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning. World J Gastroenterol 2004; 10:1934-8. [PMID: 15222040 PMCID: PMC4572234 DOI: 10.3748/wjg.v10.i13.1934] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning (IPC).
METHODS: A rat model of acute hepatic ischemia-reperfusion was established, 24 healthy male Wistar rats were randomly divided into sham-operated group, ischemia-reperfusion group (IR) and IPC group. IPC was achieved by several brief pre-reperfusions followed by a persistent reperfusion. Concentration of malondialdehyde (MDA) and activity of several antioxidant enzymes in hepatic tissue were measured respectively. Apoptotic cells were detected by TdT-mediated dUTP-biotin nick end labeling (TUNEL) and expression of Bcl-2 protein was measured by immunohistochemical techniques. Moreover, mitochondrial ultrastructure and parameters of morphology of the above groups were observed by electron microscope.
RESULTS: Compared with IR group, the concentration of MDA and the hepatocellular apoptotic index in IPC group was significantly reduced (P < 0.05), while the activity of antioxidant enzymes and OD value of Bcl-2 protein were markedly enhanced (P < 0.05). Moreover, the injury of mitochondrial ultrastructure in IPC group was also obviously relieved.
CONCLUSION: IPC can depress the synthesis of oxygen free radicals to protect the mitochondrial ultrastructure and increase the expression of Bcl-2 protein that lies across the mitochondrial membrane. Consequently, IPC can reduce hepatocellular apoptosis after reperfusion and has a protective effect on hepatic ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Kai Sun
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | | | | |
Collapse
|
32
|
Jeong DW, Kim TS, Cho IT, Kim IY. Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. Biochem Biophys Res Commun 2004; 313:984-91. [PMID: 14706639 DOI: 10.1016/j.bbrc.2003.12.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effect of alteration of the glycolytic pathway on cell damage induced by oxidative stress was investigated with dihydrofolate reductase-deficient Chinese hamster ovary (CHO) cells that either overexpress cytosolic glycerol-3-phosphate dehydrogenase (CHO/cGPDH cells) or are depleted of the A subunit of lactate dehydrogenase as a result of anti-sense RNA expression (CHO/anti-LDH cells). The extent of oxidative phosphorylation in CHO/anti-LDH and CHO/cGPDH cells was increased and decreased, respectively, relative to that in parental CHO cells, as revealed by measurement of the intracellular content of ATP, the rate of cellular O(2) consumption, the mitochondrial membrane potential (DeltaPsi(m)), and the generation of reactive oxygen species. The sensitivity of these cell lines to cell death induced by the exogenous oxidant tert-butyl hydroperoxide decreased according to the rank order CHO/anti-LDH>CHO>CHO/cGPDH. Exogenous pyruvate markedly increased the sensitivity of CHO/cGPDH cells to oxidant-induced death. The differences among the three cell lines in susceptibility to oxidant-induced death were reflected in the proportion of oxidant-treated cells with a subdiploid DNA content, with a collapsed DeltaPsi(m), and with cytochrome c in the cytosol, indicating that death was mediated by apoptosis. These results demonstrate that the influx of respiratory substrate into mitochondria is an important determinant of cell sensitivity to oxidant-induced apoptosis.
Collapse
Affiliation(s)
- Dae-won Jeong
- BK21 Human Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Kim SH, Johnson VJ, Shin TY, Sharma RP. Selenium attenuates lipopolysaccharide-induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Exp Biol Med (Maywood) 2004; 229:203-13. [PMID: 14734799 DOI: 10.1177/153537020422900209] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS) produces reactive oxygen species (ROS) and nitric oxide (NO) in macrophages. These molecules are involved in inflammation associated with endotoxic shock. Selenium (Se), a biologically essential trace element, modulates the functions of many regulatory proteins involved in signal transduction and affects a variety of cellular activities, including cell growth and survival. We demonstrate that Se attenuated LPS-induced ROS and NO production in murine macrophage cultures in vitro. This Se-decreased production of NO was demonstrated by decreases in both mRNA and protein expression for inducible NO synthase (iNOS). The preventive effects of Se on iNOS were p38 mitogen-activated protein kinase- and nuclear factor-kappaB-dependent. Se specifically blocked the LPS-induced activation of p38 but not that of c-jun-N-terminal kinase and extracellular signal-regulated kinase; the p38-specific pathway was confirmed using p38 inhibitor SB 203580. These results suggest that the mechanism by which Se may act as an anti-inflammatory agent and that Se may be considered as a possible preventive intervention for endotoxemia, particularly in Se-deficient locations. However, the efficacy and safety of Se need to be further investigated, because long-term intake > 0.4 mg Se/day in adults can produce adverse effects.
Collapse
Affiliation(s)
- Sang Hyun Kim
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, 30602, USA
| | | | | | | |
Collapse
|
34
|
Kim TS, Yun BY, Kim IY. Induction of the mitochondrial permeability transition by selenium compounds mediated by oxidation of the protein thiol groups and generation of the superoxide. Biochem Pharmacol 2004; 66:2301-11. [PMID: 14637188 DOI: 10.1016/j.bcp.2003.08.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cancer chemopreventive effect of selenium compounds cannot be fully explained by the role of selenium as a component of antioxidant enzymes, suggesting that other mechanisms, such as thiol oxidation or free radical generation, also underlie this effect. The toxicities of six different selenium compounds (selenite, selenate, selenocystine, selenocystamine, selenodioxide, and selenomethionine) have now been compared in HepG2 human hepatoma cells and isolated rat liver mitochondria. Selenite, selenocystine, and selenodioxide induced apoptosis in HepG2 cells and mediated oxidation of protein thiol groups in both HepG2 cells and isolated mitochondria. Selenocystamine oxidized protein thiol groups in isolated mitochondria and crude extracts of HepG2 cells but not in intact HepG2 cells, suggesting that this compound is not able to cross the cell membrane. The selenium compounds capable of oxidizing thiol groups also induced the mitochondrial permeability transition (MPT) in isolated mitochondria. Furthermore, they generated the superoxide (O(2) .-) on reaction with glutathione in the presence of mitochondria, and an O(2) .-) scavenger inhibited their induction of the MPT. These results suggest that the pro-apoptotic action of selenium compounds is mediated by both thiol oxidation and the generation of O(2) .-), both of which contribute to opening of the MPT pore.
Collapse
Affiliation(s)
- Tae-Soo Kim
- School of Life Sciences and Biotechnology, Korea University, 15-Ka, Anam-Dong, Sungbuk-ku, 136-701 Seoul, South Korea
| | | | | |
Collapse
|