1
|
Rai A, Jha NS. Targeting Mycobacterium tuberculosis Parallel G-Quadruplex Motifs with Aminoglycosides Neomycin and Streptomycin: Spectroscopic and Calorimetric Aspects. J Phys Chem B 2025; 129:1715-1727. [PMID: 39902947 DOI: 10.1021/acs.jpcb.4c06795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mycobacterium tuberculosis (Mtb) contains potential G-quadruplex (PGQ) motifs in the genes espK and cyp51, which are crucial for the bacteria's virulence within host cells. Aminoglycoside molecules are commonly used as antibiotics for ribosomal targets. This study provides insight into the interactions between these aminoglycosides and Mtb-PGQ sequences (espK and cyp51), shedding light on the structural and thermodynamic dynamics of their binding. This study demonstrates the stability, affinity, and conformation of Mtb-PGQ in the presence of neomycin and streptomycin. Ultraviolet-visible spectroscopy (UV-vis), circular dichroism spectroscopy (CD), CD thermal melting, isothermal titration calorimetry (ITC), and fluorescence intercalator displacement (FID) assays were used to comprehensively examine these interactions. Our results reveal that neomycin with Mtb-PGQexhibits hypochromism accompanied by a 4-5 nm red shift in the UV-visible absorption titration, whereas streptomycin exhibits a hypochromic shift without changes in the maximum wavelength. Notably, neomycin shows a nonlinear binding isotherm, suggesting the involvement of more than one binding process in the formation of neomycin.Mtb-PGQ complexes. Scatchard plot analysis indicates higher binding affinity values for neomycin compared with weaker affinity of streptomycin. CD studies reveal that neomycin decreases the ellipticity of Mtb-PGQ with a red shift while retaining the parallel topology, ultimately enhancing the thermal stability of both espK and cyp51. In contrast, streptomycin destabilizes the cells. ITC analysis reveals that neomycin exhibits the strongest binding affinity for cyp51, with the relative order being NEO-cyp51 > NEO-espk > STR-cyp51 > STR-espk. Moreover, thermodynamic analysis reveals that neomycin possesses a unique dual mode of binding through grooves as well as stacking. FID studies further confirm a lower DC50 value for neomycin than for streptomycin, suggesting that neomycin is a strong displacer of thiazole orange. Thus, the results show that neomycin with amino groups selectively recognizes the grooves of cyp51 over espK.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Chemistry, National Institute of Technology, Patna 800005, India
| | - Niki S Jha
- Department of Chemistry, National Institute of Technology, Patna 800005, India
| |
Collapse
|
2
|
Secretory proteins of
Mycobacterium tuberculosis
and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J 2022; 289:4146-4171. [DOI: 10.1111/febs.16369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
|
3
|
Mohamed H, Child SA, Bruning JB, Bell SG. A comparison of the bacterial CYP51 cytochrome P450 enzymes from Mycobacterium marinum and Mycobacterium tuberculosis. J Steroid Biochem Mol Biol 2022; 221:106097. [PMID: 35346833 DOI: 10.1016/j.jsbmb.2022.106097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Members of the CYP51 family of cytochrome P450 enzymes are classified as sterol demethylases involved in the metabolic formation of cholesterol and related derivatives. The CYP51 enzyme from Mycobacterium marinum was studied and compared to its counterpart from Mycobacterium tuberculosis to determine the degree of functional conservation between them. Spectroscopic analyses of substrate and inhibitor binding of the purified CYP51 enzymes from M. marinum and M. tuberculosis were performed. The catalytic oxidation of lanosterol and related steroids was investigated. M. marinum CYP51 was structurally characterized by X-ray crystallography. The CYP51 enzyme of M. marinum is sequentially closely related to CYP51B1 from M. tuberculosis. However, differences in the heme spin state of each enzyme were observed upon the addition of steroids and other ligands. Both enzymes displayed different binding properties to those reported for the CYP51-Fdx fusion protein from the bacterium Methylococcus capsulatus. The enzymes were able to oxidatively demethylate lanosterol to generate 14-demethylanosterol, but no products were detected for the related species dihydrolanosterol and eburicol. The crystal structure of CYP51 from M. marinum in the absence of added substrate but with a Bis-Tris molecule within the active site was resolved. The CYP51 enzyme of M. marinum displays differences in how steroids and other ligands bind compared to the M. tuberculosis enzyme. This was related to structural differences between the two enzymes. Overall, both of these CYP51 enzymes from mycobacterial species displayed significant differences to the CYP51 enzymes of eukaryotic species and the bacterial CYP51-Fdx enzyme of Me. capsulatus.
Collapse
Affiliation(s)
| | - Stella A Child
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols. Mol Divers 2021; 26:2535-2548. [PMID: 34822095 DOI: 10.1007/s11030-021-10351-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Herein, we identified a potent lead compound RRA2, within a series of 54 derivatives of 1,2,4-triazolethiols (exhibit good potency as an anti-mycobacterial agents) against intracellular Mycobacterium tuberculosis (Mtb). Compound RRA2 showed significant mycobactericidal activity against active stage Mycobacterium bovis BCG and Mtb with minimum inhibitory concentration (MIC) values of 2.3 and 2.0 µg/mL, respectively. At MIC value, RRA2 compound yielded 0.82 log reduction of colony-forming unit (cfu) against non-replicating Mtb. Furthermore, RRA2 compound was selected for further target identification due to the presence of alkyne group, showing higher selectivity index (> 66.66 ± 0.22, in non-replicating stage). Using "click" chemistry, we synthesized the biotin linker-RRA2 conjugate, purified with HPLC method and confirmed the conjugation of biotin linker-RRA2 complex by HR-MS analysis. Furthermore, we successfully pulled down and identified a specific target protein GroEl2, from Mtb whole-cell extract. Furthermore, computational molecular modeling indicated RRA2 could interact with GroEl2, which explains the structure-activity relationship observed in this study. GroEL-2 identified a potent and specific target protein for RRA 2 compound in whole cell extract of Mtb H37Ra.
Collapse
|
5
|
Mishra SK, Shankar U, Jain N, Sikri K, Tyagi JS, Sharma TK, Mergny JL, Kumar A. Characterization of G-Quadruplex Motifs in espB, espK, and cyp51 Genes of Mycobacterium tuberculosis as Potential Drug Targets. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:698-706. [PMID: 31128421 PMCID: PMC6531831 DOI: 10.1016/j.omtn.2019.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/31/2023]
Abstract
G-quadruplex structure forming motifs are among the most studied evolutionarily conserved drug targets that are present throughout the genome of different organisms and susceptible to influencing various biological processes. Here we report highly conserved potential G-quadruplex motifs (PGQs) in three essential genes (espK, espB, and cyp51) among 160 strains of the Mycobacterium tuberculosis genome. Products of these genes are involved in pathways that are responsible for virulence determination of bacteria inside the host cell and its survival by maintaining membrane fluidity. The espK and espB genes are essential players that prevent the formation of mature phagolysosome and antigen presentation by host macrophages. The cyp51 is another PGQ-possessing gene involved in sterol biosynthesis pathway and membrane formation. In the present study, we revealed the formation of stable intramolecular parallel G-quadruplex structures by Mycobacterium PGQs using a combination of techniques (NMR, circular dichroism [CD], and gel electrophoresis). Next, isothermal titration calorimetry (ITC) and CD melting analysis demonstrated that a well-known G-quadruplex ligand, TMPyP4, binds to and stabilizes these PGQ motifs. Finally, polymerase inhibition and qRT-PCR assays highlight the biological relevance of PGQ-possessing genes in this pathogen and demonstrate that G-quadruplexes are potential drug targets for the development of effective anti-tuberculosis therapeutics.
Collapse
Affiliation(s)
- Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tarun Kumar Sharma
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Jean-Louis Mergny
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India.
| |
Collapse
|
6
|
Dhiman RK, Pujari V, Kincaid JM, Ikeh MA, Parish T, Crick DC. Characterization of MenA (isoprenyl diphosphate:1,4-dihydroxy-2-naphthoate isoprenyltransferase) from Mycobacterium tuberculosis. PLoS One 2019; 14:e0214958. [PMID: 30978223 PMCID: PMC6461227 DOI: 10.1371/journal.pone.0214958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
The menaquinone biosynthetic pathway presents a promising drug target against Mycobacterium tuberculosis and potentially other Gram-positive pathogens. In the present study, the essentiality, steady state kinetics of MenA from M. tuberculosis and the mechanism of MenA inhibition by Ro 48-8071 were characterized. MenA [isoprenyl diphosphate:1,4-dihydroxy-2-naphthoate (DHNA) isoprenyltransferase] catalyzes a critical reaction in menaquinone biosynthesis that involves the conversion of cytosolic DHNA, to membrane bound demethylmenaquinone by transferring a hydrophobic 45-carbon isoprenoid chain (in the case of mycobacteria) to the ring nucleus of DHNA. Rv0534c previously identified as the gene encoding MenA in M. tuberculosis complemented a menA deletion in E. coli and an E. coli host expressing Rv0534c exhibited an eight-fold increase in MenA specific activity over the control strain harboring empty vector under similar assay conditions. Expression of Rv0534c is essential for mycobacterial survival and the native enzyme from M. tuberculosis H37Rv was characterized using membrane preparations as it was not possible to solubilize and purify the recombinant enzyme. The enzyme is absolutely dependent on the presence of a divalent cation for optimal activity with Mg+2 being the most effective and is active over a wide pH range, with pH 8.5 being optimal. The apparent Km values for DHNA and farnesyl diphosphate were found to be 8.2 and 4.3 μM, respectively. Ro 48-8071, a compound previously reported to inhibit mycobacterial MenA activity, is non-competitive with regard to DHNA and competitive with regard to the isoprenyldiphosphate substrate.
Collapse
Affiliation(s)
- Rakesh K. Dhiman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Venugopal Pujari
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - James M. Kincaid
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Melanie A. Ikeh
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, London, United Kingdom
| | - Tanya Parish
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, London, United Kingdom
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Dean C. Crick
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
7
|
Structural and functional characterisation of the cytochrome P450 enzyme CYP268A2 from Mycobacterium marinum. Biochem J 2018; 475:705-722. [DOI: 10.1042/bcj20170946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022]
Abstract
Members of the cytochrome P450 monooxygenase family CYP268 are found across a broad range of Mycobacterium species including the pathogens Mycobacterium avium, M. colombiense, M. kansasii, and M. marinum. CYP268A2, from M. marinum, which is the first member of this family to be studied, was purified and characterised. CYP268A2 was found to bind a variety of substrates with high affinity, including branched and straight chain fatty acids (C10–C12), acetate esters, and aromatic compounds. The enzyme was also found to bind phenylimidazole inhibitors but not larger azoles, such as ketoconazole. The monooxygenase activity of CYP268A2 was efficiently reconstituted using heterologous electron transfer partner proteins. CYP268A2 hydroxylated geranyl acetate and trans-pseudoionone at a terminal methyl group to yield (2E,6E)-8-hydroxy-3,7-dimethylocta-2,6-dien-1-yl acetate and (3E,5E,9E)-11-hydroxy-6,10-dimethylundeca-3,5,9-trien-2-one, respectively. The X-ray crystal structure of CYP268A2 was solved to a resolution of 2.0 Å with trans-pseudoionone bound in the active site. The overall structure was similar to that of the related phytanic acid monooxygenase CYP124A1 enzyme from Mycobacterium tuberculosis, which shares 41% sequence identity. The active site is predominantly hydrophobic, but includes the Ser99 and Gln209 residues which form hydrogen bonds with the terminal carbonyl group of the pseudoionone. The structure provided an explanation on why CYP268A2 shows a preference for shorter substrates over the longer chain fatty acids which bind to CYP124A1 and the selective nature of the catalysed monooxygenase activity.
Collapse
|
8
|
Potential drug targets in the Mycobacterium tuberculosis cytochrome P450 system. J Inorg Biochem 2018; 180:235-245. [PMID: 29352597 DOI: 10.1016/j.jinorgbio.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023]
Abstract
The Mycobacterium tuberculosis genome encodes twenty cytochrome P450 enzymes, most or all of which appear to have specific physiological functions rather than being devoted to the removal of xenobiotics. However, in many cases their specific functions remain obscure. Considerable spectroscopic, biophysical, crystallographic, and catalytic information is available on nine of these cytochrome P450 enzymes, although gaps exist in our knowledge of even these enzymes. The available evidence indicates that at least three of the better-characterized enzymes are promising targets for antituberculosis drug discovery. This review summarizes the information on the nine relatively well-characterized cytochrome P450 enzymes, with a particular emphasis on CYP121, CYP125, and CYP142 from Mycobacterium tuberculosis and Mycobacterium smegmatis.
Collapse
|
9
|
Ke X, Ding GJ, Ma BX, Liu ZQ, Zhang JF, Zheng YG. Characterization of a novel CYP51 from Rhodococcus triatomae and its NADH-ferredoxin reductase-coupled application in lanosterol 14α-demethylation. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Jo HY, Park SH, Le TK, Ma SH, Kim D, Ahn T, Joung YH, Yun CH. Peroxide-dependent oxidation reactions catalyzed by CYP191A1 from Mycobacterium smegmatis. Biotechnol Lett 2017; 39:1245-1252. [DOI: 10.1007/s10529-017-2358-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/09/2017] [Indexed: 11/25/2022]
|
11
|
de Oliveira Ceita G, Vilas-Boas LA, Castilho MS, Carazzolle MF, Pirovani CP, Selbach-Schnadelbach A, Gramacho KP, Ramos PIP, Barbosa LV, Pereira GAG, Góes-Neto A. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa. Genet Mol Biol 2014; 37:683-93. [PMID: 25505843 PMCID: PMC4261968 DOI: 10.1590/s1415-47572014005000017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/04/2014] [Indexed: 11/22/2022] Open
Abstract
The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.
Collapse
Affiliation(s)
- Geruza de Oliveira Ceita
- Laboratório de Pesquisa em Microbiologia,
Departamento de Ciências Biológicas,
Universidade Estadual de Feira de Santana,
Feira de Santana,
BA,
Brazil
- Laboratório de Biologia Molecular,
Instituto de Biologia,
Departamento de Biologia Geral,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | - Laurival Antônio Vilas-Boas
- Centro de Ciências Biológicas,
Departamento de Biologia Geral,
Universidade Estadual de Londrina,
Londrina,
PR,
Brazil
| | - Marcelo Santos Castilho
- Laboratório de Bioinformática e Modelagem Molecular,
Departamento do Medicamento,
Faculdade de Farmácia,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Proteômica,
Departamento de Genética e Evolução,
Universidade Estadual de Campinas,
Campinas,
SP,
Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética,
Departamento de Ciências Biológicas,
Universidade Estadual de Santa Cruz,
Ilhéus,
BA,
Brazil
| | - Alessandra Selbach-Schnadelbach
- Laboratório de Biologia Molecular,
Instituto de Biologia,
Departamento de Biologia Geral,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | - Karina Peres Gramacho
- Laboratório de Fitopatologia Molecular,
Centro de Pesquisas do Cacau,
Ilhéus,
BA,
Brazil
| | - Pablo Ivan Pereira Ramos
- Laboratório de Biologia Molecular,
Instituto de Biologia,
Departamento de Biologia Geral,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | - Luciana Veiga Barbosa
- Laboratório de Biologia Molecular,
Instituto de Biologia,
Departamento de Biologia Geral,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | | | - Aristóteles Góes-Neto
- Laboratório de Pesquisa em Microbiologia,
Departamento de Ciências Biológicas,
Universidade Estadual de Feira de Santana,
Feira de Santana,
BA,
Brazil
| |
Collapse
|
12
|
Lamb DC, Waterman MR, Zhao B. Streptomycescytochromes P450: applications in drug metabolism. Expert Opin Drug Metab Toxicol 2013; 9:1279-94. [DOI: 10.1517/17425255.2013.806485] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Kelly SL, Kelly DE. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R Soc Lond B Biol Sci 2013; 368:20120476. [PMID: 23297358 DOI: 10.1098/rstb.2012.0476] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The first eukaryote genome revealed three yeast cytochromes P450 (CYPs), hence the subsequent realization that some microbial fungal genomes encode these proteins in 1 per cent or more of all genes (greater than 100) has been surprising. They are unique biocatalysts undertaking a wide array of stereo- and regio-specific reactions and so hold promise in many applications. Based on ancestral activities that included 14α-demethylation during sterol biosynthesis, it is now seen that CYPs are part of the genes and metabolism of most eukaryotes. In contrast, Archaea and Eubacteria often do not contain CYPs, while those that do are frequently interesting as producers of natural products undertaking their oxidative tailoring. Apart from roles in primary and secondary metabolism, microbial CYPs are actual/potential targets of drugs/agrochemicals and CYP51 in sterol biosynthesis is exhibiting evolution to resistance in the clinic and the field. Other CYP applications include the first industrial biotransformation for corticosteroid production in the 1950s, the diversion into penicillin synthesis in early mutations in fungal strain improvement and bioremediation using bacteria and fungi. The vast untapped resource of orphan CYPs in numerous genomes is being probed and new methods for discovering function and for discovering desired activities are being investigated.
Collapse
Affiliation(s)
- Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science and College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | | |
Collapse
|
14
|
Choi KY, Jung EO, Jung DH, Pandey BP, Lee N, Yun H, Park HY, Kim BG. Novel iron-sulfur containing NADPH-reductase from Nocardia farcinica IFM10152 and fusion construction with CYP51 lanosterol demethylase. Biotechnol Bioeng 2011; 109:630-6. [PMID: 22038382 DOI: 10.1002/bit.24359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 11/08/2022]
Abstract
CYP51, a sterol 14α-demethylase, is one of the key enzymes involved in sterol biosynthesis and requires electrons transferred from its redox partners. A unique CYP51 from Nocardia farcinica IFM10152 forms a distinct cluster with iron-sulfur containing NADPH-P450 reductase (FprD) downstream of CYP51. Previously, sequence alignment of nine reductases from N. farcinica revealed that FprC, FprD, and FprH have an additional sequence at their N-termini that has very high identity with iron-sulfur clustered ferredoxin G (FdxG). To construct an artificial self-sufficient cytochrome P450 monooxygenase (CYP) with only FprD, CYP51, and iron-sulfur containing FprD were fused together with designed linker sequences. CYP51-FprD fusion enzymes showed distinct spectral properties of both flavoprotein and CYP. CYP51-FprD F1 and F2 in recombinant Escherichia coli BL21(DE3) catalyzed demethylation of lanosterol more efficiently, with k(cat) /K(m) values of 96.91 and 105.79 nmol/min/nmol, respectively, which are about 35-fold higher compared to those of CYP51 and FprD alone.
Collapse
Affiliation(s)
- Kwon-Young Choi
- School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae. Antimicrob Agents Chemother 2011; 56:391-402. [PMID: 22037849 DOI: 10.1128/aac.05227-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.
Collapse
|
16
|
Ouellet H, Johnston JB, Ortiz de Montellano PR. The Mycobacterium tuberculosis cytochrome P450 system. Arch Biochem Biophys 2009; 493:82-95. [PMID: 19635450 DOI: 10.1016/j.abb.2009.07.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 11/25/2022]
Abstract
Tuberculosis remains a leading cause of human mortality. The emergence of strains of Mycobacterium tuberculosis, the causative agent, that are resistant to the major frontline antitubercular drugs increases the urgency for the development of new therapeutic agents. Sequencing of the M. tuberculosis genome revealed the existence of 20 cytochrome P450 enzymes, some of which are potential candidates for drug targeting. The recent burst of studies reporting microarray-based gene essentiality and transcriptome analyses under in vitro, ex vivo and in vivo conditions highlight the importance of selected P450 isoforms for M. tuberculosis viability and pathogenicity. Current knowledge of the structural and biochemical properties of the M. tuberculosis P450 enzymes and their putative redox partners is reviewed, with an emphasis on findings related to their physiological function(s) as well as their potential as drug targets.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA 94158-2517, USA
| | | | | |
Collapse
|
17
|
Warrilow AGS, Jackson CJ, Parker JE, Marczylo TH, Kelly DE, Lamb DC, Kelly SL. Identification, characterization, and azole-binding properties of Mycobacterium smegmatis CYP164A2, a homolog of ML2088, the sole cytochrome P450 gene of Mycobacterium leprae. Antimicrob Agents Chemother 2009; 53:1157-64. [PMID: 19075057 PMCID: PMC2650583 DOI: 10.1128/aac.01237-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/18/2008] [Accepted: 12/07/2008] [Indexed: 01/31/2023] Open
Abstract
The genome sequence of Mycobacterium leprae revealed a single open reading frame, ML2088 (CYP164A1), encoding a putative full-length cytochrome P450 monooxygenase and 12 pseudogenes. We have identified a homolog of ML2088 in Mycobacterium smegmatis and report here the cloning, expression, purification, and azole-binding characteristics of this cytochrome P450 (CYP164A2). CYP164A2 is 1,245 bp long and encodes a protein of 414 amino acids and molecular mass of 45 kDa. CYP164A2 has 60% identity with Mycobacterium leprae CYP161A1 and 66 to 69% identity with eight other mycobacterial CYP164A1 homologs, with three identified highly conserved motifs. Recombinant CYP164A2 has the typical spectral characteristics of a cytochrome P450 monooxygenase, predominantly in the ferric low-spin state. Unusually, the spin state was readily modulated by increasing ionic strength at pH 7.5, with 50% high-spin occupancy achieved with 0.14 M NaCl. CYP164A2 bound clotrimazole, econazole, and miconazole strongly (K(d), 1.2 to 2.5 muM); however, strong binding with itraconazole, ketoconazole, and voriconazole was only observed in the presence of 0.5 M NaCl. Fluconazole did not bind to CYP164A2 at pH 7.5 and no discernible type II binding spectrum was observed.
Collapse
Affiliation(s)
- Andrew G S Warrilow
- Institute of Life Science, Swansea University, Swansea, Wales, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang X, Dubnau E, Smith I, Sampson NS. Rv1106c from Mycobacterium tuberculosis is a 3beta-hydroxysteroid dehydrogenase. Biochemistry 2007; 46:9058-67. [PMID: 17630785 PMCID: PMC2596615 DOI: 10.1021/bi700688x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New approaches are required to combat Mycobacterium tuberculosis (Mtb), especially the multi-drug resistant and extremely drug resistant organisms (MDR-TB and XDR-TB). There are many reports that mycobacteria oxidize 3beta-hydroxysterols to 3-ketosteroids, but the enzymes responsible for this activity have not been identified in mycobacterial species. In this work, the Rv1106c gene that is annotated as a 3beta-hydroxysteroid dehydrogenase in Mtb has been cloned and heterologously expressed. The purified enzyme was kinetically characterized and found to have a pH optimum between 8.5 and 9.5. The enzyme, which is a member of the short chain dehydrogenase superfamily, uses NAD+ as a cofactor and oxidizes cholesterol, pregnenolone, and dehydroepiandrosterone to their respective 3-keto-4-ene products. The enzyme forms a ternary complex with NAD+ binding before the sterol. The enzyme shows no substrate preference for dehydroepiandrosterone versus pregnenolone with second-order rate constants (kcat/Km) of 3.2 +/- 0.4 and 3.9 +/- 0.9 microM-1 min-1, respectively, at pH 8.5, 150 mM NaCl, 30 mM MgCl2, and saturating NAD+. Trilostane is a competitive inhibitor of dehydroepiandrosterone with a Ki of 197 +/- 8 microM. The expression of the 3beta-hydroxysteroid dehydrogenase in Mtb is intracellular. Disruption of the 3beta-hydroxysteroid dehydrogenase gene in Mtb abrogates mycobacterial cholesterol oxidation activity. These data are consistent with the Rv1106c gene being the one responsible for 3beta-hydroxysterol oxidation in Mtb.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Eugenie Dubnau
- Public Health Research Institute Center, New Jersey Medical School - UMDNJ, 225 Warren Street, Newark, NJ 07103
| | - Issar Smith
- Public Health Research Institute Center, New Jersey Medical School - UMDNJ, 225 Warren Street, Newark, NJ 07103
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
- *corresponding author: Address: Stony Brook University, Stony Brook, New York 11794-3400, Phone: (631) 632-7952, Fax: (631) 632-5731
| |
Collapse
|
19
|
Chen SH, Sheng CQ, Xu XH, Jiang YY, Zhang WN, He C. Identification of Y118 Amino Acid Residue in Candida albicans Sterol 14.ALPHA.-Demethylase Associated with the Enzyme Activity and Selective Antifungal Activity of Azole Analogues. Biol Pharm Bull 2007; 30:1246-53. [PMID: 17603162 DOI: 10.1248/bpb.30.1246] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous publication established a model to predict that the phenyl group of the C-3 side chain of azole antifungal compounds interacts with the phenol group of Tyr118 through the formation of pi-pi face-to-edge interaction. To verify this prediction, wild type and three site-directed mutants of the Y118 residue of Candida albicans sterol 14alpha-demethylase P450 (CACYP51) were constructed and heterologously expressed in Saccharomyces cerevisiae with deletion of the CYP51 gene. With the strains obtained and microsome enzymes separated, cell susceptibility and CACYP51 activity were examined with the 5 novel azole compounds based on the molecular modeling in comparison with fluconazole. After alteration of Y118 with Y118A, Y118F, and Y118T by a single base substitution, the expression levels of CACYP51 protein were not affected. However, these mutations markedly decreased its catalytic activity respectively; the mutation changes also decreased azole susceptibility, indicating the structural importance of the Y118 residue in maintaining CACYP51 activity and in determining azole susceptibility. In addition, our synthetic compounds with the phenyl group side chain attached to C3 produced higher susceptibility against S. cerevisiae with expression of CACYP51 and exhibited more potent inhibitory effects on CACYP51 activity in comparison with fluconazole, suggesting that the phenyl group of C3 side chain substitutes is also important for selective binding to target enzymes.
Collapse
Affiliation(s)
- Shuang-Hong Chen
- Naval Medical Research Institute, Xiangying Road, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Lepesheva GI, Waterman MR. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta Gen Subj 2006; 1770:467-77. [PMID: 16963187 PMCID: PMC2324071 DOI: 10.1016/j.bbagen.2006.07.018] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 11/22/2022]
Abstract
The CYP51 family is an intriguing subject for fundamental P450 structure/function studies and is also an important clinical drug target. This review updates information on the variety of the CYP51 family members, including their physiological roles, natural substrates and substrate preferences, and catalytic properties in vitro. We present experimental support for the notion that specific conserved regions in the P450 sequences represent a CYP51 signature. Two possible roles of CYP51 in P450 evolution are discussed and the major approaches for CYP51 inhibition are summarized.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
21
|
Pietila MP, Vohra PK, Sanyal B, Wengenack NL, Raghavakaimal S, Thomas CF. Cloning and characterization of CYP51 from Mycobacterium avium. Am J Respir Cell Mol Biol 2006; 35:236-42. [PMID: 16543605 PMCID: PMC2643258 DOI: 10.1165/rcmb.2005-0398oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium complex (MAC) causes chronic lung disease in immunocompetent people and disseminated infection in patients with AIDS. MAC is intrinsically resistant to many conventional antimycobacterial agents, it develops drug resistance rapidly to macrolide antibiotics, and patients with MAC infection experience frequent relapses or the inability to completely eradicate the infection with current treatment. Treatment regimens are prolonged and complicated by drug toxicity or intolerances. We sought to identify biochemical pathways in MAC that can serve as targets for novel antimycobacterial treatment. The cytochrome P450 enzyme, CYP51, catalyzes an essential early step in sterol metabolism, removing a methyl group from lanosterol in animals and fungi, or from obtusifoliol in plants. Azoles inhibit CYP51 function, leading to an accumulation of methylated sterol precursors. This perturbation of normal sterol metabolism compromises cell membrane integrity, resulting in growth inhibition or cell death. We have cloned and characterized a CYP51 from MAC that functions as a lanosterol 14alpha-demethylase. We show the direct interactions of azoles with purified MAC-CYP51 by absorbance and electron paramagnetic resonance spectroscopy, and determine the minimum inhibitory concentrations (MICs) of econazole, ketoconazole, itraconazole, fluconazole, and voriconazole against MAC. Furthermore, we demonstrate that econazole has a MIC of 4 mug/ml and a minimum bacteriocidal concentration of 4 mug/ml, whereas ketoconazole has a MIC of 8 mug/ml and a minimum bacteriocidal concentration of 16 mug/ml. Itraconazole, voriconazole, and fluconazole did not inhibit MAC growth to any significant extent.
Collapse
Affiliation(s)
- Michael P Pietila
- Division of Pulmonary and Critical Care Medicine, Thoracic Diseases Research Unit, 826 Stabile Building, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
22
|
Brezna B, Kweon O, Stingley RL, Freeman JP, Khan AA, Polek B, Jones RC, Cerniglia CE. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 2005; 71:522-32. [PMID: 16317545 DOI: 10.1007/s00253-005-0190-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/01/2005] [Accepted: 09/09/2005] [Indexed: 11/24/2022]
Abstract
Mycobacterium vanbaalenii PYR-1 has the ability to degrade low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). In addition to dioxygenases, cytochrome P450 monooxygenases have been implicated in PAH degradation. Three cytochrome P450 genes, cyp151 (pipA), cyp150, and cyp51, were detected and amplified by polymerase chain reaction from M. vanbaalenii PYR-1. The complete sequence of these genes was determined. The translated putative proteins were > or = 80% identical to other GenBank-listed mycobacterial CYP151, CYP150, and CYP51. Genes pipA and cyp150 were cloned, and the proteins partially expressed in Escherichia coli as soluble heme-containing cytochrome P450s that exhibited a characteristic peak at 450 nm in reduced carbon monoxide difference spectra. Monooxygenation metabolites of pyrene, dibenzothiophene, and 7-methylbenz[alpha]anthracene were detected in whole cell biotransformations, with E. coli expressing pipA or cyp150 when analyzed by gas chromatography/mass spectrometry. The cytochrome P450 inhibitor metyrapone strongly inhibited the S-oxidation of dibenzothiophene. Thirteen other Mycobacterium strains were screened for the presence of pipA, cyp150, and cyp51 genes, as well as the initial PAH dioxygenase (nidA and nidB). The results indicated that many of the Mycobacterium spp. surveyed contain both monooxygenases and dioxygenases to degrade PAHs. Our results provide further evidence for the diverse enzymatic capability of Mycobacterium spp. to metabolize polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Barbara Brezna
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sielaff B, Andreesen JR. Analysis of the nearly identical morpholine monooxygenase-encoding mor genes from different Mycobacterium strains and characterization of the specific NADH : ferredoxin oxidoreductase of this cytochrome P450 system. MICROBIOLOGY-SGM 2005; 151:2593-2603. [PMID: 16079338 DOI: 10.1099/mic.0.28039-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cloning and sequencing of the morABC operon region revealed the genes encoding the three components of a cytochrome P450 monooxygenase, which is required for the degradation of the N-heterocycle morpholine by Mycobacterium sp. strain HE5. The cytochrome P450 (P450(mor)) and the Fe(3)S(4) ferredoxin (Fd(mor)), encoded by morA and morB, respectively, have been characterized previously, whereas no evidence has hitherto been obtained for a specifically morpholine-induced reductase, which would be required to support the activity of the P450(mor) system. Analysis of the mor operon has now revealed the gene morC, encoding the ferredoxin reductase of this morpholine monooxygenase. The genes morA, morB and morC were identical to the corresponding genes from Mycobacterium sp. strain RP1. Almost identical mor genes in Mycobacterium chlorophenolicum PCP-1, in addition to an inducible cytochrome P450, pointing to horizontal gene transfer, were now identified. No evidence for a circular or linear plasmid was found in Mycobacterium sp. strain HE5. Analysis of the downstream sequences of morC revealed differences in this gene region between Mycobacterium sp. strain HE5 and Mycobacterium sp. strain RP1 on the one hand, and M. chlorophenolicum on the other hand, indicating insertions or deletions after recombination. Downstream of the mor genes, the gene orf1', encoding a putative glutamine synthetase, was identified in all studied strains. The gene morC of Mycobacterium sp. strain HE5 was heterologously expressed. The purified recombinant protein FdR(mor) was characterized as a monomeric 44 kDa protein, being a strictly NADH-dependent, FAD-containing reductase. The K(m) values of FdR(mor) for the substrate NADH (37.7 +/- 4.1 microM) and the artificial electron acceptors potassium ferricyanide (14.2 +/- 1.1 microM) and cytochrome c (28.0 +/- 3.6 microM) were measured. FdR(mor) was shown to interact functionally with its natural redox partner, the Fe(3)S(4) protein Fd(mor), and with the Fe(2)S(2) protein adrenodoxin, albeit with a much lower efficiency, but not with spinach ferredoxin. In contrast, adrenodoxin reductase, the natural redox partner of adrenodoxin, could not use Fd(mor) in activity assays. These results indicated that FdR(mor) can utilize different ferredoxins, but that Fd(mor) requires the specific NADH : ferredoxin oxidoreductase FdR(mor) from the P450(mor) system for efficient catalytic function.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Jan R Andreesen
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| |
Collapse
|
24
|
Burguière A, Hitchen PG, Dover LG, Dell A, Besra GS. Altered expression profile of mycobacterial surface glycopeptidolipids following treatment with the antifungal azole inhibitors econazole and clotrimazole. MICROBIOLOGY-SGM 2005; 151:2087-2095. [PMID: 15942015 DOI: 10.1099/mic.0.27938-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The azole antifungal drugs econazole and clotrimazole are known cytochrome P450 enzyme inhibitors. This study shows that these drugs are potent inhibitors of mycobacterial growth and are more effective against Mycobacterium smegmatis than isoniazid and ethionamide, two established anti-mycobacterial drugs. Several non-tuberculous mycobacteria, including the pathogenic members of the Mycobacterium avium-intracellulare complex (MAC) and the fast-growing saprophytic organism M. smegmatis, produce an array of serovar-specific (ss) and non-serovar-specific (ns) glycopeptidolipids (GPLs). GPL biosynthesis has been investigated for several years but has still not been fully elucidated. The authors demonstrate here that econazole and clotrimazole inhibit GPL biosynthesis in M. smegmatis. In particular, clotrimazole inhibits all four types of nsGPLs found in M. smegmatis, suggesting an early and common target within their biosynthetic pathway. Altogether, the data suggest that an azole-specific target, most likely a cytochrome P450, may be involved in the hydroxylation of the N-acyl chain in GPL biosynthesis. Azole antifungal drugs and potential derivatives could represent an interesting new range of anti-mycobacterial drugs, especially against opportunistic human pathogens including MAC, M. scrofulaceum, M. peregrinum, M. chelonae and M. abscessus.
Collapse
Affiliation(s)
- Adeline Burguière
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paul G Hitchen
- Department of Biological Sciences, Imperial College, London, SW7 2AZ, UK
| | - Lynn G Dover
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anne Dell
- Department of Biological Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Sielaff B, Andreesen JR. Kinetic and binding studies with purified recombinant proteins ferredoxin reductase, ferredoxin and cytochrome P450 comprising the morpholine mono-oxygenase from Mycobacterium sp. strain HE5. FEBS J 2005; 272:1148-59. [PMID: 15720389 DOI: 10.1111/j.1742-4658.2005.04550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P450mor system from Mycobacterium sp. strain HE5, supposed to catalyse the hydroxylation of different N-heterocycles, is composed of three components: ferredoxin reductase (FdRmor), Fe3S4 ferredoxin (Fdmor) and cytochrome P450 (P450mor). In this study, we purified Fdmor and P450mor as recombinant proteins as well as FdRmor, which has been isolated previously. Kinetic investigations of the redox couple FdRmor/Fdmor revealed a 30-fold preference for the NADH-dependent reduction of nitroblue tetrazolium (NBT) and an absolute requirement for Fdmor in this reaction, compared with the NADH-dependent reduction of cytochrome c. The quite low Km (5.3 +/- 0.3 nm) of FdRmor for Fdmor, measured with NBT as the electron acceptor, indicated high specificity. The addition of sequences providing His-tags to the N- or C-terminus of Fdmor did not significantly alter kinetic parameters, but led to competitive background activities of these fusion proteins. Production of P450mor as an N-terminal His-tag fusion protein enabled the purification of this protein in its spectral active form, which has previously not been possible for wild-type P450mor. The proposed substrates morpholine, piperidine or pyrrolidine failed to produce substrate-binding spectra of P450mor under any conditions. Pyridine, metyrapone and different azole compounds generated type II binding spectra and the Kd values determined for these substances suggested that P450mor might have a preference for more bulky and/or hydrophobic molecules. The purified recombinant proteins FdRmor, Fdmor and P450mor were used to reconstitute the homologous P450-containing mono-oxygenase, which was shown to convert morpholine.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Germany
| | | |
Collapse
|
26
|
Bellamine A, Lepesheva GI, Waterman MR. Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology. J Lipid Res 2004; 45:2000-7. [PMID: 15314102 DOI: 10.1194/jlr.m400239-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
14alpha-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC(50) for fluconazole, suggesting that F145 (conserved only in fungal 14alpha-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.
Collapse
Affiliation(s)
- Aouatef Bellamine
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | |
Collapse
|
27
|
Rezen T, Debeljak N, Kordis D, Rozman D. New Aspects on Lanosterol 14α-Demethylase and Cytochrome P450 Evolution: Lanosterol/Cycloartenol Diversification and Lateral Transfer. J Mol Evol 2004; 59:51-8. [PMID: 15383907 DOI: 10.1007/s00239-004-2603-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 01/12/2004] [Indexed: 11/30/2022]
Abstract
Sterol 14alpha-demethylase (CYP51) is a member of the cytochrome P450 superfamily, widely found in animals, fungi, and plants but present in few prokaryotic groups. CYP51 is currently believed to be the ancestral cytochrome P450 that has been transferred from prokaryotes to eukaryotic kingdoms. We propose an alternate view of CYP51 evolution that has an impact on understanding the evolution of the entire CYP superfamily. Two hundred forty-nine bacterial and four archaeal CYP sequences have been aligned and a bacterial CYP tree designed, showing a separation of two branches. Prokaryotic CYP51s cluster to the minor branch, together with other eukaryote-like CYPs. Mycobacterial and methylococcal CYP51s cluster together (100% bootstrap probability), while Streptomyces CYP51 remains on a distant branch. A CYP51 phylogenetic tree has been constructed from 44 sequences resulting in a ((plant, bacteria),(animal, fungi)) topology (100% bootstrap probability). This is in accordance with the lanosterol/cycloartenol diversification of sterol biosynthesis. The lanosterol branch (nonphotosynthetic lineage) follows the previously proposed topology of animal and fungal orthologues (100% bootstrap probability), while plant and D. discoideum CYP51s belong to the cycloartenol branch (photosynthetic lineage), all in accordance with biochemical data. Bacterial CYP51s cluster within the cycloartenol branch (69% bootstrap probability), which is indicative of a lateral gene transfer of a plant CYP51 to the methylococcal/mycobacterial progenitor, suggesting further that bacterial CYP51s are not the oldest CYP genes. Lateral gene transfer is likely far more important than hitherto thought in the development of the diversified CYP superfamily. Consequently, bacterial CYPs may represent a mixture of genes with prokaryotic and eukaryotic origin.
Collapse
Affiliation(s)
- Tadeja Rezen
- Institute of Biochemistry, Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
28
|
Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. PLANT PHYSIOLOGY 2004; 135:756-72. [PMID: 15208422 PMCID: PMC514113 DOI: 10.1104/pp.104.039826] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 05/18/2023]
Abstract
Data mining methods have been used to identify 356 Cyt P450 genes and 99 related pseudogenes in the rice (Oryza sativa) genome using sequence information available from both the indica and japonica strains. Because neither of these genomes is completely available, some genes have been identified in only one strain, and 28 genes remain incomplete. Comparison of these rice genes with the 246 P450 genes and 26 pseudogenes in the Arabidopsis genome has indicated that most of the known plant P450 families existed before the monocot-dicot divergence that occurred approximately 200 million years ago. Comparative analysis of P450s in the Pinus expressed sequence tag collections has identified P450 families that predated the separation of gymnosperms and flowering plants. Complete mapping of all available plant P450s onto the Deep Green consensus plant phylogeny highlights certain lineage-specific families maintained (CYP80 in Ranunculales) and lineage-specific families lost (CYP92 in Arabidopsis) in the course of evolution.
Collapse
Affiliation(s)
- David R Nelson
- Department of Molecular Sciences and Center of Excellence in Genomics and Bioinformatics, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
29
|
Dhiman RK, Schulbach MC, Mahapatra S, Baulard AR, Vissa V, Brennan PJ, Crick DC. Identification of a novel class of omega,E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Lipid Res 2004; 45:1140-7. [PMID: 15060088 DOI: 10.1194/jlr.m400047-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified an omega,E,E-farnesyl diphosphate (omega,E,E-FPP) synthase, encoded by the open reading frame Rv3398c, from Mycobacterium tuberculosis that is unique among reported FPP synthases in that it does not contain the type I (eukaryotic) or the type II (eubacterial) omega,E,E-FPP synthase signature motif. Instead, it has a structural motif similar to that of the type I geranylgeranyl diphosphate synthase found in Archaea. Thus, the enzyme represents a novel class of omega,E,E-FPP synthase. Rv3398c was cloned from the M. tuberculosis H37Rv genome and expressed in Mycobacterium smegmatis using a new mycobacterial expression vector (pVV2) that encodes an in-frame N-terminal affinity tag fusion with the protein of interest. The fusion protein was well expressed and could be purified to near homogeneity, allowing facile kinetic analysis of recombinant Rv3398c. Of the potential allylic substrates tested, including dimethylallyl diphosphate, only geranyl diphosphate served as an acceptor for isopentenyl diphosphate. The enzyme has an absolute requirement for divalent cation and has a K(m) of 43 microM for isopentenyl diphosphate and 9.8 microM for geranyl diphosphate and is reported to be essential for the viability of M. tuberculosis.
Collapse
Affiliation(s)
- Rakesh K Dhiman
- Department of Microbiology, Colorado State University, Fort Collins, CO 80523-1677, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kelly SL, Lamb DC, Jackson CJ, Warrilow AG, Kelly DE. The biodiversity of microbial cytochromes P450. Adv Microb Physiol 2003; 47:131-86. [PMID: 14560664 DOI: 10.1016/s0065-2911(03)47003-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.
Collapse
Affiliation(s)
- Steven L Kelly
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Wales, UK
| | | | | | | | | |
Collapse
|