1
|
Abstract
The KEOPS (kinase, putative endopeptidase, and other proteins of small size) complex has critical functions in eukaryotes; however, its role in fungal pathogens remains elusive. Herein, we comprehensively analyzed the pathobiological functions of the fungal KEOPS complex in Cryptococcus neoformans (Cn), which causes fatal meningoencephalitis in humans. We identified four CnKEOPS components: Pcc1, Kae1, Bud32, and Cgi121. Deletion of PCC1, KAE1, or BUD32 caused severe defects in vegetative growth, cell cycle control, sexual development, general stress responses, and virulence factor production, whereas deletion of CGI121 led to similar but less severe defects. This suggests that Pcc1, Kae1, and Bud32 are the core KEOPS components, and Cgi121 may play auxiliary roles. Nevertheless, all KEOPS components were essential for C. neoformans pathogenicity. Although the CnKEOPS complex appeared to have a conserved linear arrangement of Pcc1-Kae1-Bud32-Cgi121, as supported by physical interaction between Pcc1-Kae1 and Kae1-Bud32, CnBud32 was found to have a unique extended loop region that was critical for the KEOPS functions. Interestingly, CnBud32 exhibited both kinase activity-dependent and -independent functions. Supporting its pleiotropic roles, the CnKEOPS complex not only played conserved roles in t6A modification of ANN codon-recognizing tRNAs but also acted as a major transcriptional regulator, thus controlling hundreds of genes involved in various cellular processes, particularly ergosterol biosynthesis. In conclusion, the KEOPS complex plays both evolutionarily conserved and divergent roles in controlling the pathobiological features of C. neoformans and could be an anticryptococcal drug target. IMPORTANCE The cellular function and structural configuration of the KEOPS complex have been elucidated in some eukaryotes and archaea but have never been fully characterized in fungal pathogens. Here, we comprehensively analyzed the pathobiological roles of the KEOPS complex in the globally prevalent fungal meningitis-causing pathogen C. neoformans. The CnKEOPS complex, composed of a linear arrangement of Pcc1-Kae1-Bud32-Cgi121, not only played evolutionarily conserved roles in growth, sexual development, stress responses, and tRNA modification but also had unique roles in controlling virulence factor production and pathogenicity. Notably, a unique extended loop structure in CnBud32 is critical for the KEOPS complex in C. neoformans. Supporting its pleiotropic roles, transcriptome analysis revealed that the CnKEOPS complex governs several hundreds of genes involved in carbon and amino acid metabolism, pheromone response, and ergosterol biosynthesis. Therefore, this study provides novel insights into the fungal KEOPS complex that could be exploited as a potential antifungal drug target.
Collapse
|
2
|
Abstract
The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of "eukaryotic" protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.
Collapse
Affiliation(s)
- Peter J Kennelly
- From the Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
3
|
Ibar C, Cataldo VF, Vásquez-Doorman C, Olguín P, Glavic A. Drosophila p53-related protein kinase is required for PI3K/TOR pathway-dependent growth. Development 2013; 140:1282-91. [PMID: 23444356 DOI: 10.1242/dev.086918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell growth and proliferation are pivotal for final organ and body size definition. p53-related protein kinase (Bud32/PRPK) has been identified as a protein involved in proliferation through its effects on transcription in yeast and p53 stabilization in human cell culture. However, the physiological function of Bud32/PRPK in metazoans is not well understood. In this work, we have analyzed the role of PRPK in Drosophila development. Drosophila PRPK is expressed in every tissue analyzed and is required to support proliferation and cell growth. The Prpk knockdown animals show phenotypes similar to those found in mutants for positive regulators of the PI3K/TOR pathway. This pathway has been shown to be fundamental for animal growth, transducing the hormonal and nutritional status into the protein translation machinery. Functional interactions have established that Prpk operates as a transducer of the PI3K/TOR pathway, being essential for TOR kinase activation and for the regulation of its targets (S6K and 4E-BP, autophagy and bulk endocytosis). This suggests that Prpk is crucial for stimulating the basal protein biosynthetic machinery in response to insulin signaling and to changes in nutrient availability.
Collapse
Affiliation(s)
- Consuelo Ibar
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | | | | | | | | |
Collapse
|
4
|
The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. Arch Biochem Biophys 2011; 511:56-63. [PMID: 21527241 DOI: 10.1016/j.abb.2011.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 11/22/2022]
Abstract
The piD261/Bud32 protein kinases are universal amongst the members of the Eucarya and Archaea. Despite the fact that phylogenetic analyses indicate that the piD261/Bud32 protein kinases descend directly from the primordial ancestor of the "eukaryotic" protein kinase superfamily, our knowledge of their physiological role is relatively fragmentary and largely limited to two eucaryal representatives: piD261/Bud32 from yeast and the p53-related protein kinase from humans. A deduced archaeal homolog, SsoPK5, is encoded by open reading frame sso0433 from the acidothermophile Sulfolobus solfataricus. Recombinantly-expressed SsoPK5 exhibited protein kinase activity, with a noticeable preference for phosphorylating proteins of acidic character and for Mn(2+) as cofactor. The protein kinase also can phosphorylate itself on serine and threonine residues. The activity of rSsoPK5 was increased several-fold upon preincubation with either millimolar concentrations of 5'-AMP or submicromolar concentrations of ADP-ribose. Other mono- and di-nucleotides were ineffective. While activation was enhanced by the presence of ATP, no autophosphorylation of the protein kinase could be detected prior to addition of exogenous substrate proteins. We therefore suggest that ADP-ribose acts by evoking a conformational transition in the enzyme. Activation by ADP-ribose represents a potential regulatory link between chromatin remodeling and the activity of SsoPK5.
Collapse
|
5
|
Peggion C, Lopreiato R, Casanova E, Ruzzene M, Facchin S, Pinna LA, Carignani G, Sartori G. Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily. FEBS J 2008; 275:5919-33. [DOI: 10.1111/j.1742-4658.2008.06721.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
De Castro RE, Maupin-Furlow JA, Giménez MI, Herrera Seitz MK, Sánchez JJ. Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 2006; 30:17-35. [PMID: 16438678 DOI: 10.1111/j.1574-6976.2005.00003.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Proteases play key roles in many biological processes and have numerous applications in biotechnology and industry. Recent advances in the genetics, genomics and biochemistry of the halophilic Archaea provide a tremendous opportunity for understanding proteases and their function in the context of an archaeal cell. This review summarizes our current knowledge of haloarchaeal proteases and provides a reference for future research.
Collapse
Affiliation(s)
- Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
7
|
Chan EWS, Chattopadhaya S, Panicker RC, Huang X, Yao SQ. Developing Photoactive Affinity Probes for Proteomic Profiling: Hydroxamate-based Probes for Metalloproteases. J Am Chem Soc 2004; 126:14435-46. [PMID: 15521763 DOI: 10.1021/ja047044i] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The denaturing aspect of current activity-based protein profiling strategies limits the classes of chemical probes to those which irreversibly and covalently modify their targeting enzymes. Herein, we present a complimentary, affinity-based labeling approach to profile enzymes which do not possess covalently bound substrate intermediates. Using a variety of enzymes belonging to the class of metalloproteases, the feasibility of the approach was successfully demonstrated in several proof-of-concept experiments. The design template of affinity-based probes targeting metalloproteases consists of a peptidyl hydroxamate zinc-binding group (ZBG), a fluorescent reporter tag, and a photolabile diazirine group. Photolysis of the photolabile unit in the probe effectively generates a covalent, irreversible linkage between the probe and the target enzyme, rendering the enzyme distinguishable from unlabeled proteins upon separation on a SDS-PAGE gel. A variety of labeling studies were carried out to confirm that the affinity-based approach selectively labeled metalloproteases in the presence of a large excess of other proteins and that the success of the labeling reaction depends intimately upon the catalytic activity of the enzyme. Addition of competitive inhibitors proportionally diminished the extent of enzyme labeling, making the approach useful for potential in situ screening of metalloprotease inhibitors. Using different probes with varying P(1) amino acids, we were able to generate unique "fingerprint" profiles of enzymes which may be used to determine their substrate specificities. Finally, by testing against a panel of yeast metalloproteases, we demonstrated that the affinity-based approach may be used for the large-scale profiling of metalloproteases in future proteomic experiments.
Collapse
Affiliation(s)
- Elaine W S Chan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | | | | | | | | |
Collapse
|
8
|
Lopreiato R, Facchin S, Sartori G, Arrigoni G, Casonato S, Ruzzene M, Pinna LA, Carignani G. Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem J 2004; 377:395-405. [PMID: 14519092 PMCID: PMC1223863 DOI: 10.1042/bj20030638] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Revised: 09/30/2003] [Accepted: 09/30/2003] [Indexed: 11/17/2022]
Abstract
The Saccharomyces cerevisiae piD261/Bud32 protein and its structural homologues, which are present along the Archaea-Eukarya lineage, constitute a novel protein kinase family (the piD261 family) distantly related in sequence to the eukaryotic protein kinase superfamily. It has been demonstrated that the yeast protein displays Ser/Thr phosphotransferase activity in vitro and contains all the invariant residues of the family. This novel protein kinase appears to play an important cellular role as deletion in yeast of the gene encoding piD261/Bud32 results in the alteration of fundamental processes such as cell growth and sporulation. In this work we show that the phosphotransferase activity of Bud32 is relevant to its functionality in vivo, but is not the unique role of the protein, since mutants which have lost catalytic activity but not native conformation can partially complement the disruption of the gene encoding piD261/Bud32. A two-hybrid approach has led to the identification of several proteins interacting with Bud32; in particular a glutaredoxin (Grx4), a putative glycoprotease (Ykr038/Kae1) and proteins of the Imd (inosine monophosphate dehydrogenase) family seem most plausible interactors. We further demonstrate that Grx4 directly interacts with Bud32 and that it is phosphorylated in vitro by Bud32 at Ser-134. The functional significance of the interaction between Bud32 and the putative protease Ykr038/Kae1 is supported by its evolutionary conservation.
Collapse
Affiliation(s)
- Raffaele Lopreiato
- Dipartimento di Chimica Biologica, Università di Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lower BH, Potters MB, Kennelly PJ. A phosphoprotein from the archaeon Sulfolobus solfataricus with protein-serine/threonine kinase activity. J Bacteriol 2004; 186:463-72. [PMID: 14702316 PMCID: PMC305749 DOI: 10.1128/jb.186.2.463-472.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 10/03/2003] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus solfataricus contains a membrane-associated protein kinase activity that displays a strong preference for threonine as the phospho-acceptor amino acid residue. When a partially purified detergent extract of the membrane fraction from the archaeon S. solfataricus that had been enriched for this activity was incubated with [gamma-(32)P]ATP, radiolabeled phosphate was incorporated into roughly a dozen polypeptides, several of which contained phosphothreonine. One of the phosphothreonine-containing proteins was identified by mass peptide profiling as the product of open reading frame [ORF] sso0469. Inspection of the DNA-derived amino acid sequence of the predicted protein product of ORF sso0469 revealed the presence of sequence characteristics faintly reminiscent of the "eukaryotic" protein kinase superfamily. ORF sso0469 therefore was cloned, and its polypeptide product was expressed in Escherichia coli. The recombinant protein formed insoluble aggregates that could be dispersed using urea or detergents. The solubilized polypeptide phosphorylated several exogenous proteins in vitro, including casein, myelin basic protein, and bovine serum albumin. Mutagenic alteration of amino acids predicted to be essential for catalytic activity abolished or severely reduced catalytic activity. Phosphorylation of exogenous substrates took place on serine and, occasionally, threonine. This new archaeal protein kinase displayed no catalytic activity when GTP was substituted for ATP as the phospho-donor substrate, while Mn(2+) was the preferred cofactor.
Collapse
Affiliation(s)
- Brian H Lower
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
10
|
Facchin S, Lopreiato R, Ruzzene M, Marin O, Sartori G, Götz C, Montenarh M, Carignani G, Pinna LA. Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency. FEBS Lett 2003; 549:63-6. [PMID: 12914926 DOI: 10.1016/s0014-5793(03)00770-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Yeast piD261/Bud32 belongs to the piD261 family of atypical protein kinases structurally conserved, from Archaea to human. The disruption of its gene is causative of severely defective growth. Its human homologue, PRPK, interacts with and phosphorylates the oncosuppressor p53 protein, which is lacking in yeast. Here we show that on one hand piD261/Bud32 interacts with and phosphorylates human p53 in vitro, on the other hand PRPK can partially complement the phenotype of yeast lacking the gene encoding piD261/Bud32. These data indicate that, despite considerable structural divergence, members of the piD261 family from distantly related organisms display a remarkable functional conservation.
Collapse
Affiliation(s)
- Sonia Facchin
- Dipartimento di Chimica Biologica, Università di Padova, Viale G Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lower BH, Kennelly PJ. Open reading frame sso2387 from the archaeon Sulfolobus solfataricus encodes a polypeptide with protein-serine kinase activity. J Bacteriol 2003; 185:3436-45. [PMID: 12754243 PMCID: PMC155377 DOI: 10.1128/jb.185.11.3436-3445.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 03/21/2003] [Indexed: 11/20/2022] Open
Abstract
The predicted polypeptide product of open reading frame sso2387 from the archaeon Sulfolobus solfataricus, SsoPK2, displayed several of the sequence features conserved among the members of the "eukaryotic" protein kinase superfamily. sso2387 was cloned, and its polypeptide product was expressed in Escherichia coli. The recombinant protein, rSsoPK2, was recovered in insoluble aggregates that could be dispersed by using high concentrations (5 M) of urea. The solubilized polypeptide displayed the ability to phosphorylate itself as well as several exogenous proteins, including mixed histones, casein, bovine serum albumin, and reduced carboxyamidomethylated and maleylated lysozyme, on serine residues. The source of this activity resided in that portion of the protein displaying homology to the catalytic domain of eukaryotic protein kinases. By use of mass spectrometry, the sites of autophosphorylation were found to be located in two areas, one immediately N terminal to the region corresponding to subdomain I of eukaryotic protein kinases, and the second N terminal to the presumed activation loop located between subdomains VII and VIII. Autophosphorylation of rSsoPK2 could be uncoupled from the phosphorylation of exogenous proteins by manipulation of the temperature or mutagenic alteration of the enzyme. Autophosphorylation was detected only at temperatures >or=60 degrees C, whereas phosphorylation of exogenous proteins was detectable at 37 degrees C. Similarly, replacement of one of the potential sites of autophosphorylation, Ser(548), with alanine blocked autophosphorylation but not phosphorylation of an exogenous protein, casein.
Collapse
Affiliation(s)
- Brian H Lower
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
12
|
Kennelly PJ. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 2003; 370:373-89. [PMID: 12444920 PMCID: PMC1223194 DOI: 10.1042/bj20021547] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 11/20/2002] [Accepted: 11/22/2002] [Indexed: 01/25/2023]
Abstract
Protein phosphorylation/dephosphorylation has long been considered a recent addition to Nature's regulatory arsenal. Early studies indicated that this molecular regulatory mechanism existed only in higher eukaryotes, suggesting that protein phosphorylation/dephosphorylation had emerged to meet the particular signal-transduction requirements of multicellular organisms. Although it has since become apparent that simple eukaryotes and even bacteria are sites of protein phosphorylation/dephosphorylation, the perception widely persists that this molecular regulatory mechanism emerged late in evolution, i.e. after the divergence of the contemporary phylogenetic domains. Only highly developed cells, it was reasoned, could afford the high 'overhead' costs inherent in the acquisition of dedicated protein kinases and protein phosphatases. The advent of genome sequencing has provided an opportunity to exploit Nature's phylogenetic diversity as a vehicle for critically examining this hypothesis. In tracing the origins and evolution of protein phosphorylation/dephosphorylation, the members of the Archaea, the so-called 'third domain of life', will play a critical role. Whereas several studies have demonstrated that archaeal proteins are subject to modification by covalent phosphorylation, relatively little is known concerning the identities of the proteins affected, the impact on their functional properties, or the enzymes that catalyse these events. However, examination of several archaeal genomes has revealed the widespread presence of several ostensibly 'eukaryotic' and 'bacterial' protein kinase and protein phosphatase paradigms. Similar findings of 'phylogenetic trespass' in members of the Eucarya (eukaryotes) and the Bacteria suggest that this versatile molecular regulatory mechanism emerged at an unexpectedly early point in development of 'life as we know it'.
Collapse
Affiliation(s)
- Peter J Kennelly
- Department of Biochemistry - 0308, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Bibliography. Yeast 2003; 20:185-92. [PMID: 12568102 DOI: 10.1002/yea.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|