1
|
Zhu Z, Ying Z, Zeng M, Zhang Q, Liao G, Liang Y, Li C, Zhang C, Wang X, Jiang W, Luan P, Sha O. Trichosanthin cooperates with Granzyme B to restrain tumor formation in tongue squamous cell carcinoma. BMC Complement Med Ther 2021; 21:88. [PMID: 33750370 PMCID: PMC7944607 DOI: 10.1186/s12906-021-03266-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 02/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is a common type of oral cancer, with a relatively poor prognosis and low post-treatment survival rate. Various strategies and novel drugs to treat TSCC are emerging and under investigation. Trichosanthin (TCS), extracted from the root tubers of Tian-Hua-Fen, has been found to have multiple biological and pharmacological functions, including inhibiting the growth of cancer cells. Granzyme B (GrzB) is a common toxic protein secreted by natural killer cells and cytotoxic T cells. Our group has reported that TCS combined with GrzB might be a superior approach to inhibit liver tumor progression, but data relating to the use of this combination to treat TSCC remain limited. The aim of this study was to examine the effectiveness of TCS on TSCC processes and underlying mechanisms. METHODS First, we screened the potential antitumor activity of TCS using two types of SCC cell lines. Subsequently, a subcutaneous squamous cell carcinoma xenograft model in nude mice was established. These model mice were randomly divided into four groups and treated as follows: control group, TCS treatment group, GrzB treatment group, and TCS/GrzB combination treatment group. Various tumorigenesis parameters, such as Ki67, PCNA, caspase-3, Bcl-2 and VEGFA, et al., were performed to determine the effects of these treatments on tumor development. RESULTS Screening confirmed that the SCC25 line exhibited greater sensitivity than the SCC15 line to TCS in vitro studies. TCS or GrzB treatment significantly inhibited tumor growth compared with the inhibition seen in the control group. The TCS/GrzB combination inhibited tumor growth more than either drug alone. TCS treatment inhibited tumor proliferation by downregulating Ki67 and Bcl2 protein expression while accelerating tumor apoptosis. In the TCS/GrzB-treated group, expression of Ki67 was further downregulated, while the level of activated caspase-3 was increased, compared with their expression in either of the single drug treatment groups. CONCLUSION These results suggest that the TCS/GrzB combination could represent an effective immunotherapy for TSCC.
Collapse
Affiliation(s)
- Zeyao Zhu
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhenguang Ying
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Meiqi Zeng
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| | - Qiang Zhang
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
- The Shenzhen Stomatology Hospital, Shenzhen, China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yunliu Liang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Chunman Li
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Chengfei Zhang
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Xia Wang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Weipeng Jiang
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| | - Ping Luan
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China.
| | - Ou Sha
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China.
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
2
|
Li C, Zeng M, Chi H, Shen J, Ng TB, Jin G, Lu D, Fan X, Xiong B, Xiao Z, Sha O. Trichosanthin increases Granzyme B penetration into tumor cells by upregulation of CI-MPR on the cell surface. Oncotarget 2018; 8:26460-26470. [PMID: 28460437 PMCID: PMC5432272 DOI: 10.18632/oncotarget.15518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
Trichosanthin is a plant toxin belonging to the family of ribosome-inactivating proteins. It has various biological and pharmacological activities, including anti-tumor and immunoregulatory effects. In this study, we explored the potential medicinal applications of trichosanthin in cancer immunotherapy. We found that trichosanthin and cation-independent mannose-6-phosphate receptor competitively bind to the Golgi-localized, γ-ear containing and Arf-binding proteins. It in turn promotes the translocation of cation-independent mannose-6-phosphate receptor from the cytosol to the plasma membrane, which is a receptor of Granzyme B. The upregulation of this receptor on the tumor cell surface increased the cell permeability to Granzyme B, and the latter is one of the major factors of cytotoxic T lymphocyte-mediated tumor cell apoptosis. These results suggest a novel potential application of trichosanthin and shed light on its anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Meiqi Zeng
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Huju Chi
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Tzi-Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Guangyi Jin
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Desheng Lu
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Xinmin Fan
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Bilian Xiong
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Giansanti F, Flavell DJ, Angelucci F, Fabbrini MS, Ippoliti R. Strategies to Improve the Clinical Utility of Saporin-Based Targeted Toxins. Toxins (Basel) 2018; 10:toxins10020082. [PMID: 29438358 PMCID: PMC5848183 DOI: 10.3390/toxins10020082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 02/06/2023] Open
Abstract
Plant Ribosome-inactivating proteins (RIPs) including the type I RIP Saporin have been used for the construction of Immunotoxins (ITxs) obtained via chemical conjugation of the toxic domain to whole antibodies or by generating genetic fusions to antibody fragments/targeting domains able to direct the chimeric toxin against a desired sub-population of cancer cells. The high enzymatic activity, stability and resistance to conjugation procedures and especially the possibility to express recombinant fusions in yeast, make Saporin a well-suited tool for anti-cancer therapy approaches. Previous clinical work on RIPs-based Immunotoxins (including Saporin) has shown that several critical issues must be taken into deeper consideration to fully exploit their therapeutic potential. This review focuses on possible combinatorial strategies (chemical and genetic) to augment Saporin-targeted toxin efficacy. Combinatorial approaches may facilitate RIP escape into the cytosolic compartment (where target ribosomes are), while genetic manipulations may minimize potential adverse effects such as vascular-leak syndrome or may identify T/B cell epitopes in order to decrease the immunogenicity following similar strategies as those used in the case of bacterial toxins such as Pseudomonas Exotoxin A or as for Type I RIP Bouganin. This review will further focus on strategies to improve recombinant production of Saporin-based chimeric toxins.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory (Leukaemia Busters), Southampton General Hospital, Southampton, SO16 8AT, UK.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| |
Collapse
|
4
|
Induced apoptotic action of recombinant trichosanthin in human stomach adenocarcinoma MCG803 cells. Mol Biol Rep 2008; 36:1559-64. [DOI: 10.1007/s11033-008-9352-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
5
|
An Q, Wei S, Mu S, Zhang X, Lei Y, Zhang W, Jia N, Cheng X, Fan A, Li Z, Xu Z. Mapping the antigenic determinants and reducing the immunogenicity of trichosanthin by site-directed mutagenesis. J Biomed Sci 2006; 13:637-43. [PMID: 16977428 DOI: 10.1007/s11373-006-9095-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 06/01/2006] [Indexed: 11/26/2022] Open
Abstract
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) possessing multiple pharmacological properties. One of its interesting properties is to inhibit human immunodeficiency virus (HIV) replication but its strong immunogenicity has limited the repeated clinical administration. To map the antigenic determinants and reduce the immunogenicity of TCS, two potential antigenic sites (YFF81-83 and KR173-174) were identified by computer modeling, and then three TCS mutants namely TCS(YFF81-83ACS), TCS(KR173-174CG), and TCS(YFF-KR) were constructed by site-directed mutagenesis. The RI activity and DNase-like activity of the three constructed TCS mutants were similar to natural TCS but with much lower immunogenicity. Results suggested that the two selected sites are all located at or near the antigenic determinants of TCS. In toxicity studies, the LD(50) of the three TCS mutants was not different from natural TCS. These findings would be useful in designing a better therapeutic agent for AIDS.
Collapse
Affiliation(s)
- Qunxing An
- Department of Microbiology, Fourth Medical University of PLA, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang XY, Wu Y, Yan JY, Gao Y, Wang Y, Mi SL, An CC. Y55 and D78 are crucial amino acid residues of a new IgE epitope on trichosanthin. Biochem Biophys Res Commun 2006; 343:1251-6. [PMID: 16581017 DOI: 10.1016/j.bbrc.2006.03.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
Trichosanthin (TCS) possesses many biological and pharmaceutical activities, but its strong immunogenicity limits its clinical application. To reduce the immunogenicity of TCS, we modified the reported method for the prediction of antigenic site and identified two crucial amino acid residues (Y55 and D78) for a new epitope. We mutated these two residues into glycine and serine, respectively, and obtained three mutants, Y55G, D78S, and Y55G/D78S. These mutants induced less amount of Ig and IgG antibodies in C57BL/6J mice than wild-type TCS (wTCS) (p<0.01) and almost lost the ability to induce IgE antibody production. The mutants stimulated fewer TCS-specific B cells in C57BL/6J mice than wTCS (p<0.01). Compared with wTCS, Y55G, D78S, and Y55G/D78S lost 26.9%, 17.9%, and 98.7% specific binding ability to anti-TCS monoclonal antibody TCS4E9, respectively. These mutants still retained RNA N-glycosidase activity. In conclusion, Y55 and D78 are two crucial amino acid residues of a new IgE epitope on TCS, and their mutation reduces the immunogenicity of TCS, but still retained the enzymatic activity.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Yao G, Chen W, Luo H, Jiang Q, Xia Z, Zang L, Zuo J, Wei X, Chen Z, Shen X, Dong C, Sun B. Identification of core functional region of murine IL-4 using peptide phage display and molecular modeling. Int Immunol 2005; 18:19-29. [PMID: 16361318 DOI: 10.1093/intimm/dxh338] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Murine IL-4 is a pleiotropic cytokine with undefined core functional region for eliciting downstream signaling. We used molecular modeling to predict the binding sites recognized by an anti-IL-4-neutralizing mAb (11B.11) and peptide phage display to delineate their makeup. The results of these approaches were confirmed by site-directed mutagenesis analysis. The results suggest that the amino acid residues spanning from 79 to 86 (QRLFRAFR) on IL-4 are of the major binding site for 11B.11. Furthermore, the functional experiments demonstrate that the residues R80, R83 and R86, which are located in the helix C of murine IL-4, play a crucial role in binding to the IL-4R alpha-chain. Taken together, a new core functional region of murine IL-4 is identified, which provides new insight into the interaction between IL-4 and IL-4Ralpha. In addition, the results demonstrate that 11B.11 binds to a core functional region of murine IL-4, which prevents this cytokine from interacting with its cognate receptor.
Collapse
Affiliation(s)
- Gang Yao
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chan HM, Tam SC. Role of blood transfusion in trichosanthin-induced anaphylaxis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 20:73-76. [PMID: 21783570 DOI: 10.1016/j.etap.2004.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 10/21/2004] [Indexed: 05/31/2023]
Abstract
Trichosanthin (TCS) is a type 1 ribosome inactivating protein extracted from Chinese medicinal herb. It possesses various biological functions such as abortifacient, anti-tumor and anti-viral activities. Clinical trial of this compound against human immunodeficiency virus (HIV) had been conducted. However, its use is limited by its high immunogenicity that elicits hypersensitivity reaction. This may lead to fatal anaphylactic response. The study described an approach of using blood transfusion to reduce TCS induced anaphylaxis in rats using a cross-circulation model. A TCS-sensitized Sprague Dawley rat was connected to a normal rat via the femoral vessels in a cross-circulation circuit before antigenic challenge. The donor rat served as a blood exchange basin to lower the level of the blood-borne components responsible for the anaphylactic reaction in the sensitized rat. Our results showed that cross-circulation shortened the duration of circulatory hypotension and reduced mortality of TCS induced anaphylaxis. The control group not undergoing cross-circulation had a mortality of 50% at 2h post-TCS challenge and there was no mortality in the cross-circulation group. This demonstrated that prior blood transfusion can be one of the alternatives to reduce anaphylactic response of TCS.
Collapse
Affiliation(s)
- H M Chan
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, PR China
| | | |
Collapse
|
9
|
Shaw PC, Lee KM, Wong KB. Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties. Toxicon 2005; 45:683-9. [PMID: 15804517 DOI: 10.1016/j.toxicon.2004.12.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 12/24/2004] [Indexed: 11/22/2022]
Abstract
Trichosanthin (TCS), a ribosome-inactivating protein extracted from the root tuber of Chinese medicinal herb Trichosanthes kirilowii Maximowicz, has multiple pharmacological properties including abortifacient, anti-tumor and anti-HIV. It is traditionally used to induce abortion but its antigenicity and short plasma half-life have limited the repeated clinical administration. In this review, work to locating antigenic sites and prolonging plasma half-life are discussed. Studies on structure-function relationship and mechanism of cell entry are also covered. Recently, TCS has been found to induce apoptosis, enhance the action of chemokines and inhibit HIV-1 integrase. These findings give new insights on the pharmacological properties of TCS and other members of ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Pang-Chui Shaw
- Department of Biochemistry, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | | | | |
Collapse
|
10
|
Abstract
AIM: To investigate the cytotoxic activity of extracts of trichosanthes root tubers (EOT) on HepA-H cells and HeLa cells compared with trichosanthin (TCS), and to explore the possible mechanism of growth inhibitory effect of EOT on HeLa cells.
METHODS: Tumor cells were cultured in vitro, and then microculture tetrzoalium assay (MTT) was used to investigate drugs’ cytotoxic activity. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe ultrastructural changes of cells, and electrophoresis was performed to detect changes of biochemical characteristics of intercellular DNA.
RESULTS: TCS and EOT had no obvious effects on HepA-H cells (P > 0.05), but had remarkable effects on HeLa cells in a time and dose dependent manner (r > 0.864, P < 0.05 or P < 0.01). The inhibitory rate of EOT was much higher than that of TCS (P < 0.01). Median inhibitory rates (IC50) of TCS and EOT on HeLa cells were 610.9 mg/L and 115.6 mg/L for 36 h, and 130.7 mg/L and 33.4 mg/L for 48 h respectively. Marked morphologic changes were observed including microvillus disappearance or reduction, cell membrane bledding, cell shrinkage, condensation of chromosomes and apoptotic bodies with complete membranes. Meanwhile, apoptosis of HeLa cells was confirmed by DNA ladder formation on gel electrophoresis.
CONCLUSION: TCS and EOT have no obvious effects on HepA-H cells, but have significant inhibitory effects on HeLa cells, indicating that EOT is superior to TCS in anti-tumor activity.
Collapse
Affiliation(s)
- Chang-Ming Dou
- Institute of Cell Biology, Zhejiang University, Hangzhou 310031, Zhejiang Province, China
| | | |
Collapse
|