1
|
Solioz M. Copper Homeostasis in Gram-Positive Bacteria. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2018. [DOI: 10.1007/978-3-319-94439-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Feng X, Xu J, Liang Y, Chen GL, Fan XW, Li YZ. A proteomic-based investigation of potential copper-responsive biomarkers: Proteins, conceptual networks, and metabolic pathways featuring Penicillium janthinellum from a heavy metal-polluted ecological niche. Microbiologyopen 2017; 6. [PMID: 28488414 PMCID: PMC5552966 DOI: 10.1002/mbo3.485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi‐copper (Cu) interactions are very important in the formation of natural ecosystems and the bioremediation of heavy metal pollution. However, important issues at the proteome level remain unclear. We compared six proteomes from Cu‐resistant wild‐type (WT) Penicillium janthinellum strain GXCR and a Cu‐sensitive mutant (EC‐6) under 0, 0.5, and 3 mmol/L Cu treatments using iTRAQ. A total of 495 known proteins were identified, and the following conclusions were drawn from the results: Cu tolerance depends on ATP generation and supply, which is relevant to glycolysis pathway activity; oxidative phosphorylation, the TCA cycle, gluconeogenesis, fatty acid synthesis, and metabolism are also affected by Cu; high Cu sensitivity is primarily due to an ATP energy deficit; among ATP generation pathways, Cu‐sensitive and Cu‐insensitive metabolic steps exist; gluconeogenesis pathway is crucial to the survival of fungi in Cu‐containing and sugar‐scarce environments; fungi change their proteomes via two routes (from ATP, ATP‐dependent RNA helicases (ADRHs), and ribosome biogenesis to proteasomes and from ATP, ADRHs to spliceosomes and/or stress‐adapted RNA degradosomes) to cope with changes in Cu concentrations; and unique routes exist through which fungi respond to high environmental Cu. Further, a general diagram of Cu‐responsive paths and a model theory of high Cu are proposed at the proteome level. Our work not only provides the potential protein biomarkers that indicate Cu pollution and targets metabolic steps for engineering Cu‐tolerant fungi during bioremediation but also presents clues for further insight into the heavy metal tolerance mechanisms of other eukaryotes.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Guo-Li Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Meng D, Bruschweiler-Li L, Zhang F, Brüschweiler R. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+-Transporting ATPase along the Ion Transport Cycle. Biochemistry 2015. [DOI: 10.1021/acs.biochem.5b00420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Meng
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Lei Bruschweiler-Li
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fengli Zhang
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Rafael Brüschweiler
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
In silico modeling of the Menkes copper-translocating P-type ATPase 3rd metal binding domain predicts that phosphorylation regulates copper-binding. Biometals 2011; 24:477-87. [DOI: 10.1007/s10534-011-9410-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/06/2011] [Indexed: 12/17/2022]
|
5
|
Pachlopnik Schmid J, Schmid JP, Côte M, Ménager MM, Burgess A, Nehme N, Ménasché G, Fischer A, de Saint Basile G. Inherited defects in lymphocyte cytotoxic activity. Immunol Rev 2010; 235:10-23. [PMID: 20536552 DOI: 10.1111/j.0105-2896.2010.00890.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The granule-dependent cytotoxic activity of lymphocytes plays a critical role in the defense against virally infected cells and tumor cells. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytic syndrome (HLH) that occurs in mice and humans with genetically determined impaired lymphocyte cytotoxic function. HLH manifests as the occurrence of uncontrolled activation of T lymphocytes and macrophages infiltrating multiple organs. In this review, we focus on recent advances in the characterization of effectors regulating the release of cytotoxic granules, and on the role of this cytotoxic pathway in lymphocyte homeostasis and immune surveillance. Analysis of the mechanisms leading to the occurrence of hemophagocytic syndrome designates gamma-interferon as an attractive therapeutic target to downregulate uncontrolled macrophage activation, which sustains clinical and biological features of HLH.
Collapse
Affiliation(s)
- Jana Pachlopnik Schmid
- Institut National de la Santé et de la Recherche Médicale (INSERM), U768, 75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lörinczi E, Tsivkovskii R, Haase W, Bamberg E, Lutsenko S, Friedrich T. Delivery of the Cu-transporting ATPase ATP7B to the plasma membrane in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:896-906. [PMID: 18222167 DOI: 10.1016/j.bbamem.2007.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 12/11/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Cu-transporting ATPase ATP7B (Wilson disease protein) is essential for the maintenance of intracellular copper concentration. In hepatocytes, ATP7B is required for copper excretion, which is thought to occur via a transient delivery of the ATP7B- and copper-containing vesicles to the apical membrane. The currently available experimental systems do not allow analysis of ATP7B at the cell surface. Using epitope insertion, we identified an extracellular loop into which the HA-epitope can be introduced without inhibiting ATP7B activity. The HA-tagged ATP7B was expressed in Xenopus oocytes and the presence of ATP7B at the plasma membrane was demonstrated by electron microscopy, freeze-fracture experiments, and surface luminescence measurements in intact cells. Neither the deletion of the entire N-terminal copper-binding domain nor the inactivating mutation of catalytic Asp1027 affected delivery to the plasma membrane of oocytes. In contrast, surface targeting was decreased for the ATP7B variants with mutations in the ATP-binding site or the intra-membrane copper-binding site, suggesting that ligand-stabilized conformation(s) are important for ATP7B trafficking. The developed system provides significant advantages for studies that require access to both sides of ATP7B in the membrane.
Collapse
Affiliation(s)
- Eva Lörinczi
- Max-Planck-Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87:1011-46. [PMID: 17615395 DOI: 10.1152/physrev.00004.2006] [Citation(s) in RCA: 569] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B function is associated with severe metabolic disorders, Menkes disease, and Wilson disease. In cells, the Cu-ATPases maintain intracellular copper concentration by transporting copper from the cytosol across cellular membranes. They also contribute to protein biosynthesis by delivering copper into the lumen of the secretory pathway where metal ion is incorporated into copper-dependent enzymes. The biosynthetic and homeostatic functions of Cu-ATPases are performed in different cell compartments; targeting to these compartments and the functional activity of Cu-ATPase are both regulated by copper. In recent years, significant progress has been made in understanding the structure, function, and regulation of these essential transporters. These studies raised many new questions related to specific physiological roles of Cu-ATPases in various tissues and complex mechanisms that control the Cu-ATPase function. This review summarizes current data on the structural organization and functional properties of ATP7A and ATP7B as well as their localization and functions in various tissues, and discusses the current models of regulated trafficking of human Cu-ATPases.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
8
|
Lutsenko S, LeShane ES, Shinde U. Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys 2007; 463:134-48. [PMID: 17562324 PMCID: PMC2025638 DOI: 10.1016/j.abb.2007.04.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/10/2007] [Accepted: 04/13/2007] [Indexed: 12/11/2022]
Abstract
Copper is essential for cell metabolism as a cofactor of key metabolic enzymes. The biosynthetic incorporation of copper into secreted and plasma membrane-bound proteins requires activity of the copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B. The Cu-ATPases also export excess copper from the cell and thus critically contribute to the homeostatic control of copper. The trafficking of Cu-ATPases from the trans-Golgi network to endocytic vesicles in response to various signals allows for the balance between the biosynthetic and copper exporting functions of these transporters. Although significant progress has been made towards understanding the biochemical characteristics of human Cu-ATPase, the mechanisms that control their function and intracellular localization remain poorly understood. In this review, we summarize current information on structural features and functional properties of ATP7A and ATP7B. We also describe sequence motifs unique for each Cu-ATPase and speculate about their role in regulating ATP7A and ATP7B activity and trafficking.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
9
|
La Fontaine S, Mercer JFB. Trafficking of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch Biochem Biophys 2007; 463:149-67. [PMID: 17531189 DOI: 10.1016/j.abb.2007.04.021] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 01/05/2023]
Abstract
Copper is essential for human health and copper imbalance is a key factor in the aetiology and pathology of several neurodegenerative diseases. The copper-transporting P-type ATPases, ATP7A and ATP7B are key molecules required for the regulation and maintenance of mammalian copper homeostasis. Their absence or malfunction leads to the genetically inherited disorders, Menkes and Wilson diseases, respectively. These proteins have a dual role in cells, namely to provide copper to essential cuproenzymes and to mediate the excretion of excess intracellular copper. A unique feature of ATP7A and ATP7B that is integral to these functions is their ability to sense and respond to intracellular copper levels, the latter manifested through their copper-regulated trafficking from the transGolgi network to the appropriate cellular membrane domain (basolateral or apical, respectively) to eliminate excess copper from the cell. Research over the last decade has yielded significant insight into the enzymatic properties and cell biology of the copper-ATPases. With recent advances in elucidating their localization and trafficking in human and animal tissues in response to physiological stimuli, we are progressing rapidly towards an integrated understanding of their physiological significance at the level of the whole animal. This knowledge in turn is helping to clarify the biochemical and cellular basis not only for the phenotypes conferred by individual Menkes and Wilson disease patient mutations, but also for the clinical variability of phenotypes associated with each of these diseases. Importantly, this information is also providing a rational basis for the applicability and appropriateness of certain diagnostic markers and therapeutic regimes. This overview will provide an update on the current state of our understanding of the localization and trafficking properties of the copper-ATPases in cells and tissues, the molecular signals and posttranslational interactions that govern their trafficking activities, and the cellular basis for the clinical phenotypes associated with disease-causing mutations.
Collapse
Affiliation(s)
- Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, 221 Burwood Highway, Burwood, Vic. 3125, Australia.
| | | |
Collapse
|
10
|
Bartee MY, Lutsenko S. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals 2007; 20:627-37. [PMID: 17268820 DOI: 10.1007/s10534-006-9074-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 11/28/2006] [Indexed: 12/18/2022]
Abstract
Copper-transporting ATPase ATP7B (Wilson disease protein) is a member of the P-type ATPase family with characteristic domain structure and distinct ATP-binding site. ATP7B plays a central role in the regulation of copper homeostasis in the liver by delivering copper to the secretory pathway and mediating export of excess copper into the bile. The dual function of ATP7B in hepatocytes is coupled with copper-dependent intracellular relocalization of the transporter. The final destination of ATP7B in hepatocytes during the copper-induced trafficking process is still under debate. We show the results of immunocytochemistry experiments in polarized HepG2 cells that support the model in which elevated copper induces trafficking of ATP7B to sub-apical vesicles, and transiently to the canalicular membrane. In Atp7b-/- mice, an animal model of Wilson disease, both copper delivery to the trans-Golgi network and copper export into the bile are disrupted despite large accumulation of copper in the cytosol. We review the biochemical and physiological changes associated with Atp7b inactivation in mouse liver and discuss the pleiotropic consequences of the common Wilson disease mutation, His1069Gln.
Collapse
Affiliation(s)
- Mee Y Bartee
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
11
|
Hung Y, Layton M, Voskoboinik I, Mercer J, Camakaris J. Purification and membrane reconstitution of catalytically active Menkes copper-transporting P-type ATPase (MNK; ATP7A). Biochem J 2007; 401:569-79. [PMID: 17009961 PMCID: PMC1820817 DOI: 10.1042/bj20060924] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The MNK (Menkes disease protein; ATP7A) is a major copper- transporting P-type ATPase involved in the delivery of copper to cuproenzymes in the secretory pathway and the efflux of excess copper from extrahepatic tissues. Mutations in the MNK (ATP7A) gene result in Menkes disease, a fatal neurodegenerative copper deficiency disorder. Currently, detailed biochemical and biophysical analyses of MNK to better understand its mechanisms of copper transport are not possible due to the lack of purified MNK in an active form. To address this issue, we expressed human MNK with an N-terminal Glu-Glu tag in Sf9 [Spodoptera frugiperda (fall armyworm) 9] insect cells and purified it by antibody affinity chromatography followed by size-exclusion chromatography in the presence of the non-ionic detergent DDM (n-dodecyl beta-D-maltopyranoside). Formation of the classical vanadate-sensitive phosphoenzyme by purified MNK was activated by Cu(I) [EC50=0.7 microM; h (Hill coefficient) was 4.6]. Furthermore, we report the first measurement of Cu(I)-dependent ATPase activity of MNK (K0.5=0.6 microM; h=5.0). The purified MNK demonstrated active ATP-dependent vectorial 64Cu transport when reconstituted into soya-bean asolectin liposomes. Together, these data demonstrated that Cu(I) interacts with MNK in a co-operative manner and with high affinity in the sub-micromolar range. The present study provides the first biochemical characterization of a purified full-length mammalian copper-transporting P-type ATPase associated with a human disease.
Collapse
Affiliation(s)
- Ya Hui Hung
- *Department of Genetics, University of Melbourne, VIC 3010, Australia
| | - Meredith J. Layton
- †Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia
| | - Ilia Voskoboinik
- *Department of Genetics, University of Melbourne, VIC 3010, Australia
| | - Julian F. B. Mercer
- ‡Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - James Camakaris
- *Department of Genetics, University of Melbourne, VIC 3010, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
12
|
Stephenson SEM, Dubach D, Lim CM, Mercer JFB, La Fontaine S. A single PDZ domain protein interacts with the Menkes copper ATPase, ATP7A. A new protein implicated in copper homeostasis. J Biol Chem 2005; 280:33270-9. [PMID: 16051599 DOI: 10.1074/jbc.m505889200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The homeostatic regulation of essential elements such as copper requires many proteins whose activities are often mediated and tightly coordinated through protein-protein interactions. This regulation ensures that cells receive enough copper without intracellular concentrations reaching toxic levels. To date, only a small number of proteins implicated in copper homeostasis have been identified, and little is known of the protein-protein interactions required for this process. To identify other proteins important for copper homeostasis, while also elucidating the protein-protein interactions that are integral to the process, we have utilized a known copper protein, the copper ATPase ATP7A, as a bait in a yeast two-hybrid screen of a human cDNA library to search for interacting partners. One of the ATP7A-interacting proteins identified is a novel protein with a single PDZ domain. This protein was recently identified to interact with the plasma membrane calcium ATPase b-splice variants. We propose a change in name for this protein from PISP (plasma membrane calcium ATPase-interacting single-PDZ protein) to AIPP1 (ATPase-interacting PDZ protein) and suggest that it represents the protein that interacts with the class I PDZ binding motif identified at the ATP7A C terminus. The interaction in mammalian cells was confirmed and an additional splice variant of AIPP1 was identified. This study represents an essential step forward in identifying the proteins and elucidating the network of protein-protein interactions involved in maintaining copper homeostasis and validates the use of the yeast two-hybrid approach for this purpose.
Collapse
Affiliation(s)
- Sarah E M Stephenson
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | | | | | | | | |
Collapse
|
13
|
Efremov RG, Kosinsky YA, Nolde DE, Tsivkovskii R, Arseniev AS, Lutsenko S. Molecular modelling of the nucleotide-binding domain of Wilson's disease protein: location of the ATP-binding site, domain dynamics and potential effects of the major disease mutations. Biochem J 2005; 382:293-305. [PMID: 15147237 PMCID: PMC1133942 DOI: 10.1042/bj20040326] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 05/06/2004] [Accepted: 05/17/2004] [Indexed: 01/14/2023]
Abstract
WNDP (Wilson's disease protein) is a copper-transporting ATPase that plays an essential role in human physiology. Mutations in WNDP result in copper accumulation in tissues and cause a severe hepato-neurological disorder known as Wilson's disease. Several mutations were surmised to affect the nucleotide binding and hydrolysis by WNDP; however, how the nucleotides bind to normal and mutated WNDP remains unknown. To aid such studies, we performed the molecular modelling of the spatial structure and dynamics of the ATP-binding domain of WNDP and its interactions with ATP. The three-dimensional models of this domain in two conformations were built using the X-ray structures of the Ca2+-ATPase in the E1 and E2 states. To study the functional aspects of the models, they were subjected to long-term molecular dynamics simulations in an explicit solvent; similar calculations were performed for the ATP-binding domain of Ca2+-ATPase. In both cases, we found large-scale motions that lead to significant changes of distances between several functionally important residues. The ATP docking revealed two possible modes of ATP binding: via adenosine buried in the cleft near residues H1069, R1151 and D1164, and via phosphate moiety 'anchored' by H-bonds with residues in the vicinity of catalytic D1027. Furthermore, interaction of ATP with both sites occurs if they are spatially close to each other. This may be achieved after relative domain motions of the 'closure' type observed in molecular dynamics simulations. The results provide a framework for analysis of disease mutations and for future mutagenesis studies.
Collapse
Affiliation(s)
- Roman G Efremov
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, Moscow V-437, 117997 GSP, Russia.
| | | | | | | | | | | |
Collapse
|
14
|
Greenough M, Pase L, Voskoboinik I, Petris MJ, O'Brien AW, Camakaris J. Signals regulating trafficking of Menkes (MNK; ATP7A) copper-translocating P-type ATPase in polarized MDCK cells. Am J Physiol Cell Physiol 2004; 287:C1463-71. [PMID: 15269005 DOI: 10.1152/ajpcell.00179.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Menkes protein (MNK; ATP7A) functions as a transmembrane copper-translocating P-type ATPase and plays a vital role in systemic copper absorption in the gut and copper reabsorption in the kidney. Polarized epithelial cells such as Madin-Darby canine kidney (MDCK) cells are a physiologically relevant model for systemic copper absorption and reabsorption in vivo. In this study, cultured MDCK cells were used to characterize MNK trafficking and enabled the identification of signaling motifs required to target the protein to specific membranes. Using confocal laser scanning microscopy and surface biotinylation we demonstrate that MNK relocalizes from the Golgi to the basolateral (BL) membrane under elevated copper conditions. As previously shown in nonpolarized cells, the metal binding sites in the NH2-terminal domain of MNK were found to be required for copper-regulated trafficking from the Golgi to the plasma membrane. These data provide molecular evidence that is consistent with the presumed role of this protein in systemic copper absorption in the gut and reabsorption in the kidney. Using site-directed mutagenesis, we identified a dileucine motif proximal to the COOH terminus of MNK that was critical for correctly targeting the protein to the BL membrane and a putative PDZ target motif that was required for localization at the BL membrane in elevated copper.
Collapse
Affiliation(s)
- M Greenough
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Pase L, Voskoboinik I, Greenough M, Camakaris J. Copper stimulates trafficking of a distinct pool of the Menkes copper ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool. Biochem J 2004; 378:1031-7. [PMID: 14640979 PMCID: PMC1224002 DOI: 10.1042/bj20031181] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 10/27/2003] [Accepted: 11/28/2003] [Indexed: 12/17/2022]
Abstract
MNK (Menkes copper-translocating P-type ATPase, or the Menkes protein; ATP7A) plays a key role in regulating copper homoeostasis in humans. MNK has been shown to have a dual role in the cell: it delivers copper to cuproenzymes in the Golgi compartment and effluxes excess copper from the cell. These roles can be achieved through copper-regulated trafficking of MNK. It has previously been shown to undergo trafficking from the trans -Golgi network to the plasma membrane in response to elevated copper concentrations, and to be endocytosed from the plasma membrane to the trans -Golgi network upon the removal of elevated copper. However, the fundamental question as to whether copper influences trafficking of MNK to or from the plasma membrane remained unanswered. In this study we utilized various methods of cell-surface biotinylation to attempt to resolve this issue. These studies suggest that copper induces trafficking of MNK to the plasma membrane but does not affect its rate of internalization from the plasma membrane. We also found that only a specific pool of MNK can traffic to the plasma membrane in response to elevated copper. Significantly, copper appeared to divert MNK into a fast-recycling pool and prevented it from recycling to the Golgi compartment, thus maintaining a high level of MNK in the proximity of the plasma membrane. These findings shed new light on the cell biology of MNK and the mechanism of copper homoeostasis in general.
Collapse
Affiliation(s)
- Luke Pase
- Department of Genetics, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | |
Collapse
|
16
|
Morgan CT, Tsivkovskii R, Kosinsky YA, Efremov RG, Lutsenko S. The distinct functional properties of the nucleotide-binding domain of ATP7B, the human copper-transporting ATPase: analysis of the Wilson disease mutations E1064A, H1069Q, R1151H, and C1104F. J Biol Chem 2004; 279:36363-71. [PMID: 15205462 DOI: 10.1074/jbc.m404553200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Copper transport by the P(1)-ATPase ATP7B, or Wilson disease protein (WNDP),1 is essential for human metabolism. Perturbation of WNDP function causes intracellular copper accumulation and severe pathology, known as Wilson disease (WD). Several WD mutations are clustered within the WNDP nucleotide-binding domain (N-domain), where they are predicted to disrupt ATP binding. The mechanism by which the N-domain coordinates ATP is presently unknown, because residues important for nucleotide binding in the better characterized P(2)-ATPases are not conserved within the P(1)-ATPase subfamily. To gain insight into nucleotide binding under normal and disease conditions, we generated the recombinant WNDP N-domain and several WD mutants. Using isothermal titration calorimetry, we demonstrate that the N-domain binds ATP in a Mg(2+)-independent manner with a relatively high affinity of 75 microm, compared with millimolar affinities observed for the P(2)-ATPase N-domains. The WNDP N-domain shows minimal discrimination between ATP, ADP, and AMP, yet discriminates well between ATP and GTP. Similar results were obtained for the N-domain of ATP7A, another P(1)-ATPase. Mutations of the invariant WNDP residues E1064A and H1069Q drastically reduce nucleotide affinities, pointing to the likely role of these residues in nucleotide coordination. In contrast, the R1151H mutant exhibits only a 1.3-fold reduction in affinity for ATP. The C1104F mutation significantly alters protein folding, whereas C1104A does not affect the structure or function of the N-domain. Together, the results directly demonstrate the phenotypic diversity of WD mutations within the N-domain and indicate that the nucleotide-binding properties of the P(1)-ATPases are distinct from those of the P(2)-ATPases.
Collapse
Affiliation(s)
- Clinton T Morgan
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
17
|
Okkeri J, Laakkonen L, Haltia T. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP. Biochem J 2004; 377:95-105. [PMID: 14510639 PMCID: PMC1223847 DOI: 10.1042/bj20030740] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 09/05/2003] [Accepted: 09/26/2003] [Indexed: 11/17/2022]
Abstract
In P-type ATPases, the nucleotide-binding (N) domain is located in the middle of the sequence which folds into the phosphorylation (P) domain. The N domain of ZntA, a Zn2+-translocating P-type ATPase from Escherichia coli, is approx. 13% identical with the N domain of sarcoplasmic reticulum Ca2+-ATPase. None of the Ca2+-ATPase residues involved in binding of ATP are found in ZntA. However, the sequence G503SGIEAQV in the N domain of ZntA resembles the motif GxGxxG, which forms part of the ATP-binding site in protein kinases. This motif is also found in Wilson disease protein where several disease mutations cluster in it. In the present work, we have made a set of disease mutation analogues, including the mutants G503S (Gly503-->Ser), G505R and A508F of ZntA. At low [ATP], these mutant ATPases are poorly phosphorylated. The phosphorylation defect of the mutants G503S and G505R can, however, be partially (G503S) or fully (G505R) compensated for by using a higher [ATP], suggesting that these mutations lower the affinity for ATP. In all three mutant ATPases, phosphorylation by P(i) has become less sensitive to the presence of ATP, also consistent with the proposal that the Gly503 motif plays a role in ATP binding. In order to test this hypothesis, we have modelled the N domain of ZntA using the sarcoplasmic reticulum Ca2+-ATPase structure as a template. In the model, the Gly503 motif, as well as the residues Glu470 and His475, are located in the proximity of the ATP-binding site. In conclusion, the mutagenesis data and the molecular model are consistent with the idea that the two loops carrying the residues Glu470, His475, Gly503 and Gly505 play a role in ATP binding and activation.
Collapse
Affiliation(s)
- Juha Okkeri
- Institute of Biomedical Sciences/Biochemistry, P.O. Box 63 (Biomedicum Helsinki, Haartmaninkatu 8), FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|