1
|
Ni C, Hong M. Oligomerization of drug transporters: Forms, functions, and mechanisms. Acta Pharm Sin B 2024; 14:1924-1938. [PMID: 38799641 PMCID: PMC11119549 DOI: 10.1016/j.apsb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Drug transporters are essential players in the transmembrane transport of a wide variety of clinical drugs. The broad substrate spectra and versatile distribution pattern of these membrane proteins infer their pharmacological and clinical significance. With our accumulating knowledge on the three-dimensional structure of drug transporters, their oligomerization status has become a topic of intense study due to the possible functional roles carried out by such kind of post-translational modification (PTM). In-depth studies of oligomeric complexes formed among drug transporters as well as their interactions with other regulatory proteins can help us better understand the regulatory mechanisms of these membrane proteins, provide clues for the development of novel drugs, and improve the therapeutic efficacy. In this review, we describe different oligomerization forms as well as their structural basis of major drug transporters in the ATP-binding cassette and solute carrier superfamilies, summarize our current knowledge on the influence of oligomerization for protein expression level and transport function of these membrane proteins, and discuss the regulatory mechanisms of oligomerization. Finally, we highlight the challenges associated with the current oligomerization studies and propose some thoughts on the pharmaceutical application of this important drug transporter PTM.
Collapse
Affiliation(s)
- Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Bloch M, Raj I, Pape T, Taylor NMI. Structural and mechanistic basis of substrate transport by the multidrug transporter MRP4. Structure 2023; 31:1407-1418.e6. [PMID: 37683641 DOI: 10.1016/j.str.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Multidrug resistance-associated protein 4 (MRP4) is an ATP-binding cassette (ABC) transporter expressed at multiple tissue barriers where it actively extrudes a wide variety of drug compounds. Overexpression of MRP4 provides resistance to clinically used antineoplastic agents, making it a highly attractive therapeutic target for countering multidrug resistance. Here, we report cryo-EM structures of multiple physiologically relevant states of lipid bilayer-embedded human MRP4, including complexes between MRP4 and two widely used chemotherapeutic agents and a complex between MRP4 and its native substrate. The structures display clear similarities and distinct differences in the coordination of these chemically diverse substrates and, in combination with functional and mutational analysis, reveal molecular details of the transport mechanism. Our study provides key insights into the unusually broad substrate specificity of MRP4 and constitutes an important contribution toward a general understanding of multidrug transporters.
Collapse
Affiliation(s)
- Magnus Bloch
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isha Raj
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Balboa JR, Essig DJ, Ma S, Karer N, Clemmensen LS, Pedersen SW, Joerger AC, Knapp S, Østergaard S, Strømgaard K. Development of a Potent Cyclic Peptide Inhibitor of the nNOS/PSD-95 Interaction. J Med Chem 2023; 66:976-990. [PMID: 36580549 DOI: 10.1021/acs.jmedchem.2c01803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complex between the N-methyl-d-aspartate receptor (NMDAR), neuronal nitric oxide synthase (nNOS), and the postsynaptic density protein-95 (PSD-95) is an attractive therapeutic target for the treatment of acute ischemic stroke. The complex is formed via the PDZ protein domains of PSD-95, and efforts to disrupt the complex have generally been based on C-terminal peptides derived from the NMDAR. However, nNOS binds PSD-95 through a β-hairpin motif, providing an alternative starting point for developing PSD-95 inhibitors. Here, we designed a cyclic nNOS β-hairpin mimetic peptide and generated cyclic nNOS β-hairpin peptide arrays with natural and unnatural amino acids (AAs), which provided molecular insights into this interaction. We then optimized cyclic peptides and identified a potent inhibitor of the nNOS/PSD-95 interaction, with the highest affinity reported thus far for a peptide macrocycle inhibitor of PDZ domains, which serves as a template for the development of treatment for acute ischemic stroke.
Collapse
Affiliation(s)
- Javier R Balboa
- Novo Nordisk A/S, Research Chemistry 3, Novo Nordisk Park, 2760 Måløv, Denmark.,Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Dominik J Essig
- Novo Nordisk A/S, Research Chemistry 3, Novo Nordisk Park, 2760 Måløv, Denmark.,Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sana Ma
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nichlas Karer
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Søren W Pedersen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Søren Østergaard
- Novo Nordisk A/S, Research Chemistry 3, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Kawase A, Hirosoko M, Sugihara Y, Koyama Y, Fukae A, Shimada H, Iwaki M. NHERF1/EBP50 as a Target for Modulation of MRP Function in HepG2 Cells. Pharmaceuticals (Basel) 2021; 14:ph14030239. [PMID: 33800412 PMCID: PMC8002045 DOI: 10.3390/ph14030239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
As increased expression and activities of efflux transporters (ETs) often cause drug resistance in cancers, we tried modulating ET activity in cancer cells, using scaffold proteins such as ezrin/radixin/moesin (ERM) proteins, and Na+/H+ exchanger regulatory factor-1 (NHERF1)/ERM-binding phosphoprotein of 50 kDa (EBP50). To see whether EBP50 modulated ET activities in human liver cancer HepG2 cells, we used EBP50 siRNA and a designed TAT-PDZ1 peptide. The EBP50 knockdown (EBP50KD) cells had significantly higher intracellular accumulations of Rho123 and carboxy-dichlorofluorescein (CDF), but not H33342 (i.e., the respective substrates of P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), and breast cancer resistance protein (BCRP)), compared with control HepG2, suggesting that EBP50 knockdown in HepG2 cells decreased activity of P-gp and MRP but not BCRP. Treatment with TAT-PDZ1 peptide (>1 pM) resulted in significantly higher CDF accumulation in HepG2 cells, which persisted for ≥180 min after TAT-PDZ1 peptide treatment. These results imply that EBP50 can modulate ET activities. To our knowledge, this is the first report on using a competitive peptide to modulate interactions between MRP and EBP50.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (M.H.); (Y.S.); (Y.K.); (A.F.); (H.S.); (M.I.)
- Correspondence:
| | - Miho Hirosoko
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (M.H.); (Y.S.); (Y.K.); (A.F.); (H.S.); (M.I.)
| | - Yuka Sugihara
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (M.H.); (Y.S.); (Y.K.); (A.F.); (H.S.); (M.I.)
| | - Yunosuke Koyama
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (M.H.); (Y.S.); (Y.K.); (A.F.); (H.S.); (M.I.)
| | - Ayaka Fukae
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (M.H.); (Y.S.); (Y.K.); (A.F.); (H.S.); (M.I.)
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (M.H.); (Y.S.); (Y.K.); (A.F.); (H.S.); (M.I.)
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (M.H.); (Y.S.); (Y.K.); (A.F.); (H.S.); (M.I.)
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan
- Antiaging Center, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
6
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Sun Q, Jiang Y, Yan X, Fan M, Zhang X, Xu H, Liao Z. Molecular Characterization of a Novel Shell Matrix Protein With PDZ Domain From Mytilus coruscus. Front Physiol 2020; 11:543758. [PMID: 33123020 PMCID: PMC7573561 DOI: 10.3389/fphys.2020.543758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
Mollusk shells are products of biomineralization and possess excellent mechanical properties, and shell matrix proteins (SMPs) have important functions in shell formation. A novel SMP with a PDZ domain (PDZ-domain-containing-protein-1, PDCP-1) was identified from the shell matrices of Mytilus coruscus. In this study, the gene expression, function, and location of PDCP-1 were analyzed. PDCP-1 was characterized as an ∼70 kDa protein with a PDZ (postsynaptic density/discs large/zonula occludes) domain and a ZM (ZASP-like motif) domain. The PDCP-1 gene has a high expression level and specific location in the foot, mantle and adductor muscle. Recombinantly expressed PDCP-1 (rPDCP-1) altered the morphology of calcite crystals, the polymorph of calcite crystals, binding with both calcite and aragonite crystals, and inhibition of the crystallization rate of calcite crystals. In addition, anti-rPDCP-1 antibody was prepared, and immunohistochemistry and immunofluorescence analyses revealed the specific location of PDCP-1 in the mantle, the adductor muscle, and the aragonite (nacre and myostracum) layer of the shell, suggesting multiple functions of PDCP-1 in biomineralization, muscle-shell attachment, and muscle attraction. Furthermore, pull-down analysis revealed 19 protein partners of PDCP-1 from the shell matrices, which accordingly provided a possible interaction network of PDCP-1 in the shell. These results expand the understanding of the functions of PDZ-domain-containing proteins (PDCPs) in biomineralization and the supramolecular chemistry that contributes to shell formation.
Collapse
|
8
|
Martin ER, Barbieri A, Ford RC, Robinson RC. In vivo crystals reveal critical features of the interaction between cystic fibrosis transmembrane conductance regulator (CFTR) and the PDZ2 domain of Na +/H + exchange cofactor NHERF1. J Biol Chem 2020; 295:4464-4476. [PMID: 32014995 DOI: 10.1074/jbc.ra119.012015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Crystallization of recombinant proteins has been fundamental to our understanding of protein function, dysfunction, and molecular recognition. However, this information has often been gleaned under extremely nonphysiological protein, salt, and H+ concentrations. Here, we describe the development of a robust Inka1-Box (iBox)-PAK4cat system that spontaneously crystallizes in several mammalian cell types. The semi-quantitative assay described here allows the measurement of in vivo protein-protein interactions using a novel GFP-linked reporter system that produces fluorescent readouts from protein crystals. We combined this assay with in vitro X-ray crystallography and molecular dynamics studies to characterize the molecular determinants of the interaction between the PDZ2 domain of Na+/H+ exchange regulatory cofactor NHE-RF1 (NHERF1) and cystic fibrosis transmembrane conductance regulator (CFTR), a protein complex pertinent to the genetic disease cystic fibrosis. These experiments revealed the crystal structure of the extended PDZ domain of NHERF1 and indicated, contrary to what has been previously reported, that residue selection at positions -1 and -3 of the PDZ-binding motif influences the affinity and specificity of the NHERF1 PDZ2-CFTR interaction. Our results suggest that this system could be utilized to screen additional protein-protein interactions, provided they can be accommodated within the spacious iBox-PAK4cat lattice.
Collapse
Affiliation(s)
- Eleanor R Martin
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore
| | - Alessandro Barbieri
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom.,Bioinformatics Institute (BII), A*STAR (Agency for Science, Technology and Research), Biopolis 138671, Singapore
| | - Robert C Ford
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore .,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.,Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Changes in Radixin Expression and Interaction with Efflux Transporters in the Liver of Adjuvant-Induced Arthritic Rats. Inflammation 2019; 43:85-94. [PMID: 31654296 DOI: 10.1007/s10753-019-01097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Scaffold proteins such as radixin help to modulate the plasma membrane localization and transport activity of the multidrug resistance-associated protein 2 (MRP2/ABCC2) and P-glycoprotein (P-gp/ABCB1) efflux transporters in the liver. We examined changes in radixin expression and interaction with efflux transporters in adjuvant-induced arthritic (AA) rats, an animal model of rheumatoid arthritis, as well as in human liver cancer (HepG2) cells because inflammation affects drug pharmacokinetics via the efflux transporters. The expression levels of radixin and phosphorylated radixin (p-radixin) were measured 24 h after treatment with inflammatory cytokines comprising tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 or sodium nitroprusside (SNP; a nitric oxide donor). The protein levels of radixin, MRP2, and P-gp in the rat liver were next examined. We also investigated whether inflammation affected the formation of complexes between radixin and MRP2 or P-gp. The mRNA and protein levels of radixin in HepG2 cells were significantly decreased by TNF-α treatment, while minimal changes were observed after treatment with IL-1β, IL-6 or SNP. TNF-α also significantly decreased the protein levels of p-radixin, suggesting that TNF-α inhibited the activation of radixin and thereby reduced the activity of the efflux transporters. Complex formation of radixin with MRP2 and P-gp was significantly decreased in AA rats but this was reversed by prednisolone and dexamethasone treatment, indicating that decreased interactions of radixin with MRP2 and P-gp likely occur during liver inflammation. These data suggest that liver inflammation reduces radixin function by decreasing its interactions with MRP2 and P-gp.
Collapse
|
10
|
Prescher M, Kroll T, Schmitt L. ABCB4/MDR3 in health and disease – at the crossroads of biochemistry and medicine. Biol Chem 2019; 400:1245-1259. [DOI: 10.1515/hsz-2018-0441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Several ABC transporters of the human liver are responsible for the secretion of bile salts, lipids and cholesterol. Their interplay protects the biliary tree from the harsh detergent activity of bile salts. Among these transporters, ABCB4 is essential for the translocation of phosphatidylcholine (PC) lipids from the inner to the outer leaflet of the canalicular membrane of hepatocytes. ABCB4 deficiency can result in altered PC to bile salt ratios, which led to intrahepatic cholestasis of pregnancy, low phospholipid associated cholelithiasis, drug induced liver injury or even progressive familial intrahepatic cholestasis type 3. Although PC lipids only account for 30–40% of the lipids in the canalicular membrane, 95% of all phospholipids in bile are PC lipids. We discuss this discrepancy in the light of PC synthesis and bile salts favoring certain lipids. Nevertheless, the in vivo extraction of PC lipids from the outer leaflet of the canalicular membrane by bile salts should be considered as a separate step in bile formation. Therefore, methods to characterize disease causing ABCB4 mutations should be considered carefully, but such an analysis represents a crucial point in understanding the currently unknown transport mechanism of this ABC transporter.
Collapse
|
11
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
12
|
Liu X, Fuentes EJ. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:129-218. [PMID: 30712672 PMCID: PMC7185565 DOI: 10.1016/bs.ircmb.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-synaptic density-95, disks-large and zonula occludens-1 (PDZ) domains are small globular protein-protein interaction domains widely conserved from yeast to humans. They are composed of ∼90 amino acids and form a classical two α-helical/six β-strand structure. The prototypical ligand is the C-terminus of partner proteins; however, they also bind internal peptide sequences. Recent findings indicate that PDZ domains also bind phosphatidylinositides and cholesterol. Through their ligand interactions, PDZ domain proteins are critical for cellular trafficking and the surface retention of various ion channels. In addition, PDZ proteins are essential for neuronal signaling, memory, and learning. PDZ proteins also contribute to cytoskeletal dynamics by mediating interactions critical for maintaining cell-cell junctions, cell polarity, and cell migration. Given their important biological roles, it is not surprising that their dysfunction can lead to multiple disease states. As such, PDZ domain-containing proteins have emerged as potential targets for the development of small molecular inhibitors as therapeutic agents. Recent data suggest that the critical binding function of PDZ domains in cell signaling is more than just glue, and their binding function can be regulated by phosphorylation or allosterically by other binding partners. These studies also provide a wealth of structural and biophysical data that are beginning to reveal the physical features that endow this small modular domain with a central role in cell signaling.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Ernesto J. Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Corresponding author: E-mail:
| |
Collapse
|
13
|
Miszczuk GS, Barosso IR, Larocca MC, Marrone J, Marinelli RA, Boaglio AC, Sánchez Pozzi EJ, Roma MG, Crocenzi FA. Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1072-1085. [DOI: 10.1016/j.bbadis.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
|
14
|
Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug Metab Dispos 2018. [PMID: 29514827 DOI: 10.1124/dmd.118.080663] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathologic conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4, and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown; however, these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters.
Collapse
Affiliation(s)
- Rebecca R Crawford
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Praveen K Potukuchi
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
15
|
Hong M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family. Adv Drug Deliv Rev 2017; 116:3-20. [PMID: 27317853 DOI: 10.1016/j.addr.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Human drug transporters often play key roles in determining drug accumulation within cells. Their activities are often directly related to therapeutic efficacy, drug toxicity as well as drug-drug interactions. However, the progress for interpretation of their crystal structures is relatively slow. Hence, conventional biochemical studies together with computer modeling became useful manners to reveal essential structures of these membrane proteins. Over the years, quite a few structure-function relationship information had been obtained for members of the two major transporter families: the ATP-binding cassette family and the solute carrier family. Critical structural features of drug transporters include transmembrane domains, post-translational modification sites and domains for cell surface assembly and protein-protein interactions. Alterations at these important sites may affect protein stability, trafficking to the plasma membrane and/or ability of transporters to interact with substrates.
Collapse
|
16
|
Li M, Soroka CJ, Harry K, Boyer JL. CFTR-associated ligand is a negative regulator of Mrp2 expression. Am J Physiol Cell Physiol 2016; 312:C40-C46. [PMID: 27834195 DOI: 10.1152/ajpcell.00100.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/03/2016] [Indexed: 01/15/2023]
Abstract
The multidrug resistance-associated protein 2 (Mrp2) is an ATP-binding cassette transporter that transports a wide variety of organic anions across the apical membrane of epithelial cells. The expression of Mrp2 on the plasma membrane is regulated by protein-protein interactions. Cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) interacts with transmembrane proteins via its PDZ domain and reduces their cell surface expression by increasing lysosomal degradation and intracellular retention. Our results showed that CAL is localized at the trans-Golgi network of rat hepatocytes. The expression of CAL is increased, and Mrp2 expression is decreased, in the liver of mice deficient in sodium/hydrogen exchanger regulatory factor-1. To determine whether CAL interacts with Mrp2 and is involved in the posttranscriptional regulation of Mrp2, we used glutathione S-transferase (GST) fusion proteins with or without the COOH-terminal PDZ binding motif of Mrp2 as the bait in GST pull-down assays. We demonstrated that Mrp2 binds to CAL via its COOH-terminal PDZ-binding motif in GST pull-down assays, an interaction verified by coimmunoprecipitation of these two proteins in cotransfected COS-7 cells. In COS-7 and LLC-PK1 cells transfected with Mrp2 alone, only a mature, high-molecular-mass band of Mrp2 was detected. However, when cells were cotransfected with Mrp2 and CAL, Mrp2 was expressed as both mature and immature forms. Biotinylation and streptavidin pull-down assays confirmed that CAL dramatically reduces the expression level of total and cell surface Mrp2 in Huh-7 cells. Our findings suggest that CAL interacts with Mrp2 and is a negative regulator of Mrp2 expression.
Collapse
Affiliation(s)
- Man Li
- The Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Carol J Soroka
- The Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kathy Harry
- The Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - James L Boyer
- The Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
17
|
Walsh DR, Nolin TD, Friedman PA. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins. Pharmacol Rev 2016; 67:656-80. [PMID: 26092975 DOI: 10.1124/pr.115.010728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na(+)/H(+) exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development.
Collapse
Affiliation(s)
- Dustin R Walsh
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Thomas D Nolin
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Peter A Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| |
Collapse
|
18
|
Cheng B, Montmasson M, Terradot L, Rousselle P. Syndecans as Cell Surface Receptors in Cancer Biology. A Focus on their Interaction with PDZ Domain Proteins. Front Pharmacol 2016; 7:10. [PMID: 26869927 PMCID: PMC4735372 DOI: 10.3389/fphar.2016.00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/12/2016] [Indexed: 01/23/2023] Open
Abstract
Syndecans are transmembrane receptors with ectodomains that are modified by glycosaminoglycan chains. The ectodomains can interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors, and extracellular matrix (ECM) components. The four syndecans in mammals are expressed in a development-, cell-type-, and tissue-specific manner and can function either as co-receptors with other cell surface receptors or as independent adhesion receptors that mediate cell signaling. They help regulate cell proliferation and migration, angiogenesis, cell/cell and cell/ECM adhesion, and they may participate in several key tumorigenesis processes. In some cancers, syndecan expression regulates tumor cell proliferation, adhesion, motility, and other functions, and may be a prognostic marker for tumor progression and patient survival. The short cytoplasmic tail is likely to be involved in these events through recruitment of signaling partners. In particular, the conserved carboxyl-terminal EFYA tetrapeptide sequence that is present in all syndecans binds to some PDZ domain-containing proteins that may function as scaffold proteins that recruit signaling and cytoskeletal proteins to the plasma membrane. There is growing interest in understanding these interactions at both the structural and biological levels, and recent findings show their high degree of complexity. Parameters that influence the recruitment of PDZ domain proteins by syndecans, such as binding specificity and affinity, are the focus of active investigations and are important for understanding regulatory mechanisms. Recent studies show that binding may be affected by post-translational events that influence regulatory mechanisms, such as phosphorylation within the syndecan cytoplasmic tail.
Collapse
Affiliation(s)
- Bill Cheng
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, Université Lyon 1 Lyon, France
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, Université Lyon 1 Lyon, France
| | - Laurent Terradot
- Bases Moléculaires et Structurales des Systèmes Infectieux UMR 5086, CNRS, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, Université Lyon 1 Lyon, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, Université Lyon 1 Lyon, France
| |
Collapse
|
19
|
Venot Q, Delaunay JL, Fouassier L, Delautier D, Falguières T, Housset C, Maurice M, Aït-Slimane T. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression. PLoS One 2016; 11:e0146962. [PMID: 26789121 PMCID: PMC4720445 DOI: 10.1371/journal.pone.0146962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.
Collapse
Affiliation(s)
- Quitterie Venot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Jean-Louis Delaunay
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Laura Fouassier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Danièle Delautier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Thomas Falguières
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares Maladies Inflammatoires des Voies Biliaires & Service d’Hépatologie, Paris, France
| | - Michèle Maurice
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Tounsia Aït-Slimane
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Prostacyclin receptors: Transcriptional regulation and novel signalling mechanisms. Prostaglandins Other Lipid Mediat 2015; 121:70-82. [DOI: 10.1016/j.prostaglandins.2015.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Accepted: 04/18/2015] [Indexed: 12/24/2022]
|
21
|
Mangia A, Caldarola L, Dell'Endice S, Scarpi E, Saragoni L, Monti M, Santini D, Brunetti O, Simone G, Silvestris N. The potential predictive role of nuclear NHERF1 expression in advanced gastric cancer patients treated with epirubicin/oxaliplatin/capecitabine first line chemotherapy. Cancer Biol Ther 2015; 16:1140-7. [PMID: 26126066 DOI: 10.1080/15384047.2015.1056414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular resistance in advanced gastric cancer (GC) might be related to function of multidrug resistance (MDR) proteins. The adaptor protein NHERF1 (Na(+)/H(+) exchanger regulatory factor) is an important player in cancer progression for a number of solid malignancies, even if its role to develop drug resistance remains uncertain. Herein, we aimed to analyze the potential association between NHERF1 expression and P-gp, sorcin and HIF-1α MDR-related proteins in advanced GC patients treated with epirubicin/oxaliplatin/capecitabine (EOX) chemotherapy regimen, and its relation to response. Total number of 28 untreated patients were included into the study. Expression and subcellular localization of all proteins were assessed by immunohistochemistry on formalin-fixed paraffin embedded tumor samples. We did not found significant association between NHERF1 expression and the MDR-related proteins. A trend was observed between positive cytoplasmic NHERF1 (cNHERF1) expression and negative nuclear HIF-1α (nHIF-1α) expression (68.8% versus 31.3% respectively, P = 0.054). However, cytoplasmic P-gp (cP-gp) expression was positively correlated with both cHIF-1α and sorcin expression (P = 0.011; P = 0.002, respectively). Interestingly, nuclear NHERF1 (nNHERF1) staining was statistically associated with clinical response. In detail, 66.7% of patients with high nNHERF1 expression had a disease control rate, while 84.6% of subjects with negative nuclear expression of the protein showed progressive disease (P = 0.009). Multivariate analysis confirmed a significant correlation between nNHERF1 and clinical response (OR 0.06, P = 0.019). These results suggest that nuclear NHERF1 could be related to resistance to the EOX regimen in advanced GC patients, identifying this marker as a possible independent predictive factor.
Collapse
Key Words
- Cl, confidence interval
- DCR, disease control rate
- NHERF1/EBP50
- OR, odds ratio
- PD, progression disease
- cHIF-1α, cytoplasmic HIF-1α
- cNHERF1, cytoplasmic NHERF1
- cP-gp, cytoplasmic P-gp
- cSR1, cytoplasmic SR1
- chemotherapy
- gastric cancer
- immunohistochemistry
- mP-gp, membranous P-gp
- multi-drug resistance
- nHIF-1α, nuclear HIF-1α
- nNHERF1, nuclear NHERF1
- predictive factor
Collapse
Affiliation(s)
- Anita Mangia
- a Functional Biomorphology Laboratory ; National Cancer Research Centre ; Istituto Tumori "Giovanni Paolo II"; Bari , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Karvar S, Suda J, Zhu L, Rockey DC. Distribution dynamics and functional importance of NHERF1 in regulation of Mrp-2 trafficking in hepatocytes. Am J Physiol Cell Physiol 2014; 307:C727-37. [PMID: 25163515 DOI: 10.1152/ajpcell.00011.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) is a multifunctional scaffolding protein that interacts with receptors and ion transporters in its PDZ domains and with the ezrin-radixin-moesin (ERM) family of proteins in its COOH terminus. The role of NHERF1 in hepatocyte function remains largely unknown. We examine the distribution and physiological significance of NHERF1 and multidrug resistance-associated protein 2 (Mrp-2) in hepatocytes. A WT radixin binding site mutant (F355R) and NHERF1 PDZ1 and PDZ2 domain adenoviral mutant constructs were tagged with yellow fluorescent protein and expressed in polarized hepatocytes to study localization and function of NHERF1. Cellular distribution of NHERF1 and radixin was visualized by fluorescence microscopy. A 5-chloromethylfluorescein diacetate (CMFDA) assay was used to characterize Mrp-2 function. Similar to Mrp-2, WT NHERF1 and the NHERF1 PDZ2 deletion mutant were localized to the canalicular membrane. In contrast, the radixin binding site mutant (F355R) and the NHERF1 PDZ1 deletion mutant, which interacts poorly with Mrp-2, were rarely associated with the canalicular membrane. Knockdown of NHERF1 led to dramatically impaired CMFDA secretory response. Use of CMFDA showed that the NHERF1 PDZ1 and F355R mutants were devoid of a secretory response, while WT NHERF1-infected cells exhibited increased secretion of glutathione-methylfluorescein. The data indicate that NHERF1 interacts with Mrp-2 via the PDZ1 domain of NHERF1 and, furthermore, that NHERF1 is essential for maintaining the localization and function of Mrp-2.
Collapse
Affiliation(s)
- Serhan Karvar
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina;
| | - Jo Suda
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, University at Buffalo, State University of New York, Buffalo, New York
| | - Don C Rockey
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
23
|
Regulation of ABCC6 trafficking and stability by a conserved C-terminal PDZ-like sequence. PLoS One 2014; 9:e97360. [PMID: 24840500 PMCID: PMC4026322 DOI: 10.1371/journal.pone.0097360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/18/2014] [Indexed: 12/24/2022] Open
Abstract
Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6 protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the ABCC6 protein.
Collapse
|
24
|
Lundquist P, Englund G, Skogastierna C, Lööf J, Johansson J, Hoogstraate J, Afzelius L, Andersson TB. Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab Dispos 2014; 42:448-58. [PMID: 24396144 DOI: 10.1124/dmd.113.054528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expression and activity of ABC transporters BCRP, BSEP, P-gp, MRP2, MRP3, and MRP4 in human and rat cryopreserved hepatocytes were investigated. In commercially available human cryopreserved hepatocytes, all drug efflux transporters except human BCRP (hBCRP) exhibited similar expression levels as in fresh liver biopsies. Expression levels of hBCRP were 60% lower in cryopreserved human hepatocytes than in liver tissue, which could lead to, at most, a 2.5-fold reduction in hBCRP-mediated efflux. Fresh rat hepatocytes showed significantly lower levels of rat BCRP compared with liver expression levels; expression levels of other ABC transporters were unchanged. ABC transporters in human cryopreserved cells were localized to the plasma membrane. Functional studies could demonstrate P-gp and BCRP activity in both human cryopreserved and fresh rat hepatocytes. Inhibiting P-gp-mediated efflux by elacridar in in vitro experiments significantly decreased fexofenadine efflux from hepatocytes, resulting in an increase in apparent fexofenadine uptake. The results from the present study clearly indicate that ABC transporter-mediated efflux in freshly isolated as well as cryopreserved rat and human hepatocytes should be taken into account in in vitro experiments used for modeling of drug metabolism and disposition.
Collapse
Affiliation(s)
- Patrik Lundquist
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, (P.L., G.E., C.S., J.L., J.J., J.H., L.A.); Cardiovascular and Gastrointestinal Innovative Medicines DMPK, AstraZeneca R&D, Mölndal, (P.L., T.B.A.); Department of Pharmacy, Uppsala University, Uppsala, (P.L.); and Section of Pharmacogenetics, Departments of Physiology and Pharmacology, Karolinska Institutet, Stockholm, (T.B.A.), Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Im CN, Kim BM, Moon EY, Hong DW, Park JW, Hong SH. Characterization of H460R, a Radioresistant Human Lung Cancer Cell Line, and Involvement of Syntrophin Beta 2 (SNTB2) in Radioresistance. Genomics Inform 2013; 11:245-53. [PMID: 24465237 PMCID: PMC3897853 DOI: 10.5808/gi.2013.11.4.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022] Open
Abstract
A radioresistant cell line was established by fractionated ionizing radiation (IR) and assessed by a clonogenic assay, flow cytometry, and Western blot analysis, as well as zymography and a wound healing assay. Microarray was performed to profile global expression and to search for differentially expressed genes (DEGs) in response to IR. H460R cells demonstrated increased cell scattering and acidic vesicular organelles compared with parental cells. Concomitantly, H460R cells showed characteristics of increased migration and matrix metalloproteinase activity. In addition, H460R cells were resistant to IR, exhibiting reduced expression levels of ionizing responsive proteins (p-p53 and γ-H2AX); apoptosis-related molecules, such as cleaved poly(ADP ribose) polymerase; and endoplasmic reticulum stress-related molecules, such as glucose-regulated protein (GRP78) and C/EBP-homologous protein compared with parental cells, whereas the expression of anti-apoptotic X-linked inhibitor of apoptosis protein was increased. Among DEGs, syntrophin beta 2 (SNTB2) significantly increased in H460R cells in response to IR. Knockdown of SNTB2 by siRNA was more sensitive than the control after IR exposure in H460, H460R, and H1299 cells. Our study suggests that H460R cells have differential properties, including cell morphology, potential for metastasis, and resistance to IR, compared with parental cells. In addition, SNTB2 may play an important role in radioresistance. H460R cells could be helpful in in vitro systems for elucidating the molecular mechanisms of and discovering drugs to overcome radioresistance in lung cancer therapy.
Collapse
Affiliation(s)
- Chang-Nim Im
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Byeong Mo Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Da-Won Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Joung Whan Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Sung Hee Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| |
Collapse
|
26
|
Interaction of the human prostacyclin receptor and the NHERF4 family member intestinal and kidney enriched PDZ protein (IKEPP). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1998-2012. [DOI: 10.1016/j.bbamcr.2012.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022]
|
27
|
Lee JH, Nam JH, Park J, Kang DW, Kim JY, Lee MG, Yoon JS. Regulation of SLC26A3 activity by NHERF4 PDZ-mediated interaction. Cell Signal 2012; 24:1821-30. [DOI: 10.1016/j.cellsig.2012.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 12/12/2022]
|
28
|
Giral H, Cranston D, Lanzano L, Caldas Y, Sutherland E, Rachelson J, Dobrinskikh E, Weinman EJ, Doctor RB, Gratton E, Levi M. NHE3 regulatory factor 1 (NHERF1) modulates intestinal sodium-dependent phosphate transporter (NaPi-2b) expression in apical microvilli. J Biol Chem 2012; 287:35047-35056. [PMID: 22904329 DOI: 10.1074/jbc.m112.392415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P(i) uptake in the small intestine occurs predominantly through the NaPi-2b (SLC34a2) co-transporter. NaPi-2b is regulated by changes in dietary P(i) but the mechanisms underlying this regulation are largely undetermined. Sequence analyses show NaPi-2b has a PDZ binding motif at its C terminus. Immunofluorescence imaging shows NaPi-2b and two PDZ domain containing proteins, NHERF1 and PDZK1, are expressed in the apical microvillar domain of rat small intestine enterocytes. Co-immunoprecipitation studies in rat enterocytes show that NHERF1 associates with NaPi-2b but not PDZK1. In HEK co-expression studies, GFP-NaPi-2b co-precipitates with FLAG-NHERF1. This interaction is markedly diminished when the C-terminal four amino acids are truncated from NaPi-2b. FLIM-FRET analyses using tagged proteins in CACO-2(BBE) cells show a distinct phasor shift between NaPi-2b and NHERF1 but not between NaPi-2b and the PDZK1 pair. This shift demonstrates that NaPi-2b and NHERF1 reside within 10 nm of each other. NHERF1(-/-) mice, but not PDZK1(-/-) mice, had a diminished adaptation of NaPi-2b expression in response to a low P(i) diet. Together these studies demonstrate that NHERF1 associates with NaPi-2b in enterocytes and regulates NaPi-2b adaptation.
Collapse
Affiliation(s)
- Hector Giral
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - DeeAnn Cranston
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Luca Lanzano
- Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, California 92697
| | - Yupanqui Caldas
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Eileen Sutherland
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Joanna Rachelson
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Edward J Weinman
- Department of Medicine and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - R Brian Doctor
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Enrico Gratton
- Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, California 92697
| | - Moshe Levi
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045.
| |
Collapse
|
29
|
Akiva E, Friedlander G, Itzhaki Z, Margalit H. A dynamic view of domain-motif interactions. PLoS Comput Biol 2012; 8:e1002341. [PMID: 22253583 PMCID: PMC3257277 DOI: 10.1371/journal.pcbi.1002341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 11/20/2011] [Indexed: 11/19/2022] Open
Abstract
Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue. Domain-motif interactions are instrumental for many central cellular processes, and are therefore tightly regulated. Phosphorylation events are known modulators of protein-protein interactions in general, including domain-motif interactions. Here, we addressed the association of phosphorylation and domain-motif interaction taking a motif-centred view. We integrated human domain-motif interaction and phosphorylation data for four representative domains (SH2, WW, SH3 and PDZ), and showed that the adjacency between phosphorylation and domain-motif interactions is extensive, suggesting interesting functional links between them that extend the classical and widely studied phospho-regulation of SH2 or WW domain-motif interactions. Furthermore, we show that such interaction-regulation units may function as double switches, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. These latter interaction-regulation units are more conserved in evolution than the individual units comprising them. Assuming that the four analyzed domain-motif interaction types are reliable representatives of such interactions, our results support the existence of units comprising motifs and associated phosphorylation sites, in which the regulation of domain-motif interaction is inherent.
Collapse
Affiliation(s)
- Eyal Akiva
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilgi Friedlander
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zohar Itzhaki
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
30
|
Zhang J, Petit CM, King DS, Lee AL. Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK). J Biol Chem 2011; 286:41776-41785. [PMID: 21965656 DOI: 10.1074/jbc.m111.272583] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Postsynaptic density-95 is a multidomain scaffolding protein that recruits glutamate receptors to postsynaptic sites and facilitates signal processing and connection to the cytoskeleton. It is the leading member of the membrane-associated guanylate kinase family of proteins, which are defined by the PSD-95/Discs large/ZO-1 (PDZ)-Src homology 3 (SH3)-guanylate kinase domain sequence. We used NMR to show that phosphorylation of conserved tyrosine 397, which occurs in vivo and is located in an atypical helical extension (α3), initiates a rapid equilibrium of docked and undocked conformations. Undocking reduced ligand binding affinity allosterically and weakened the interaction of PDZ3 with SH3 even though these domains are separated by a ~25-residue linker. Additional phosphorylation at two linker sites further disrupted the interaction, implicating α3 and the linker in tuning interdomain communication. These experiments revealed a novel mode of regulation by a detachable PDZ element and offer a first glimpse at the dynamic interaction of PDZ and SH3-guanylate kinase domains in membrane-associated guanylate kinases.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Chad M Petit
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David S King
- Howard Hughes Medical Institute Mass Spectrometry Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Andrew L Lee
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
31
|
Prevoo B, Miller DS, van de Water FM, Wever KE, Russel FGM, Flik G, Masereeuw R. Rapid, nongenomic stimulation of multidrug resistance protein 2 (Mrp2) activity by glucocorticoids in renal proximal tubule. J Pharmacol Exp Ther 2011; 338:362-71. [PMID: 21515814 DOI: 10.1124/jpet.111.179689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In renal proximal tubule, multidrug resistance protein 2 (Mrp2) actively transports many organic anions into urine, including drugs and metabolic wastes. Upon exposure to nephrotoxicants or during endotoxemia, both Mrp2 activity and expression are up-regulated. This may result from induced de novo synthesis of Mrp2 or post-transcriptional events involving specific signaling pathways. Here, we investigated glucocorticoid signaling to Mrp2 in killifish renal proximal tubules, a model system in which transport activity can be measured using a fluorescent substrate and confocal imaging. Exposure of tubules to dexamethasone rapidly increased Mrp2-mediated fluorescein methotrexate transport. Other glucocorticoid receptor (GR) ligands, cortisol and triamcinolone acetonide, also stimulated Mrp2-mediated transport. The GR antagonist, mifepristone 17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU486), abolished stimulation by all three ligands, whereas the mineralocorticoid receptor antagonist, spironolactone, was ineffective. Consistent with action through a nongenomic mechanism, dexamethasone stimulation of Mrp2-mediated transport was insensitive to cycloheximide and actinomycin D, and immunohistochemistry revealed no alterations in Mrp2 expression at the luminal membrane. (9S-(9α,10β,12α))-2,3,9,10,11,12-hexahydro-10-hydroxy-10-(methoxycarbonyl)-9-methyl-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one (K252a), an inhibitor of the tyrosine receptor kinase subfamily, reduced the dexamethasone effect, as did the specific hepatocyte growth factor receptor (c-Met) tyrosine kinase inhibitor, (2R)-1-[[5-[(Z)-[5-[[(2,6-dichlorophenyl)methyl]sulfonyl]-1,2-dihydro-2-oxo-3H-indol-3-ylidene]methyl]-2,4-dimethyl-1H-pyrrol-3-yl]carbonyl]-2-(1-pyrrolidinylmethyl)pyrrolidine (PHA-665752). Hepatocyte growth factor (HGF), an endogenous ligand for c-Met, stimulated Mrp2-mediated transport. This effect was reversed by PHA-665752 but not by RU486. Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK 1/2) also abolished the effects of dexamethasone and HGF. Our results disclose a novel mechanism by which glucocorticoids acting through GR, c-Met, and MEK1/2 cause rapid, nongenomic stimulation of Mrp2-mediated transport in renal proximal tubules. This up-regulation may be nephroprotective, enhancing efflux of metabolic wastes and toxicants during cell and tissue stress.
Collapse
Affiliation(s)
- Brigitte Prevoo
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre/Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Clapéron A, Mergey M, Fouassier L. Roles of the scaffolding proteins NHERF in liver biology. Clin Res Hepatol Gastroenterol 2011; 35:176-81. [PMID: 21501979 DOI: 10.1016/j.clinre.2010.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 02/04/2023]
Abstract
Scaffold proteins are defined by the presence of specific protein-binding domains (e.g. PDZ domains) that assemble several proteins into functional complexes. Thus, scaffolds are critical for spatio-temporal organization and for proper regulation of intracellular signalling upon specific stimulus. Identified 15years ago, NHERF scaffold proteins contain several PDZ modules and were initially viewed as "passive linkers" between transmembrane proteins and the cortical cytoskeleton underlying the plasma membrane. New NHERF-binding molecules involved in cell signalling have been recently identified. Thus, NHERFs are now viewed as "active" key players in regulating cellular functions. EBP50 and PDZK1, two members of the NHERF family, are highly expressed in the liver where they link receptors, channels, transporters and cytosolic components. This review aims to give an overview of the emerging functions of NHERF proteins in liver physiology.
Collapse
|
33
|
Popovic M, Bella J, Zlatev V, Hodnik V, Anderluh G, Barlow PN, Pintar A, Pongor S. The interaction of Jagged-1 cytoplasmic tail with afadin PDZ domain is local, folding-independent, and tuned by phosphorylation. J Mol Recognit 2011; 24:245-53. [DOI: 10.1002/jmr.1042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 2010; 42:402-36. [PMID: 20082599 DOI: 10.3109/03602530903491741] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABCC2/Abcc2 (MRP2/Mrp2) is expressed at major physiological barriers, such as the canalicular membrane of liver cells, kidney proximal tubule epithelial cells, enterocytes of the small and large intestine, and syncytiotrophoblast of the placenta. ABCC2/Abcc2 always localizes in the apical membranes. Although ABCC2/Abcc2 transports a variety of amphiphilic anions that belong to different classes of molecules, such as endogenous compounds (e.g., bilirubin-glucuronides), drugs, toxic chemicals, nutraceuticals, and their conjugates, it displays a preference for phase II conjugates. Phenotypically, the most obvious consequence of mutations in ABCC2 that lead to Dubin-Johnson syndrome is conjugate hyperbilirubinemia. ABCC2/Abcc2 harbors multiple binding sites and displays complex transport kinetics.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Chemical Research Center, Institute of Biomolecular Chemistry, HAS, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
35
|
Extensions of PDZ domains as important structural and functional elements. Protein Cell 2010; 1:737-51. [PMID: 21203915 DOI: 10.1007/s13238-010-0099-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 07/21/2010] [Indexed: 12/21/2022] Open
Abstract
'Divide and conquer' has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions 'extensions'. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results ( http://bcz102.ust.hk/pdzex/ ). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.
Collapse
|
36
|
Roghi C, Jones L, Gratian M, English WR, Murphy G. Golgi reassembly stacking protein 55 interacts with membrane-type (MT) 1-matrix metalloprotease (MMP) and furin and plays a role in the activation of the MT1-MMP zymogen. FEBS J 2010; 277:3158-75. [PMID: 20608975 DOI: 10.1111/j.1742-4658.2010.07723.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a proteinase involved in the remodelling of extracellular matrix and the cleavage of a number of substrates. MT1-MMP is synthesized as a zymogen that requires intracellular post-translational cleavage to gain biological activity. Furin, a member of the pro-protein convertase family, has been implicated in the proteolytic removal of the MT1-MMP prodomain sequence. In the present study, we demonstrate a role for the peripheral Golgi matrix protein GRASP55 in the furin-dependent activation of MT1-MMP. MT1-MMP and furin were found to co-localize with Golgi reassembly stacking protein 55 (GRASP55). Further analysis revealed that GRASP55 associated with the cytoplasmic domain of both proteases and that the LLY(573) motif in the MT1-MMP intracellular domain was crucial for the interaction with GRASP55. Overexpression of GRASP55 was found to enhance the formation of a complex between MT1-MMP and furin. Finally, we report that disruption of the interaction between GRASP55 and furin led to a reduction in pro-MT1-MMP activation. Taken together, these data suggest that GRASP55 may function as an adaptor protein coupling MT1-MMP with furin, thus leading to the activation of the zymogen.
Collapse
Affiliation(s)
- Christian Roghi
- Cancer Research UK Cambridge Research Institute, The Li Ka Shing Centre, UK.
| | | | | | | | | |
Collapse
|
37
|
Li C, Schuetz JD, Naren AP. Tobacco carcinogen NNK transporter MRP2 regulates CFTR function in lung epithelia: implications for lung cancer. Cancer Lett 2010; 292:246-53. [PMID: 20089353 PMCID: PMC2868381 DOI: 10.1016/j.canlet.2009.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 10/19/2022]
Abstract
Lung cancer is the leading cause of cancer death in the United States. About 85% of all lung cancers are linked to tobacco smoke, in which more than 50 lung carcinogens have been identified and one of the most abundant is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The human lung epithelium constitutes the first line of defense against tobacco-specific carcinogens, in which apically-localized receptors, transporters, and ion channels in the airway may play a critical role in this native defense against tobacco smoke. Here we showed that multidrug resistance protein-2 (MRP2) and cystic fibrosis transmembrane conductance regulator (CFTR), two ATP-binding cassette (ABC) transporters, are localized to the apical surfaces of plasma membrane in polarized lung epithelial cells. We observed that there is a functional coupling between CFTR and MRP2 that may be mediated by PDZ proteins. We also observed the existence of a macromolecular complex containing CFTR, MRP2, and PDZ proteins, which might form the basis for the regulatory cooperation between these two ABC transporters. Our results have important implications for cigarette smoke-associated lung diseases (such as smoke-related emphysema, chronic obstructive pulmonary disease, and lung cancer).
Collapse
Affiliation(s)
- Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, 5312 Scott Hall, Detroit, MI 48201, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | - Anjaparavanda P. Naren
- Department of Physiology, University of Tennessee Health Science Center, 420 Nash, 894 Union Avenue, Memphis, Tennessee 38163, USA
| |
Collapse
|
38
|
Li M, Wang W, Soroka CJ, Mennone A, Harry K, Weinman EJ, Boyer JL. NHERF-1 binds to Mrp2 and regulates hepatic Mrp2 expression and function. J Biol Chem 2010; 285:19299-307. [PMID: 20404332 DOI: 10.1074/jbc.m109.096081] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2, Abcc2) is an ATP-binding cassette transporter localized at the canalicular membrane of hepatocytes that plays an important role in bile formation and detoxification. Prior in vitro studies suggest that Mrp2 can bind to Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1), a PDZ protein that cross-links membrane proteins to actin filaments. However the role of NHERF-1 in the expression and functional regulation of Mrp2 remains largely unknown. Here we examine the interaction of Mrp2 and NHERF-1 and its physiological significance in HEK293 cells and NHERF-1 knock-out mice. Mrp2 co-precipitated with NHERF-1 in co-transfected HEK293 cells, an interaction that required the PDZ-binding motif of Mrp2. In NHERF-1(-/-) mouse liver, Mrp2 mRNA was unchanged but Mrp2 protein was reduced in whole cell lysates and membrane-enriched fractions to approximately 50% (p < 1 x 10(-6)) and approximately 70% (p < 0.05), respectively, compared with wild-type mice, suggesting that the down-regulation of Mrp2 expression was caused by post-transcriptional events. Mrp2 remained localized at the apical/canalicular membrane of NHERF-1(-/-) mouse hepatocytes, although its immunofluorescent labeling was noticeably weaker. Bile flow in NHERF-1(-/-) mice was reduced to approximately 70% (p < 0.001) in association with a 50% reduction in glutathione excretion (p < 0.05) and a 60% reduction in glutathione-methylfluorescein (GS-MF) excretion in isolated mouse hepatocyte (p < 0.01). Bile acid and bilirubin excretion remained unchanged compared with wild-type mice. These findings strongly suggest that NHERF-1 binds to Mrp2, and plays a critical role in the canalicular expression of Mrp2 and its function as a determinant of glutathione-dependent, bile acid-independent bile flow.
Collapse
Affiliation(s)
- Man Li
- Liver Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Li C, Naren AP. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr Biol (Camb) 2010; 2:161-77. [PMID: 20473396 DOI: 10.1039/b924455g] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel located primarily at the apical or luminal surfaces of epithelial cells in the airway, intestine, pancreas, kidney, sweat gland, as well as male reproductive tract, where it plays a crucial role in transepithelial fluid homeostasis. CFTR dysfunction can be detrimental and may result in life-threatening disorders. CFTR hypofunctioning because of genetic defects leads to cystic fibrosis, the most common lethal genetic disease in Caucasians, whereas CFTR hyperfunctioning resulting from various infections evokes secretory diarrhea, the leading cause of mortality in early childhood. Therefore, maintaining a dynamic balance between CFTR up-regulating processes and CFTR down-regulating processes is essential for maintaining fluid and body homeostasis. Accumulating evidence suggests that protein-protein interactions play a critical role in the fine-tuned regulation of CFTR function. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might be coupled spatially and temporally to a wide variety of interacting partners including ion channels, receptors, transporters, scaffolding proteins, enzyme molecules, signaling molecules, and effectors. Most interactions occur primarily between the opposing terminal tails (amino or carboxyl) of CFTR protein and its binding partners, either directly or mediated through various PDZ scaffolding proteins. These dynamic interactions impact the channel function, as well as localization and processing of CFTR protein within cells. This article reviews the most recent progress and findings about the interactions between CFTR and its binding partners through PDZ scaffolding proteins, as well as the spatiotemporal regulation of CFTR-containing macromolecular signaling complexes in the apical compartments of polarized cells lining the secretory epithelia.
Collapse
Affiliation(s)
- Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, 5312 Scott Hall, Detroit, Michigan 48201, USA
| | | |
Collapse
|
40
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 568] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
41
|
Gallardo R, Ivarsson Y, Schymkowitz J, Rousseau F, Zimmermann P. Structural Diversity of PDZ-Lipid Interactions. Chembiochem 2010; 11:456-67. [DOI: 10.1002/cbic.200900616] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Ikari A, Kinjo K, Atomi K, Sasaki Y, Yamazaki Y, Sugatani J. Extracellular Mg(2+) regulates the tight junctional localization of claudin-16 mediated by ERK-dependent phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:415-21. [PMID: 19914201 DOI: 10.1016/j.bbamem.2009.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/13/2009] [Accepted: 11/05/2009] [Indexed: 11/29/2022]
Abstract
Claudin-16 is involved in the paracellular reabsorption of Mg(2+) in the thick ascending limb of Henle. Little is known about the mechanism regulating the tight junctional localization of claudin-16. Here, we examined the effect of Mg(2+) deprivation on the distribution and function of claudin-16 using Madin-Darby canine kidney (MDCK) cells expressing FLAG-tagged claudin-16. Mg(2+) deprivation inhibited the localization of claudin-16 at tight junctions, but did not affect the localization of other claudins. Re-addition of Mg(2+) induced the tight junctional localization of claudin-16, which was inhibited by U0126, a MEK inhibitor. Transepithelial permeability to Mg(2+) was also inhibited by U0126. The phosphorylation of ERK was reduced by Mg(2+) deprivation, and recovered by re-addition of Mg(2+). These results suggest that the MEK/ERK-dependent phosphorylation of claudin-16 affects the tight junctional localization and function of claudin-16. Mg(2+) deprivation decreased the phosphothreonine levels of claudin-16. The phosphothreonine levels of T225A and T233A claudin-16 were decreased in the presence of Mg(2+) and these mutants were widely distributed in the plasma membrane. Furthermore, TER and transepithelial Mg(2+) permeability were decreased in the mutants. We suggest that the tight junctional localization of claudin-16 requires a physiological Mg(2+) concentration and the phosphorylation of threonine residues via a MEK/ERK-dependent pathway.
Collapse
Affiliation(s)
- Akira Ikari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Zachos NC, Li X, Kovbasnjuk O, Hogema B, Sarker R, Lee LJ, Li M, de Jonge H, Donowitz M. NHERF3 (PDZK1) contributes to basal and calcium inhibition of NHE3 activity in Caco-2BBe cells. J Biol Chem 2009; 284:23708-18. [PMID: 19535329 DOI: 10.1074/jbc.m109.012641] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Elevated intracellular Ca(2+) ([Ca(2+)](i)) inhibition of NHE3 is reconstituted by NHERF2, but not NHERF1, by a mechanism involving the formation of multiprotein signaling complexes. To further evaluate the specificity of the NHERF family in calcium regulation of NHE3 activity, the current study determined whether NHERF3 reconstitutes elevated [Ca(2+)](i) regulation of NHE3. In vitro, NHERF3 bound the NHE3 C terminus between amino acids 588 and 667. In vivo, NHE3 and NHERF3 associate under basal conditions as indicated by co-immunoprecipitation, confocal microscopy, and fluorescence resonance energy transfer. Treatment of PS120/NHE3/NHERF3 cells, but not PS120/NHE3 cells, with the Ca(2+) ionophore, 4-bromo-A23187 (0.5 mum): 1) inhibited NHE3 V(max) activity; 2) decreased NHE3 surface amount; 3) dissociated NHE3 and NHERF3 at the plasma membrane by confocal immunofluorescence and fluorescence resonance energy transfer. Similarly, in Caco-2BBe cells, NHERF3 and NHE3 colocalized in the BB under basal conditions but after elevation of [Ca(2+)](i) by carbachol, this overlap was abolished. NHERF3 short hairpin RNA knockdown (>50%) in Caco-2BBe cells significantly reduced basal NHE3 activity by decreasing BB NHE3 amount. Also, carbachol-mediated inhibition of NHE3 activity was abolished in Caco-2BBe cells in which NHERF3 protein expression was significantly reduced. In summary: 1) NHERF3 colocalizes and directly binds NHE3 at the plasma membrane under basal conditions; 2) NHERF3 reconstitutes [Ca(2+)](i) inhibition of NHE3 activity and dissociates from NHE3 in fibroblasts and polarized intestinal epithelial cells with elevated [Ca(2+)](i); 3) NHERF3 short hairpin RNA significantly reduced NHE3 basal activity and brush border expression in Caco-2BBe cells. These results demonstrate that NHERF3 reconstitutes calcium inhibition of NHE3 activity by anchoring NHE3 basally and releasing it with elevated Ca(2+).
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine, Hopkins Center for Epithelial Disorders, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fouassier L, Rosenberg P, Mergey M, Saubaméa B, Clapéron A, Kinnman N, Chignard N, Jacobsson-Ekman G, Strandvik B, Rey C, Barbu V, Hultcrantz R, Housset C. Ezrin-radixin-moesin-binding phosphoprotein (EBP50), an estrogen-inducible scaffold protein, contributes to biliary epithelial cell proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:869-80. [PMID: 19234136 DOI: 10.2353/ajpath.2009.080079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) anchors and regulates apical membrane proteins in epithelia. EBP50 is inducible by estrogen and may affect cell proliferation, although this latter function remains unclear. The goal of this study was to determine whether EBP50 was implicated in the ductular reaction that occurs in liver disease. EBP50 expression was examined in normal human liver, in human cholangiopathies (ie, cystic fibrosis, primary biliary cirrhosis, and primary sclerosing cholangitis), and in rats subjected to bile-duct ligation. The regulation of EBP50 by estrogens and its impact on proliferation were assessed in both bile duct-ligated rats and Mz-Cha-1 human biliary epithelial cells. Analyses of cell isolates and immunohistochemical studies showed that in normal human liver, EBP50 is expressed in the canalicular membranes of hepatocytes and, together with ezrin and cystic fibrosis transmembrane conductance regulator, in the apical domains of cholangiocytes. In both human cholangiopathies and bile duct-ligated rats, EBP50 was redistributed to the cytoplasmic and nuclear compartments. EBP50 underwent a transient increase in rat cholangiocytes after bile-duct ligation, whereas such expression was down-regulated in ovariectomized rats. In addition, in Mz-Cha-1 cells, EBP50 underwent up-regulation and intracellular redistribution in response to 17beta-estradiol, whereas its proliferation was inhibited by siRNA-mediated EBP50 knockdown. These results indicate that both the expression and distribution of EBP50 are regulated by estrogens and contribute to the proliferative response in biliary epithelial cells.
Collapse
Affiliation(s)
- Laura Fouassier
- INSERM, UMR_S 893, CdR Saint-Antoine, Faculté de Médecine Pierre et Marie Curie, site Saint-Antoine, 27, rue Chaligny, 75571 Paris cedex 12, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sulka B, Lortat-Jacob H, Terreux R, Letourneur F, Rousselle P. Tyrosine dephosphorylation of the syndecan-1 PDZ binding domain regulates syntenin-1 recruitment. J Biol Chem 2009; 284:10659-71. [PMID: 19228696 DOI: 10.1074/jbc.m807643200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparan sulfate proteoglycan receptor syndecan-1 interacts with the carboxyl-terminal LG4/5 domain in laminin 332 (alpha3LG4/5) and participates in cell adhesion and spreading. To dissect the function of syndecan-1 in these processes, we made use of a cell adhesion model in which syndecan-1 exclusively interacts with a recombinantly expressed alpha3LG4/5 fragment. Plating HT1080 cells on this fragment induces the formation of actin-containing protrusive structures in an integrin-independent manner. Here we show that syndecan-1-mediated formation of membrane protrusions requires dephosphorylation of tyrosine residues in syndecan-1. Accordingly, inhibition of phosphatases with orthovanadate decreases cell adhesion to the alpha3LG4/5 fragment. We demonstrate that the PDZ-containing protein syntenin-1, known to connect cytoskeletal proteins, binds to syndecan-1 in cells plated on the alpha3LG4/5 fragment and participates in the formation of membrane protrusions. We further show that syntenin-1 recruitment depends on the dephosphorylation of Tyr-309 located within syndecan-1 PDZ binding domain EFYA. We propose that tyrosine dephosphorylation of syndecan-1 may regulate its association with cytoskeleton components.
Collapse
Affiliation(s)
- Béatrice Sulka
- IFR128 BioSciences Gerland-Lyon Sud, Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS, Université Lyon1, 7 passage du Vercors, 69367 Lyon, France
| | | | | | | | | |
Collapse
|
46
|
Minami S, Ito K, Honma M, Ikebuchi Y, Anzai N, Kanai Y, Nishida T, Tsukita S, Sekine S, Horie T, Suzuki H. Posttranslational regulation of Abcc2 expression by SUMOylation system. Am J Physiol Gastrointest Liver Physiol 2009; 296:G406-13. [PMID: 19074644 DOI: 10.1152/ajpgi.90309.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ATP-binding cassette transporter family C 2 (Abcc2) is a member of efflux transporters involved in the biliary excretion of organic anions from hepatocytes. Posttranslational regulation of Abcc2 has been implicated, although the molecular mechanism is not fully understood. In the present study, we performed yeast two-hybrid screening to identify novel protein(s) that particularly interacts with the linker region of Abcc2 located between the NH(2)-terminal nucleotide binding domain and the last membrane-spanning domain. The screening resulted in the identification of a series of small ubiquitin-like modifier (SUMO)-related enzymes and their substrates. In yeast experiments, all of these interactions were abolished by substituting the putative SUMO consensus site in the linker region (IKKE) in Abcc2 to IRKE. In vitro SUMOylation experiments confirmed that the Abcc2 linker was a substrate of Ubc9-mediated SUMOylation. It was also found that the IKKE sequence is the target of SUMOylation, since a mutant with IKKE is substituted by IRKE was not SUMOylated. Furthermore, we demonstrated for the first time that Abcc2, endogenously expressed in rat hepatoma-derived McARH7777 cells, is SUMOylated. Suppression of endogenous Ubc9 by small interfering RNA resulted in a selective 30% reduction in Abcc2 protein expression in the postnuclear supernatant, whereas subcellular localization of Abcc2 confirmed by semiquantitative immunofluorescence analysis was minimally affected. This is the first demonstration showing the regulation of ABC transporter expression by SUMOylation.
Collapse
Affiliation(s)
- Satoko Minami
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hoque MT, Conseil G, Cole SPC. Involvement of NHERF1 in apical membrane localization of MRP4 in polarized kidney cells. Biochem Biophys Res Commun 2008; 379:60-4. [PMID: 19073137 DOI: 10.1016/j.bbrc.2008.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette protein superfamily, confers resistance to nucleoside and nucleotide analogs as well as camptothecin derivatives. MRP4 also mediates the efflux of certain cyclic nucleotides, eicosanoids, conjugated steroids, and uric acid. Depending on the cell type, MRP4 may localize to either apical or basolateral membranes in polarized cells. The adaptor protein NHERF1 has previously been implicated in MRP4 internalization in non-polarized cells. We have now found that NHERF1 levels are very low in polarized MDCKI cells which express MRP4 on basolateral membranes relative to polarized LLC-PK1 cells which express MRP4 on apical membranes. Furthermore, ectopic expression of FLAG-tagged NHERF1 in MDCKI cells and in MDCKI cells stably expressing eGFP-tagged MRP4 causes endogenous MRP4 and eGFP-MRP4, respectively, to traffic to the apical membranes. These data establish NHERF1 as a major determinant of MRP4 trafficking to apical membranes of mammalian kidney cells.
Collapse
Affiliation(s)
- Md Tozammel Hoque
- Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
48
|
Zachos NC, Hodson C, Kovbasnjuk O, Li X, Thelin WR, Cha B, Milgram S, Donowitz M. Elevated intracellular calcium stimulates NHE3 activity by an IKEPP (NHERF4) dependent mechanism. Cell Physiol Biochem 2008; 22:693-704. [PMID: 19088451 DOI: 10.1159/000185553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2008] [Indexed: 01/09/2023] Open
Abstract
The ileal brush border (BB) contains four evolutionarily related multi-PDZ domain proteins including NHERF1, NHERF2, PDZK1 (NHERF3) and IKEPP (NHERF4). Why multiple related PDZ proteins are in a similar location in the same cell is unknown. However, some specificity in regulation of NHE3 activity has been identified. For example, elevated intracellular Ca(2+) ([Ca(2+)](i)) inhibition of NHE3 is reconstituted by NHERF2 but not NHERF1, and involves the formation of large NHE3 complexes. To further evaluate the specificity of the NHERF family in calcium regulation of NHE3 activity, the current study determined whether the four PDZ domain containing protein IKEPP reconstitutes elevated [Ca(2+)](i) regulation of NHE3. In vitro, IKEPP bound to the F2 region (aa 590-667) of NHE3 in overlay assays, which is the same region where NHERF1 and NHERF2 bind. PS120 cells lack endogenous NHE3 and IKEPP. Treatment of PS120/NHE3/IKEPP cells (stably transfected with NHE3 and IKEPP) with the Ca(2+) ionophore, 4-Br-A23187 (0.5 microM), stimulated NHE3 V(max) activity by approximately 40%. This was associated with an increase in plasma membrane expression of NHE3 by a similar amount. NHE3 activity and surface expression were unaffected by A23187 in PS120/NHE3 cells lacking IKEPP. Based on sucrose density gradient centrifugation, IKEPP was also shown to exist in large complexes, some of which overlap in size with NHE3, and the size of both NHE3 and IKEPP complexes decreased in parallel after [Ca(2+)](i) elevation. FRET experiments on fixed cells demonstrated that IKEPP and NHE3 directly associated at an intracellular site. Elevating [Ca(2+)](i) decreased this intracellular NHE3 and IKEPP association. In summary: (1) In the presence of IKEPP, elevated [Ca(2+)](i) stimulates NHE3 activity. This was associated with increased expression of NHE3 in the plasma membrane as well as a shift to smaller sizes of NHE3 and IKEPP containing complexes. (2) IKEPP directly binds NHE3 at its F2 C-terminal domain and directly associates with NHE3 in vivo (FRET). (3) Elevated [Ca(2+)](i) decreased the association of IKEPP and NHE3 in an intracellular compartment. Based on which NHERF family member is expressed in PS120 cells, elevated [Ca(2+)](i) stimulates (IKEPP), inhibits (NHERF2) or does not affect (NHERF1) NHE3 activity. This demonstrates that regulation of NHE3 depends on the nature of the NHERF family member associating with NHE3 and the accompanying NHE3 complexes.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine and Physiology, Hopkins Center for Epithelial Disorders, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hoque MT, Cole SP. Down-regulation of Na+/H+Exchanger Regulatory Factor 1 Increases Expression and Function of Multidrug Resistance Protein 4. Cancer Res 2008; 68:4802-9. [DOI: 10.1158/0008-5472.can-07-6778] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Watanabe C, Kato Y, Sugiura T, Kubo Y, Wakayama T, Iseki S, Tsuji A. PDZ Adaptor Protein PDZK2 Stimulates Transport Activity of Organic Cation/Carnitine Transporter OCTN2 by Modulating Cell Surface Expression. Drug Metab Dispos 2006; 34:1927-34. [PMID: 16896066 DOI: 10.1124/dmd.106.010207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A part of the organic cation transporter families (OCT3, OCTN1, and OCTN2) has recently been identified to physically interact with PDZ (PSD95, Dlg, and ZO1) domain-containing proteins, although the physiological relevance of such interaction has not yet been fully examined. Here we have examined the stimulatory effect of PDZK2 [also named NaPi-Cap2 and intestinal and kidney-enriched PDZ protein (IKEPP)] on those cation transporters. In HEK293 cells, coexpression with PDZK2 increased the uptake of carnitine by OCTN2 with minimal effect on its substrate recognition specificity, but not for transport activity of OCT3 or OCTN1. The stimulatory effect of PDZK2 on OCTN2 was compatible with an approximately 2 times increase in transport capacity and can be accounted for by the increase in cell surface expression of OCTN2. Coexpression of PDZK2 did not affect carnitine transport activity of OCTN2 with deletion of the last four amino acids, which were found to be important for the interaction, suggesting involvement of physical interaction of the two proteins in the increase of cell surface expression of OCTN2. In mouse kidney, colocalization of PDZK2 and OCTN2 occurred predominantly in the region that was close to, but not the same as, the surface of apical membranes where OCTN2 alone was observed, suggesting the existence of OCTN2 in the subapical compartment that interacts with PDZK2. The present data have thus proposed an "intracellular pool" for OCTN2 that may be relevant to the stabilization of cell surface expression of OCTN2, thereby increasing transport activity for carnitine.
Collapse
Affiliation(s)
- Chizuru Watanabe
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|