1
|
Brookhouser N, Raman S, Frisch C, Srinivasan G, Brafman DA. APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Mol Psychiatry 2021; 26:5715-5732. [PMID: 33837271 PMCID: PMC8501163 DOI: 10.1038/s41380-021-01076-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer's disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aβ is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Carlye Frisch
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Barber CN, Raben DM. Lipid Metabolism Crosstalk in the Brain: Glia and Neurons. Front Cell Neurosci 2019; 13:212. [PMID: 31164804 PMCID: PMC6536584 DOI: 10.3389/fncel.2019.00212] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Until recently, glial cells have been considered mainly support cells for neurons in the mammalian brain. However, many studies have unveiled a variety of glial functions including electrolyte homeostasis, inflammation, synapse formation, metabolism, and the regulation of neurotransmission. The importance of these functions illuminates significant crosstalk between glial and neuronal cells. Importantly, it is known that astrocytes secrete signals that can modulate both presynaptic and postsynaptic function. It is also known that the lipid compositions of the pre- and post-synaptic membranes of neurons greatly impact functions such as vesicle fusion and receptor mobility. These data suggest an essential lipid-mediated communication between glial cells and neurons. Little is known, however, about how the lipid metabolism of both cell types may interact. In this review, we discuss neuronal and glial lipid metabolism and suggest how they might interact to impact neurotransmission.
Collapse
Affiliation(s)
- Casey N Barber
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Common functional variants of the glutamatergic system in Autism spectrum disorder with high and low intellectual abilities. J Neural Transm (Vienna) 2017; 125:259-271. [PMID: 29147782 DOI: 10.1007/s00702-017-1813-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
Abstract
The genetic architecture underlying Autism spectrum disorder (ASD) has been suggested to differ between individuals with lower (IQ ≤ 70; LIQ) and higher intellectual abilities (IQ > 70; HIQ). Among the identified pathomechanisms, the glutamatergic signalling pathway is of specific interest in ASD. We investigated 187 common functional variants of this neurotransmitter system for association with ASD and with symptom severity in two independent samples, a German (German-ALL: N = 583 families) and the Autism Genome Project cohort (AGP-ALL: N = 2001 families), split into HIQ, and LIQ subgroups. We did not identify any association withstanding correction for multiple testing. However, we report a replicated nominal significant under-transmission (OR < 0.79, p < 0.04) of the AKAP13 rs745191-T allele in both LIQ cohorts, but not in the much larger HIQ cohorts. At the phenotypic level, we nominally replicated associations of CAMK2A-rs2241694 with non-verbal communication in both combined LIQ and HIQ ASD cohorts. Variants PLD1-rs2124147 and ADCY1-rs2461127 were nominally associated with impaired non-verbal abilities and AKAP2-rs3739456 with repetitive behaviour in both LIQ cohorts. All four LIQ-associated genes are involved in G-protein coupled signal transduction, a downstream pathway of metabotropic glutamate receptor activation. We conclude that functional common variants of glutamatergic genes do not have a strong impact on ASD, but seem to moderately affect ASD risk and phenotypic expression. Since most of our nominally replicated hits were identified in the LIQ cohort, further investigation of the glutamatergic system in this subpopulation might be warranted.
Collapse
|
4
|
Zhu YB, Gao W, Zhang Y, Jia F, Zhang HL, Liu YZ, Sun XF, Yin Y, Yin DM. Astrocyte-derived phosphatidic acid promotes dendritic branching. Sci Rep 2016; 6:21096. [PMID: 26883475 PMCID: PMC4756377 DOI: 10.1038/srep21096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/18/2016] [Indexed: 01/24/2023] Open
Abstract
Astrocytes play critical roles in neural circuit formation and function. Recent studies have revealed several secreted and contact-mediated signals from astrocytes which are essential for neurite outgrowth and synapse formation. However, the mechanisms underlying the regulation of dendritic branching by astrocytes remain elusive. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphatidic acid (PA) and choline, has been implicated in the regulation of neurite outgrowth. Here we showed that knockdown of PLD1 selectively in astrocytes reduced dendritic branching of neurons in neuron-glia mixed culture. Further studies from sandwich-like cocultures and astrocyte conditioned medium suggested that astrocyte PLD1 regulated dendritic branching through secreted signals. We later demonstrated that PA was the key mediator for astrocyte PLD1 to regulate dendritic branching. Moreover, PA itself was sufficient to promote dendritic branching of neurons. Lastly, we showed that PA could activate protein kinase A (PKA) in neurons and promote dendritic branching through PKA signaling. Taken together, our results demonstrate that astrocyte PLD1 and its lipid product PA are essential regulators of dendritic branching in neurons. These results may provide new insight into mechanisms underlying how astrocytes regulate dendrite growth of neurons.
Collapse
Affiliation(s)
- Yan-Bing Zhu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weizhen Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Zhang
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Feng Jia
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Long Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ying-Zi Liu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xue-Fang Sun
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuhua Yin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Kim M, Moon C, Kim H, Shin MK, Min DS, Shin T. Developmental levels of phospholipase D isozymes in the brain of developing rats. Acta Histochem 2010; 112:81-91. [PMID: 19010519 DOI: 10.1016/j.acthis.2008.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/03/2008] [Accepted: 09/15/2008] [Indexed: 11/18/2022]
Abstract
The developmental levels of phospholipase D (PLD) isozymes was examined in the cerebrum and hindbrain of the developing rat to better understand the involvement of PLD in brain development. Western blot analysis of PLD in the cerebrum showed that PLD1, a major PLD isoform in the brain, was detected weakly in the cerebrum at day 17 embryonic stage and its levels gradually increased until postnatal day 35 and remained unaltered thereafter. In the hindbrain, comprising the cerebellum and pons, the peak level of PLD1 was detected at 21 days postnatally and declined progressively thereafter. The level of PLD2 in both the cerebrum and hindbrain was minimal compared to that of PLD1. Based on immunohistochemistry, PLD was detected in some neurons and glial cells in the cerebrum. In the hindbrain, PLD was found in some Purkinje cells and some cells of the molecular layer, as well as glial cells, consistent with the results obtained from Western blot analysis. These findings suggest that PLD may differentially play a role in the course of early development of the brain, with special reference to the cerebrum and hindbrain, in rats.
Collapse
Affiliation(s)
- Mia Kim
- Department of Veterinary Anatomy, Applied Radiological Science Research Institute, Cheju National University, Jeju, South Korea
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Ten years after the isoforms of mammalian phospholipase D (PLD), PLD1 and 2, were cloned, their roles in the brain remain speculative but several lines of evidence now implicate these enzymes in basic cell functions such as vesicular trafficking as well as in brain development. Many mitogenic factors, including neurotransmitters and growth factors, activate PLD in neurons and astrocytes. Activation of PLD downstream of protein kinase C seems to be a required step for astroglial proliferation. The characteristic disruption of the PLD signaling pathway by ethanol probably contributes to the delay of brain growth in fetal alcohol syndrome. The post-natal increase of PLD activities concurs with synapto- and myelinogenesis in the brain and PLD is apparently involved in neurite formation. In the adult and aging brain, PLD activity has antiapoptotic properties suppressing ceramide formation. Increased PLD activities in acute and chronic neurodegeneration as well as in inflammatory processes are evidently due to astrogliosis and may be associated with protective responses of tissue repair and remodeling. ARF-regulated PLD participates in receptor endocytosis as well as in exocytosis of neurotransmitters where PLD seems to favor vesicle fusion by modifications of the shape and charge of lipid membranes. Finally, PLD activities contribute free choline for the synthesis of acetylcholine in the brain. Novel tools such as RNA interference should help to further elucidate the roles of PLD isoforms in brain physiology and pathology.
Collapse
Affiliation(s)
- Jochen Klein
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, USA.
| |
Collapse
|
7
|
Schatter B, Jin S, Löffelholz K, Klein J. Cross-talk between phosphatidic acid and ceramide during ethanol-induced apoptosis in astrocytes. BMC Pharmacol 2005; 5:3. [PMID: 15694004 PMCID: PMC549038 DOI: 10.1186/1471-2210-5-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 02/04/2005] [Indexed: 01/08/2023] Open
Abstract
Background Ethanol inhibits proliferation in astrocytes, an effect that was recently linked to the suppression of phosphatidic acid (PA) formation by phospholipase D (PLD). The present study investigates ethanol's effect on the induction of apoptosis in astrocytes and the formation of ceramide, an apoptotic signal. Evidence is presented that the formation of PA and ceramide may be reciprocally linked during ethanol exposure. Results In cultured rat cortical astrocytes, ethanol (0.3–1 %, v/v) induced nuclear fragmentation and DNA laddering indicative of apoptosis. Concomitantly, in cells prelabeled with [3H]-serine, ethanol caused a dose-dependent, biphasic increase of the [3H]-ceramide/ [3H]-sphingomyelin ratio after 1 and 18 hours of incubation. As primary alcohols such as ethanol and 1-butanol were shown to inhibit the phospholipase D (PLD)-mediated formation of PA, a mitogenic lipid messenger, we tested their effects on ceramide formation. In astrocytes prelabeled with [3H]-serine, ethanol and 1-butanol, in contrast to t-butanol, significantly increased the formation of [3H]-ceramide. Moreover, exogenous PA, added to transiently permeabilized astrocytes, suppressed ethanol-induced [3H]-ceramide formation. Vice versa, addition of C2-ceramide to astrocytes inhibited PLD activity induced by serum or phorbol ester. Conclusion We propose that the formation of ceramide in ethanol-exposed astrocytes is secondary to the disruption of phospholipase D signaling. Ethanol reduces the PA:ceramide ratio in fetal astrocytes, a mechanism which likely participates in ethanol-induced glial apoptosis during brain development.
Collapse
Affiliation(s)
- Beate Schatter
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Shenchu Jin
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Konrad Löffelholz
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Jochen Klein
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas, USA
| |
Collapse
|
8
|
Peivandi AA, Huhn A, Lehr HA, Jin S, Troost J, Salha S, Weismüller T, Löffelholz K. Upregulation of Phospholipase D Expression and Activation in Ventricular Pressure-Overload Hypertrophy. J Pharmacol Sci 2005; 98:244-54. [PMID: 15988127 DOI: 10.1254/jphs.fpe04008x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Evidence for a role of phospholipase D (PLD) in cellular proliferation and differentiation is accumulating. We studied PLD activity and expression in normal and hypertrophic rat and human hearts. In rat heart, abdominal aortic banding (constriction to 50% of original lumen) caused hypertrophy in the left ventricle (as shown by weight index and ANP expression) by about 15% after 30 days without histological evidence of fibrosis or signs of decompensation and in the right ventricle after 100 days. The hypertrophy was accompanied by small increases of basal PLD activity and strong potentiation of stimulated PLD activity caused by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) and by phenylephrine. The mRNA expressions of both PLD1 and PLD2 determined by semiquantitative competitive RT-PCR were markedly enhanced after aortic banding. In the caveolar fraction of the rat heart, PLD2 protein determined by Western blot analysis was upregulated in parallel with the expression of caveolin-3. A similar induction of PLD mRNA and protein expression was observed in hypertrophied human hearts of individuals (39-45-year-old) who had died from non-cardiac causes. In conclusion, PLD1 and PLD2 expressions were strongly enhanced both in rat and human heart hypertrophy, which may be responsible for the coincident potentiation of the PLD activation by alpha-adrenoceptor and protein kinase C stimulation. These results are compatible with a significant role of PLD activation in cell signaling of ventricular pressure-overload hypertrophy.
Collapse
Affiliation(s)
- Ali A Peivandi
- Department of Cardiothoracic and Vascular Surgery, Johannes-Gutenberg-University of Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|