1
|
Ares GR. Ubiquitination of NKCC2 by the cullin-RING E3 ubiquitin ligase family in the thick ascending limb of the loop of Henle. Am J Physiol Renal Physiol 2023; 324:F315-F328. [PMID: 36727946 PMCID: PMC9988521 DOI: 10.1152/ajprenal.00079.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Na+/K+/2Cl- cotransporter (NKCC2) in the thick ascending limb of the loop of Henle (TAL) mediates NaCl reabsorption. cGMP, the second messenger of nitric oxide and atrial natriuretic peptide, inhibits NKCC2 activity by stimulating NKCC2 ubiquitination and decreasing surface NKCC2 levels. Among the E3 ubiquitin ligase families, the cullin-RING E3 ubiquitin ligase (CRL) family is the largest. Cullins are molecular scaffold proteins that recruit multiple subunits to form the CRL complex. We hypothesized that a CRL complex mediates the cGMP-dependent increase in NKCC2 ubiquitination in TALs. Cullin-1, cullin-2, cullin-3, cullin-4A, and cullin-5 were expressed at the protein level, whereas the other members of the cullin family were expressed at the mRNA level, in rat TALs. CRL complex activity is regulated by neuronal precursor cell-expressed developmentally downregulated protein 8 (Nedd8) to cullins, a process called neddylation. Inhibition of cullin neddylation blunted the cGMP-dependent increase in ubiquitinated NKCC2 while increasing the expression of cullin-1 by threefold, but this effect was not seen with other cullins. CRL complex activity is also regulated by cullin-associated Nedd8-dissociated 1 (CAND1). CAND1 binds to cullins and promotes the exchange of substrate-recognition proteins to target different proteins for ubiquitination. CAND1 inhibition exacerbated the cGMP-dependent increase in NKCC2 ubiquitination and decreased surface NKCC2 expression. Finally, cGMP increased neddylation of cullins. We conclude that the cGMP-dependent increase in NKCC2 ubiquitination is mediated by a CRL complex. To the best of our knowledge, this is the first evidence that a CRL complex mediates NKCC2 ubiquitination in native TALs.NEW & NOTEWORTHY The Na+/K+/2Cl- cotransporter (NKCC2) reabsorbs NaCl by the thick ascending limb. Nitric oxide and atrial natriuretic peptide decrease NaCl reabsorption in thick ascending limbs by increasing the second messenger cGMP. The present findings indicate that cGMP increases NKCC2 ubiquitination via a cullin-RING ligase complex and regulates in part surface NKCC2 levels. Identifying the E3 ubiquitin ligases that regulate NKCC2 expression and activity may provide new targets for the development of specific loop diuretics.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States.,Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
2
|
Eigentler A, Tymoszuk P, Zwick J, Schmitz AA, Pircher A, Kocher F, Schlicker A, Lesche R, Schäfer G, Theurl I, Klocker H, Heidegger I. The Impact of Cand1 in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12020428. [PMID: 32059441 PMCID: PMC7072594 DOI: 10.3390/cancers12020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence has accumulated asserting the importance of cullin-RING (really interesting new gene) ubiquitin ligases (CRLs) and their regulator Cullin-associated neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) dissociated protein 1 (Cand1) in various cancer entities. However, the role of Cand1 in prostate cancer (PCa) has not been intensively investigated so far. Thus, in the present study, we aimed to assess the relevance of Cand1 in the clinical and preclinical setting. Immunohistochemical analyses of radical prostatectomy specimens of PCa patients showed that Cand1 protein levels are elevated in PCa compared to benign areas. In addition, high Cand1 levels were associated with higher Gleason Scores, as well as higher tumor recurrence and decreased overall survival. In line with clinical findings, in vitro experiments in different PCa cell lines revealed that knockdown of Cand1 reduced cell viability and proliferation and increased apoptosis, therefore underlining its role in tumor progression. We also found that the cyclin-dependent kinase inhibitor p21 is significantly upregulated upon downregulation of Cand1. Using bioinformatic tools, we detected genes encoding for proteins linked to mRNA turnover, protein polyubiquitination, and proteasomal degradation to be significantly upregulated in Cand1high tumors. Next generation sequencing of PCa cell lines resistant to the anti-androgen enzalutamide revealed that Cand1 is mutated in enzalutamide-resistant cells, however, with little functional and clinically relevant impact in the process of resistance development. To summarize the present study, we found that high Cand1 levels correlate with PCa aggressiveness.
Collapse
Affiliation(s)
- Andrea Eigentler
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.E.); (J.Z.); (H.K.)
| | - Piotr Tymoszuk
- Laboratory for Immunotherapy, Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (P.T.); (I.T.)
| | - Johanna Zwick
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.E.); (J.Z.); (H.K.)
| | - Arndt A. Schmitz
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany (A.S.); (R.L.)
| | - Andreas Pircher
- Department of Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.P.); (F.K.)
| | - Florian Kocher
- Department of Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.P.); (F.K.)
| | - Andreas Schlicker
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany (A.S.); (R.L.)
| | - Ralf Lesche
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany (A.S.); (R.L.)
| | - Georg Schäfer
- Department of Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Igor Theurl
- Laboratory for Immunotherapy, Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (P.T.); (I.T.)
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.E.); (J.Z.); (H.K.)
| | - Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.E.); (J.Z.); (H.K.)
- Correspondence: ; Tel: 0043-512-504-24-808
| |
Collapse
|
3
|
Wang K, Deshaies RJ, Liu X. Assembly and Regulation of CRL Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:33-46. [DOI: 10.1007/978-981-15-1025-0_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Sakaue T, Maekawa M, Nakayama H, Higashiyama S. Prospect of divergent roles for the CUL3 system in vascular endothelial cell function and angiogenesis. J Biochem 2017; 162:237-245. [PMID: 28981750 DOI: 10.1093/jb/mvx051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/05/2017] [Indexed: 11/14/2022] Open
Abstract
Tissue remodelling and regeneration in various pathophysiological conditions (e.g. the processes of development, pregnancy, inflammation, wound healing, tissue regeneration, tumor growth, etc.) require angiogenesis, a dynamically coordinated response to stimuli from the extracellular microenvironment. During angiogenic and angiostatic responses, endothelial cells play a central role in the blood vessel formation and regression. Angiostatic responses, which are evoked by crucial factors such as VEGF and DLL4, have been elucidated. However, it has not been revealed, how endothelial cells process these conflicting signals. The study of VEGFR-Notch cross-signalling provided some clues. We discuss here the potential roles of cullin 3-based ubiquitin E3 ligases as key players in the process of various signals in endothelial cell function and angiogenesis. Our recent findings show that they function as units to process conflicting signalling crosstalk, epigenetic regulation of key factors, and functional barrier maintenance. We also expect more divergent roles of cullin 3-based ubiquitin E3 ligases in endothelial cell function and angiogenesis, and for their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Tomohisa Sakaue
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan.,Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime 791-0295, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime 791-0295, Japan
| | - Hironao Nakayama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime 791-0295, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime 791-0295, Japan
| |
Collapse
|
5
|
Bornstein G, Grossman C. COP9-Signalosome deneddylase activity is enhanced by simultaneous neddylation: insights into the regulation of an enzymatic protein complex. Cell Div 2015; 10:5. [PMID: 26265931 PMCID: PMC4531434 DOI: 10.1186/s13008-015-0011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cullin-RING ubiquitin ligases (CRLs) are regulated by neddylation, which is a post translation modification of the Cullin family proteins. Neddylation of Cul1 activates the ligase through some means of biochemical mechanisms. The rate of neddylation and its extent are regulated by 2 opposing enzymatic processes: neddylation by an enzymatic cascade, and deneddylation by COP9-Signalosome (CSN) complex protein. The mechanism by which COP9-Signalosome catalytic activity is regulated is not well understood. Methods We set an in vitro neddylation and deneddylation reaction using as a source for specific COP9/Signalosome deneddylase activity either Hela cells extract or purified Signalosome. Neddylation reaction of either endogenic Cul1 from Hela cells extract or recombinant Cul1 was catalyzed by recombinant neddylation enzymes. Deneddylation rate was tested either simultaneous to neddylation or after termination of neddylation by using an ATP depleting reaction or by directly inhibiting the neddylation activation enzyme named APP-BP1/UBA3 by its specific inhibitor MLN-4924. Results We demonstrated that neddylation and deneddylation are catalytically engaged and that inhibition of Cul1 neddylation significantly causes a decline in the rate of COP9-Signalosome deneddylase activity. Since neddylation is an ATP consuming reaction we managed to isolate the 2 opposing processes which surprisingly caused a decline in COP9 activity. Using MLN-4924 we demonstrated that direct inhibition of neddylation negatively influences the rate of deneddylation. The hypothesis that phosphorylation controls deneddylation was ruled out by the fact that no change in the rate of deneddylation was exemplified while converting the use of ATP with AMP-PNP. Conclusions We demonstrated that deneddylation of Cul1 is positively regulated through direct simultaneous neddylation and is not dependent upon autophosphorylation. Defining the mechanism that regulates neddylation and deneddylation of Cullin proteins is important due to their effect on highly conserved cellular processes. We showed that minor changes in the degree of Cul1 neddylation linearly control the degree of p27 conjugation to ubiquitin, which emphasizes the hypothetic physiologic significance of our findings. Electronic supplementary material The online version of this article (doi:10.1186/s13008-015-0011-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gil Bornstein
- The Talpiot Medical Leadership Program, Department of Internal Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel Hashomer, 52621 Israel
| | - Chagai Grossman
- The Rheumatology Unit, The Chaim Sheba Medical Center, Tel-Hashomer, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel Hashomer, Israel
| |
Collapse
|
6
|
Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 2015; 467:365-86. [PMID: 25886174 PMCID: PMC4403949 DOI: 10.1042/bj20141450] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs.
Collapse
|
7
|
Mergner J, Schwechheimer C. The NEDD8 modification pathway in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:103. [PMID: 24711811 PMCID: PMC3968751 DOI: 10.3389/fpls.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/03/2014] [Indexed: 05/19/2023]
Abstract
NEDD8, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB), is an evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin, NEDD8 can be conjugated to and deconjugated from target proteins, but unlike ubiquitin, NEDD8 has not been reported to form chains similar to the different polymeric ubiquitin chains that have a role in a diverse set of cellular processes. NEDD8-modification is best known as a post-translational modification of the cullin subunits of cullin-RING E3 ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces a conformation change of the cullin that brings the ubiquitylation substrates into proximity of the interacting E2 conjugating enzyme. In turn, NEDD8 deconjugation destabilizes the cullin RING ligase complex allowing for the exchange of substrate recognition subunits via the exchange factor CAND1. In plants, components of the neddylation and deneddylation pathway were identified based on mutants with defects in auxin and light responses and the characterization of these mutants has been instrumental for the elucidation of the neddylation pathway. More recently, there has been evidence from animal and plant systems that NEDD8 conjugation may also regulate the behavior or fate of non-cullin substrates in a number of ways. Here, the current knowledge on NEDD8 processing, conjugation and deconjugation is presented, where applicable, in the context of specific signaling pathways from plants.
Collapse
Affiliation(s)
| | - Claus Schwechheimer
- *Correspondence: Claus Schwechheimer, Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 4, 85354 Freising, Germany e-mail:
| |
Collapse
|
8
|
Wu S, Zhu W, Nhan T, Toth JI, Petroski MD, Wolf DA. CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun 2013; 4:1642. [PMID: 23535663 PMCID: PMC3637025 DOI: 10.1038/ncomms2636] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 02/06/2023] Open
Abstract
The combinatorial architecture of cullin 1-RING ubiquitin ligases (CRL1s), in which multiple F-box containing substrate receptors (FBPs) compete for access to CUL1, poses special challenges to assembling CRL1 complexes through high affinity protein interactions while maintaining the flexibility to dynamically sample the entire FBP repertoire. Here, using highly quantitative mass spectrometry, we demonstrate that this problem is addressed by CAND1, a factor that controls the dynamics of the global CRL1 network by promoting the assembly of newly synthesized FBPs with CUL1-RBX1 core complexes. Our studies of in vivo CRL1 dynamics and in vitro biochemical findings showing that CAND1 can displace FBPs from Cul1p suggest that CAND1 functions in a cycle that serves to exchange FBPs on CUL1 cores. We propose that this cycle assures comprehensive sampling of the entire FBP repertoire in order to maintain the CRL1 landscape, a function that we show to be critical for substrate degradation and normal physiology.
Collapse
Affiliation(s)
- Shuangding Wu
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Ubiquitin-dependent proteolysis is a major mechanism that downregulates misfolded proteins or those that have finished a programmed task. In the last two decades, neddylation has emerged as a major regulatory pathway for ubiquitination. Central to the neddylation pathway is the amyloid precursor protein (APP)-binding protein APP-BP1, which together with Uba3, plays an analogous role to the ubiquitin-activating enzyme E1 in nedd8 activation. Activated nedd8 covalently modifies and activates a major class of ubiquitin ligases called Cullin-RING ligases (CRLs). New evidence suggests that neddylation also modifies Type-1 transmembrane receptors such as APP. Here we review the functions of neddylation and summarize evidence suggesting that dysfunction of neddylation is involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Yuzhi Chen
- Department of Geriatrics and Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
10
|
Zhou Z, Wang Y, Cai G, He Q. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. PLoS Genet 2012; 8:e1002712. [PMID: 22589747 PMCID: PMC3349749 DOI: 10.1371/journal.pgen.1002712] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/29/2012] [Indexed: 11/18/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EX(n)HXHX(10)D) of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCF(FWD-1) complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ) in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.
Collapse
Affiliation(s)
- Zhipeng Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Abstract
Cullin/RING ubiquitin ligases (CRL) comprise the largest subfamily of ubiquitin ligases. CRLs are involved in cell cycle regulation, DNA replication, DNA damage response (DDR), development, immune response, transcriptional regulation, circadian rhythm, viral infection, and protein quality control. One of the main functions of CRLs is to regulate the DDR, a fundamental signaling cascade that maintains genome integrity. In this review, we will discuss the regulation of CRL ubiquitin ligases and their roles in control of the DDR.
Collapse
Affiliation(s)
- Ju-Mei Li
- Department of Biochemistry and Molecular Biology, Medical School, The University of Texas Health Science Center at Houston Houston, TX, USA
| | | |
Collapse
|
12
|
Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin. J Proteome Res 2011; 11:796-807. [PMID: 22053931 DOI: 10.1021/pr200668y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ubiquitin conjugation (ubiquitylation) plays important roles not only in protein degradation but also in many other cellular functions. However, the sites of proteins that are targeted for such modification have remained poorly characterized at the proteomic level. We have now developed a method for the efficient identification of ubiquitylation sites in target proteins with the use of an engineered form of ubiquitin (K0-Ub), in which all seven lysine residues are replaced with arginine. K0-Ub is covalently attached to lysine residues of target proteins via an isopeptide bond, but further formation of a polyubiquitin chain does not occur on K0-Ub. We identified a total of 1392 ubiquitylation sites of 794 proteins from HEK293T cells. Profiling of ubiquitylation sites indicated that the sequences surrounding lysine residues targeted for ubiquitin conjugation do not share a common motif or structural feature. Furthermore, we identified a critical ubiquitylation site of the cyclin-dependent kinase inhibitor p27(Kip1). Mutation of this site thus inhibited ubiquitylation of and stabilized p27(Kip1), suggesting that this lysine residue is the target site of p27(Kip1) for ubiquitin conjugation in vivo. In conclusion, our method based on K0-Ub is a powerful tool for proteome-wide identification of ubiquitylation sites of target proteins.
Collapse
Affiliation(s)
- Kiyotaka Oshikawa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
13
|
Wang F, Deng XW. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res 2011; 21:1286-94. [PMID: 21788985 DOI: 10.1038/cr.2011.118] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth.
Collapse
Affiliation(s)
- Feng Wang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
14
|
Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo. PLoS One 2011; 6:e16071. [PMID: 21249194 PMCID: PMC3020946 DOI: 10.1371/journal.pone.0016071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/04/2010] [Indexed: 11/20/2022] Open
Abstract
Cullin RING ligases are multi-subunit complexes consisting of a cullin protein which forms a scaffold onto which the RING protein Rbx1/2 and substrate receptor subunits assemble. CAND1, which binds to cullins that are not conjugated with Nedd8 and not associated with substrate receptors, has been shown to function as a positive regulator of Cullin ligases in vivo. Two models have been proposed to explain this requirement: (i) CAND1 sequesters cullin proteins and thus prevents autoubiquitination of substrate receptors, and (ii) CAND1 is required to promote the exchange of bound substrate receptors. Using mammalian cells, we show that CAND1 is predominantly cytoplasmically localized and that cullins are the major CAND1 interacting proteins. However, only small amounts of CAND1 bind to Cul1 in cells, despite low basal levels of Cul1 neddylation and approximately equal cytoplasmic endogenous protein concentrations of CAND1 and Cul1. Compared to F-box protein substrate receptors, binding of CAND1 to Cul1 in vivo is weak. Furthermore, preventing binding of F-box substrate receptors to Cul1 does not increase CAND1 binding. In conclusion, our study suggests that CAND1 does not function by sequestering cullins in vivo to prevent substrate receptor autoubiquitination and is likely to regulate cullin RING ligase activity via alternative mechanisms.
Collapse
|
15
|
Helmstaedt K, Schwier EU, Christmann M, Nahlik K, Westermann M, Harting R, Grond S, Busch S, Braus GH. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Mol Biol Cell 2010; 22:153-64. [PMID: 21119001 PMCID: PMC3016973 DOI: 10.1091/mbc.e10-08-0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left.
Collapse
Affiliation(s)
- Kerstin Helmstaedt
- Institute of Microbiology and Genetics, Georg-August-Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bosu DR, Feng H, Min K, Kim Y, Wallenfang MR, Kipreos ET. C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues. Dev Biol 2010; 346:113-26. [PMID: 20659444 DOI: 10.1016/j.ydbio.2010.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 07/14/2010] [Accepted: 07/18/2010] [Indexed: 11/26/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are critical regulators of multiple developmental and cellular processes in eukaryotes. CAND1 is a biochemical inhibitor of CRLs, yet has been shown to promote CRL activity in plant and mammalian cells. Here we analyze CAND1 function in the context of a developing metazoan organism. Caenorhabditis elegans CAND-1 is capable of binding to all of the cullins, and we show that it physically interacts with CUL-2 and CUL-4 in vivo. The covalent attachment of the ubiquitin-like protein Nedd8 is required for cullin activity in animals and plants. In cand-1 mutants, the levels of the neddylated isoforms of CUL-2 and CUL-4 are increased, indicating that CAND-1 is a negative regulator of cullin neddylation. cand-1 mutants are hypersensitive to the partial loss of cullin activity, suggesting that CAND-1 facilitates CRL functions. cand-1 mutants exhibit impenetrant phenotypes, including developmental arrest, morphological defects of the vulva and tail, and reduced fecundity. cand-1 mutants share with cul-1 and lin-23 mutants the phenotypes of supernumerary seam cell divisions, defective alae formation, and the accumulation of the SCF(LIN-23) target the glutamate receptor GLR-1. The observation that cand-1 mutants have phenotypes associated with the loss of the SCF(LIN-23) complex, but lack phenotypes associated with other specific CRL complexes, suggests that CAND-1 is differentially required for the activity of distinct CRL complexes.
Collapse
Affiliation(s)
- Dimple R Bosu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
17
|
Schwechheimer C, Isono E. The COP9 signalosome and its role in plant development. Eur J Cell Biol 2009; 89:157-62. [PMID: 20036030 DOI: 10.1016/j.ejcb.2009.11.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with a role in the regulation of cullin-RING type E3 ubiquitin ligases (CRLs). CSN exerts its function on E3 ligases by deconjugating the ubiquitin-related protein NEDD8 from the CRL cullin subunit. Thereby, CSN has an impact on multiple CRL-dependent processes. In recent years, advances have been made in understanding the structural organisation and biochemical function of CSN: Crystal structure analysis and mass spectrometry-assisted studies have come up with first models of the pair-wise and complex interactions of the 8 CSN subunits. Based on the analysis of mutant phenotypes, it can now be taken as an accepted fact that--at least in plants--the major biochemical function of CSN resides in its deneddylation activity, which is mediated by CSN subunit 5 (CSN5). Furthermore, it could be demonstrated that CSN function and deneddylation are required but not essential for CRL-mediated processes, and models for the role of neddylation and deneddylation in controlling CRL activity are emerging. Significant advances have also been made in identifying pathways that are growth restricting in the Arabidopsis csn mutants. Recently it has been shown that a G2 phase arrest, possibly due to genomic instability, restricts growth in Arabidopsis csn mutants. This review provides an update on recent advances in understanding CSN structure and function and summarises the current knowledge on its role in plant development and cell cycle progression.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Department of Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
18
|
Tada H, Okano HJ, Takagi H, Shibata S, Yao I, Matsumoto M, Saiga T, Nakayama KI, Kashima H, Takahashi T, Setou M, Okano H. Fbxo45, a novel ubiquitin ligase, regulates synaptic activity. J Biol Chem 2009; 285:3840-3849. [PMID: 19996097 DOI: 10.1074/jbc.m109.046284] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurons communicate with each other through synapses. To establish the precise yet flexible connections that make up neural networks in the brain, continuous synaptic modulation is required. The ubiquitin-proteasome system of protein degradation is one of the critical mechanisms that underlie this process, playing crucial roles in the regulation of synaptic structure and function. We identified a novel ubiquitin ligase, Fbxo45, that functions at synapses. Fbxo45 is evolutionarily conserved and selectively expressed in the nervous system. We demonstrated that the knockdown of Fbxo45 in primary cultured hippocampal neurons resulted in a greater frequency of miniature excitatory postsynaptic currents. We also found that Fbxo45 induces the degradation of a synaptic vesicle-priming factor, Munc13-1. We propose that Fbxo45 plays an important role in the regulation of neurotransmission by modulating Munc13-1 at the synapse.
Collapse
Affiliation(s)
- Hirobumi Tada
- From the Department of Physiology, Keio University School of Medicine, Tokyo 160-8582; the Department of Physiology, Yokohama City University School of Medicine, Kanagawa 236-0004; the Bridgestone Laboratory of Developmental and Regenerative Neurobiology, Keio University School of Medicine, Tokyo 160-8582
| | - Hirotaka James Okano
- From the Department of Physiology, Keio University School of Medicine, Tokyo 160-8582; SORST (Solution Oriented Research for Science and Technology), the Japan Science and Technology Agency, Saitama 332-0012.
| | - Hiroshi Takagi
- the Laboratory for Molecular Gerontology, Mitsubishi Kagaku Institute of Life Sciences Setou Group, Tokyo 194-8511
| | - Shinsuke Shibata
- From the Department of Physiology, Keio University School of Medicine, Tokyo 160-8582
| | - Ikuko Yao
- the Laboratory for Molecular Gerontology, Mitsubishi Kagaku Institute of Life Sciences Setou Group, Tokyo 194-8511
| | - Masaki Matsumoto
- the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, and; CREST (Core Research for Evolutional Science and Technology), the Japan Science and Technology Agency, Saitama 332-0012
| | - Toru Saiga
- the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, and; CREST (Core Research for Evolutional Science and Technology), the Japan Science and Technology Agency, Saitama 332-0012
| | - Keiichi I Nakayama
- the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, and; CREST (Core Research for Evolutional Science and Technology), the Japan Science and Technology Agency, Saitama 332-0012
| | - Haruo Kashima
- the Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582
| | - Takuya Takahashi
- the Department of Physiology, Yokohama City University School of Medicine, Kanagawa 236-0004
| | - Mitsutoshi Setou
- the Laboratory for Molecular Gerontology, Mitsubishi Kagaku Institute of Life Sciences Setou Group, Tokyo 194-8511; the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, and; the Department of Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Hideyuki Okano
- From the Department of Physiology, Keio University School of Medicine, Tokyo 160-8582; the Bridgestone Laboratory of Developmental and Regenerative Neurobiology, Keio University School of Medicine, Tokyo 160-8582; SORST (Solution Oriented Research for Science and Technology), the Japan Science and Technology Agency, Saitama 332-0012.
| |
Collapse
|
19
|
Skaar JR, Pagano M. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr Opin Cell Biol 2009; 21:816-24. [PMID: 19775879 PMCID: PMC2805079 DOI: 10.1016/j.ceb.2009.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/17/2009] [Accepted: 08/24/2009] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome system plays key roles in the control of cell growth. The cell cycle, in particular, is highly regulated by the functions of the SCF and APC/C ubiquitin ligases, and perturbation of their function can result in tumorigenesis. Although the SCF and APC/C complexes are well established in growth control pathways, many aspects of their function remain unknown. Recent studies have shed light on the mechanism of SCF-mediated ubiquitination and new functions for the SCF complex and APC/C. Our expanding understanding of the roles of the SCF and APC/C complexes highlight the potential for targeted molecular therapies.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
20
|
Abstract
Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.
Collapse
|
21
|
Schmidt MW, McQuary PR, Wee S, Hofmann K, Wolf DA. F-box-directed CRL complex assembly and regulation by the CSN and CAND1. Mol Cell 2009; 35:586-97. [PMID: 19748355 DOI: 10.1016/j.molcel.2009.07.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 06/24/2009] [Accepted: 07/31/2009] [Indexed: 11/25/2022]
Abstract
The COP9 signalosome (CSN) is thought to maintain the stability of cullin-RING ubiquitin ligases (CRL) by limiting the autocatalytic destruction of substrate adapters such as F box proteins (FBPs). CAND1, a protein associated with unneddylated CUL1, was proposed to assist in this role in an as yet unclear fashion. We found that only a subset of Schizosaccharomyces pombe FBPs, which feature a critical F box proline that promotes their interaction with CUL1, required CSN for stability. Unlike the CRL3 adaptor Btb3p, none of the CSN-sensitive FBPs were affected by deletion of ubp12. Contrary to current models, CAND1 does not control adaptor stability but maintains the cellular balance of CRL1 complexes by preventing rare FBPs from being outcompeted for binding to CUL1 by more ample adapters. These findings were integrated into a refined model of CRL control in which substrate availability toggles CRLs between independent CSN and CAND1 cycles.
Collapse
Affiliation(s)
- Michael W Schmidt
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Minoda Y, Sakurai H, Kobayashi T, Yoshimura A, Takaesu G. An F-box protein, FBXW5, negatively regulates TAK1 MAP3K in the IL-1β signaling pathway. Biochem Biophys Res Commun 2009; 381:412-7. [DOI: 10.1016/j.bbrc.2009.02.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/12/2009] [Indexed: 12/31/2022]
|
23
|
Stuttmann J, Lechner E, Guérois R, Parker JE, Nussaume L, Genschik P, Noël LD. COP9 signalosome- and 26S proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis. J Biol Chem 2009; 284:7920-30. [PMID: 19147500 DOI: 10.1074/jbc.m809069200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ubiquitination and proteasome-mediated degradation of proteins are crucial for eukaryotic physiology and development. The largest class of E3 ubiquitin ligases is made up of the cullin-RING ligases (CRLs), which themselves are positively regulated through conjugation of the ubiquitin-like peptide RUB/NEDD8 to cullins. RUB modification is antagonized by the COP9 signalosome (CSN), an evolutionarily conserved eight-subunit complex that is essential in most eukaryotes and cleaves RUB from cullins. The CSN behaves genetically as an activator of CRLs, although it abolishes CRL activity in vitro. This apparent paradox was recently reconciled in different organisms, as the CSN was shown to prevent autocatalytic degradation of several CRL substrate adaptors. We tested for such a mechanism in the model plant Arabidopsis by measuring the impact of a newly identified viable csn2 mutant on the activity and stability of SCF(TIR1), a receptor to the phytohormone auxin and probably the best characterized plant CRL. Our analysis reveals that not only the F-box protein TIR1 but also relevant cullins are destabilized in csn2 and other Arabidopsis csn mutants. These results provide an explanation for the auxin resistance of csn mutants. We further observed in vivo a post-translational modification of TIR1 dependent on the proteasome inhibitor MG-132 and provide evidence for proteasome-mediated degradation of TIR1, CUL1, and ASK1 (Arabidopsis SKP1 homolog). These results are consistent with CSN-dependent protection of Arabidopsis CRLs from autocatalytic degradation, as observed in other eukaryotes, and provide evidence for antagonist roles of the CSN and 26S proteasome in modulating accumulation of the plant CRL SCF(TIR1).
Collapse
Affiliation(s)
- Johannes Stuttmann
- Institut de Biologie Environnementale et Biotechnologie, UMR 6191, CNRS-Commissariat à l'Energie Atomique, UniversitédelaMéditerranée Aix-Marseille II, Centre d'Etudes Nucléaires Cadarache, F-13108 Saint Paul lez Durance Cedex, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Isolation and characterization of cul1-7, a recessive allele of CULLIN1 that disrupts SCF function at the C terminus of CUL1 in Arabidopsis thaliana. Genetics 2008; 181:945-63. [PMID: 19114460 DOI: 10.1534/genetics.108.097675] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many aspects of plant biology depend on the ubiquitin proteasome system for degradation of regulatory proteins. Ubiquitin E3 ligases confer substrate specificity in this pathway, and SCF-type ligases comprise a major class of E3s. SCF ligases have four subunits: SKP1, CUL1, RBX1, and an F-box protein for substrate recognition. The Aux/IAAs are a well-characterized family of SCF substrates in plants. Here, we report characterization of a mutant isolated from a genetic screen in Arabidopsis thaliana designed to identify plants defective in degradation of an Aux/IAA fusion protein, Aux/IAA1-luciferase (IAA1-LUC). This mutant exhibited fourfold slower IAA1-LUC degradation compared with the progenitor line, and seedlings displayed altered auxin responses. Experiments identified the mutant as an allele of CUL1, named cul1-7. The cul1-7 mutation affects the C terminus of the protein, results in reduced cul1-7 levels, and interferes with RBX1 interaction. cul1-7 seedlings are defective in degradation of an endogenous SCF substrate, Repressor of ga1-3 (RGA), and have altered responses to gibberellins. cul1-7 seedlings exhibit slower degradation of the light-labile red/far-red photoreceptor phytochrome A and are photomorphogenic in the dark. This mutation represents the first reported allele of CUL1 to directly affect subunit interactions at the CUL1 C terminus.
Collapse
|
25
|
Kim AY, Bommeljé CC, Lee BE, Yonekawa Y, Choi L, Morris LG, Huang G, Kaufman A, Ryan RJH, Hao B, Ramanathan Y, Singh B. SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation. J Biol Chem 2008; 283:33211-20. [PMID: 18826954 DOI: 10.1074/jbc.m804440200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Covalent modification of cullins by the ubiquitin-like protein NEDD8 (neddylation) regulates protein ubiquitination by promoting the assembly of cullin-RING ligase E3 complexes. Like ubiquitination, neddylation results from an enzymatic cascade involving the sequential activity of a dedicated E1 (APPBP1/Uba3), E2 (Ubc12), and an ill-defined E3. We show that SCCRO (also known as DCUN1D1) binds to the components of the neddylation pathway (Cullin-ROC1, Ubc12, and CAND1) and augments but is not required for cullin neddylation in reactions using purified recombinant proteins. We also show that SCCRO recruits Ubc12 approximately NEDD8 to the CAND1-Cul1-ROC1 complex but that this is not sufficient to dissociate or overcome the inhibitory effects of CAND1 on cullin neddylation in purified protein assays. In contrast to findings in cellular systems where no binding is seen, we show that SCCRO and CAND1 can bind to the neddylated Cul1-ROC1 complex in assays using purified recombinant proteins. Although neddylated (not unneddylated) Cul1-ROC1 is released from CAND1 upon incubation with testis lysate from SCCRO+/+ mice, the addition of recombinant SCCRO is required to achieve the same results in lysate from SCCRO(-/-) mice. Combined, these results suggest that SCCRO is an important component of the neddylation E3 complex that functions to recruit charged E2 and is involved in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity.
Collapse
Affiliation(s)
- Alexander Y Kim
- Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dohmann EMN, Levesque MP, Isono E, Schmid M, Schwechheimer C. Auxin responses in mutants of the Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome. PLANT PHYSIOLOGY 2008; 147:1369-79. [PMID: 18467458 PMCID: PMC2442533 DOI: 10.1104/pp.108.121061] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 04/04/2008] [Indexed: 05/19/2023]
Abstract
The CONSTITUTIVE PHOTOMORPHOGENIC9 (COP9) signalosome (CSN) is an evolutionarily conserved multiprotein complex that interacts with cullin-RING type E3 ubiquitin ligases (CRLs). CSN subunit 5 (CSN5), which, when incorporated into CSN, can deconjugate the NEDD8 modification from the cullin subunit of CRLs, is essential for CSN's role in controlling CRL activity. Whether the CSN5 monomer, which is maintained in csn mutants such as csn3 or csn4, has a functional role, remains to be established. We performed a comparative gene expression-profiling experiment with Arabidopsis (Arabidopsis thaliana) csn3, csn4, and csn5 mutants, and we show here that these mutants cannot be distinguished at the transcriptional level. Furthermore, we show that csn3 csn5 mutants are morphologically indistinguishable from csn3 or csn5 mutants. Taken together, these data suggest that the CSN5 monomer does not have a function that leads to transcriptional or morphological changes in the csn mutants. We further examined auxin responses in csn mutants. Whereas CSN had previously been shown to be required for the auxin response-regulatory E3 complexes, specifically SCF(TIR1), the csn mutant phenotype suggests that CSN is not essential for auxin responses. We present physiological and genetic data that indicate that auxin responses are indeed only partially impaired in csn mutants and that this is not the result of maternally contributed CSN. Finally, we discuss these findings in the context of the current understanding of the role of neddylation and CSN-mediated deneddylation for CRL activity.
Collapse
|
27
|
Bosu DR, Kipreos ET. Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div 2008; 3:7. [PMID: 18282298 PMCID: PMC2266742 DOI: 10.1186/1747-1028-3-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 02/18/2008] [Indexed: 11/29/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) comprise the largest known category of ubiquitin ligases. CRLs regulate an extensive number of dynamic cellular processes, including multiple aspects of the cell cycle, transcription, signal transduction, and development. CRLs are multisubunit complexes composed of a cullin, RING H2 finger protein, a variable substrate-recognition subunit (SRS), and for most CRLs, an adaptor that links the SRS to the complex. Eukaryotic species contain multiple cullins, with five major types in metazoa. Each cullin forms a distinct class of CRL complex, with distinct adaptors and/or substrate-recognition subunits. Despite this diversity, each of the classes of CRL complexes is subject to similar regulatory mechanisms. This review focuses on the global regulation of CRL complexes, encompassing: neddylation, deneddylation by the COP9 Signalosome (CSN), inhibitory binding by CAND1, and the dimerization of CRL complexes. We also address the role of cycles of activation and inactivation in regulating CRL activity and switching between substrate-recognition subunits.
Collapse
Affiliation(s)
- Dimple R Bosu
- Department of Cellular Biology, University of Georgia, 724 Biological Sciences Bldg,, Athens, GA 30602-2607, USA.
| | | |
Collapse
|
28
|
Menon S, Tsuge T, Dohmae N, Takio K, Wei N. Association of SAP130/SF3b-3 with Cullin-RING ubiquitin ligase complexes and its regulation by the COP9 signalosome. BMC BIOCHEMISTRY 2008; 9:1. [PMID: 18173839 PMCID: PMC2265268 DOI: 10.1186/1471-2091-9-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 01/03/2008] [Indexed: 11/13/2022]
Abstract
Background Cullin-RING ubiquitin E3 ligases (CRLs) are regulated by modification of an ubiquitin-like protein, Nedd8 (also known as Rub1) on the cullin subunit. Neddylation is shown to facilitate E3 complex assembly; while un-neddylated cullins are bound by CAND1 that prevents recruitment of the substrates. The level of Nedd8 modification is critically dependent on the COP9 signalosome (CSN), an eight-subunit protein complex containing Nedd8 isopeptidase activity. Results We report isolation of SAP130 (SF3b-3) as a CSN1 interacting protein. SAP130 is homologous to DDB1, and is a component of SF3b RNA splicing complex and STAGA/TFTC transcription complexes, but its specific function within these complexes is unknown. We show that SAP130 can interact with a variety of cullin proteins. It forms tertiary complexes with fully assembled CRL E3 complexes such as SCFSkp2, Elongin B/C -Cul2- VHL and Cul4-DDB complex by binding to both N-terminal and C-terminal domain of cullins. SAP130 preferentially associates with neddylated cullins in vivo. However knock-down of CAND1 abolished this preference and increased association of SAP130 with Cul2. Furthermore, we provide evidence that CSN regulates SAP130-Cul2 interaction and SAP130-associated polyubiquitinating activity. Conclusion SAP130 is a cullin binding protein that is likely involved in the Nedd8 pathway. The association of SAP130 with various cullin member proteins such as Cul1, Cul2 and Cul4A is modulated by CAND1 and CSN. As an established component of transcription and RNA processing complexes, we hypothesis that SAP130 may link CRL mediated ubiquitination to gene expression.
Collapse
Affiliation(s)
- Suchithra Menon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Cullin-based E3 ligases are a large family of multi-subunit ubiquitin ligases with diverse cellular functions, including the regulation of the cell cycle, of the DNA damage response, and of various transcription factors. These ligases are composed of one of six mammalian cullin homologs (Cul1, Cul2, Cul3, Cul4a, Cul4b, and Cul5), the Ring finger containing protein Roc1/Rbx1, and cullin homolog-specific adaptor and substrate recognition subunits. To be active, cullin-based ligases require the covalent modification of a conserved lysine residue in the cullin protein with the ubiquitin-like protein Nedd8. We show in this study that in intact cells Cul1 neddylation is dependent on binding to adaptor proteins and substrate recognition subunits. Mutant Cul1 that is unable to recruit adaptor and substrate recognition subunits exhibits markedly reduced neddylation, and inhibiting binding of adaptor and substrate recognition subunits to wild type Cul1 reduces Nedd8 modification. This regulatory mechanism also extends to other cullin-based E3 ligases, including Cul2, Cul3, and Cul4a. The regulation of cullin neddylation by adaptor proteins and substrate recognition subunits in cells was found to be independent of both CAND1 and the COP9 signalosome, two negative regulators of cullin Nedd8 modification. Using hypoxia-inducible factor-1alpha (HIF-1alpha), a substrate of the Elongin B/C-Cul2-VHL ligase, we demonstrate the critical role of substrate binding to promote Cul2 neddylation in a manner that does not require substrate ubiquitination but may involve a conformational change. These findings suggest a mechanism through which availability of substrate recognition subunits and substrates can regulate the ubiquitin ligase activity.
Collapse
Affiliation(s)
- Eng-Hui Chew
- Wolfson Digestive Diseases Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | |
Collapse
|
30
|
Moon J, Zhao Y, Dai X, Zhang W, Gray WM, Huq E, Estelle M. A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:684-96. [PMID: 17158585 PMCID: PMC1803743 DOI: 10.1104/pp.106.091439] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Regulated protein degradation contributes to plant development by mediating signaling events in many hormone, light, and developmental pathways. Ubiquitin ligases recognize and ubiquitinate target proteins for subsequent degradation by the 26S proteasome. The multisubunit SCF is the best-studied class of ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). However, the extent of SCF participation in signaling networks is unclear. SCFs are composed of four subunits: CULLIN 1 (CUL1), ASK, RBX1, and an F-box protein. Null mutations in CUL1 are embryo lethal, limiting insight into the role of CUL1 and SCFs in later stages of development. Here, we describe a viable and fertile weak allele of CUL1, called cul1-6. cul1-6 plants have defects in seedling and adult morphology. In addition to reduced auxin sensitivity, cul1-6 seedlings are hyposensitive to ethylene, red, and blue light conditions. An analysis of protein interactions with the cul1-6 gene product suggests that both RUB (related to ubiquitin) modification and interaction with the SCF regulatory protein CAND1 (cullin associated and neddylation dissociated) are disrupted. These findings suggest that the morphological defects observed in cul1-6 plants are caused by defective SCF complex formation. Characterization of weak cul1 mutants provides insight into the role of SCFs throughout plant growth and development.
Collapse
Affiliation(s)
- Jennifer Moon
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sufan RI, Ohh M. Role of the NEDD8 modification of Cul2 in the sequential activation of ECV complex. Neoplasia 2006; 8:956-63. [PMID: 17132228 PMCID: PMC1716018 DOI: 10.1593/neo.06520] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/24/2006] [Accepted: 08/28/2006] [Indexed: 11/18/2022]
Abstract
ECV is an E3 ubiquitin ligase complex, which is composed of elongins B and C, Rbx1, Cul2, and the substrate-conferring von Hippel-Lindau (VHL) tumor-suppressor protein that targets the catalytic alpha subunit of hypoxia-inducible factor (HIF) for oxygen-dependent ubiquitin-mediated destruction. Mutations in VHL that compromise proper HIFalpha regulation through ECV have been documented in the majority of renal cell carcinomas, underscoring the significance of the VHL-HIF pathway in renal epithelial oncogenesis. Recent evidence has shown that the modification of Cul2 by the ubiquitin-like molecule NEDD8 increases the activity of ECV to ubiquitylate HIFalpha. However, the underlying mechanism responsible for the NEDD8-mediated induction of ECV function is unknown. Here, we demonstrate that oxygen-dependent recognition of HIFalpha by VHL triggers Rbx1-dependent neddylation of Cul2, which preferentially engages the E2 ubiquitin-conjugating enzyme UbcH5a. These events establish a central role for the neddylation of Cul2 in a previously unrecognized, temporally coordinated activation of ECV with the recruitment of its substrate HIFalpha.
Collapse
Affiliation(s)
- Roxana I Sufan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
32
|
Alonso-Peral MM, Candela H, del Pozo JC, Martínez-Laborda A, Ponce MR, Micol JL. TheHVE/CAND1gene is required for the early patterning of leaf venation inArabidopsis. Development 2006; 133:3755-66. [PMID: 16943276 DOI: 10.1242/dev.02554] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hemivenata-1 (hve-1) recessive allele was isolated in a search for natural variations in the leaf venation pattern of Arabidopsis thaliana, where it was seen to cause extremely simple venation in vegetative leaves and cotyledons, increased shoot branching, and reduced root waving and fertility, traits that are reminiscent of some mutants deficient in auxin signaling. Reduced sensitivity to exogenous auxin was found in the hve-1 mutant, which otherwise displayed a wild-type response to auxin transport inhibitors. The HVE gene was positionally cloned and found to encode a CAND1 protein. The hve-1 mutation caused mis-splicing of the transcripts of the HVE/CAND1 gene and a vein phenotype indistinguishable from that of hve-2 and hve-3,two putatively null T-DNA alleles. Inflorescence size and fertility were more affected by hve-2 and hve-3, suggesting that hve-1is hypomorphic. The simple venation pattern of hve plants seems to arise from an early patterning defect. We found that HVE/CAND1 binds to CULLIN1, and that the venation patterns of axr1 and hvemutants are similar, which suggest that ubiquitin-mediated auxin signaling is required for venation patterning in laminar organs, the only exception being cauline leaves. Our analyses of double mutant and transgenic plants indicated that auxin transport and perception act independently to pattern leaf veins,and that the HVE/CAND1 gene acts upstream of ATHB-8 at least in higher order veins, in a pathway that involves AXR1, but not LOP1, PIN1, CVP1 or CVP2.
Collapse
Affiliation(s)
- María Magdalena Alonso-Peral
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Bornstein G, Ganoth D, Hershko A. Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate. Proc Natl Acad Sci U S A 2006; 103:11515-20. [PMID: 16861300 PMCID: PMC1544201 DOI: 10.1073/pnas.0603921103] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The activity of cullin-containing ubiquitin protein ligase complexes is stimulated by linkage to cullin of the ubiquitin-like protein Nedd8 ("neddylation"). Neddylation is inhibited by the tight binding of cullins to CAND1 (cullin-associated and neddylation-dissociated 1) protein, and Nedd8 is removed from cullins by specific isopeptidase activity of the COP9/signalosome (CSN) complex. The mechanisms that regulate neddylation and deneddylation of cullins were unknown. We examined this problem for the case of SCF(Skp2), a cullin1 (Cul1)-containing ubiquitin ligase complex that contains the S phase-associated protein Skp2 as the substrate-binding F-box protein subunit. SCF(Skp2) targets for degradation the cyclin-dependent kinase (cdk) inhibitor p27 in the G(1)-to-S phase transition, a process that requires its phosphorylation and binding to cdk2-cyclin E. Because levels of Skp2, cyclin E, and the accessory protein Cks1 (cyclin kinase subunit 1) all rise at the end of G(1) phase, it seemed possible that the neddylation of Cul1 in SCF(Skp2) is regulated by the availability of the F-box protein and/or the substrate. We found that the supplementation of Skp2-Skp1 and substrate (along with further components necessary for substrate presentation to the ubiquitin ligase) to extracts of HeLa cells synergistically increased levels of neddylated Cul1. Skp2-Skp1 abrogates the inhibitory influence of CAND1 on the neddylation of Cul1 by promoting the dissociation of the cullin-CAND1 complex, whereas substrate, together with substrate-presenting components, prevents the action of CSN to deneddylate cullin. We propose a sequence of events in which the increased availability of Skp2 and substrate in the transition of cells to S phase promotes the neddylation and assembly of the SCF(Skp2) ubiquitin ligase complex.
Collapse
Affiliation(s)
- Gil Bornstein
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Dvora Ganoth
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Avram Hershko
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Abstract
To understand how cells respond to altered oxygenation, a frequent experimental paradigm is to isolate known components of bona fide oxygen responsive proteins. Recent studies have shown that a protein known as CSN5 or JAB1 interacts with both the HIF-1alpha oxygen-responsive transcription factor and its oxygen-dependent regulator, the Von Hippel-Lindau (pVHL) tumor suppressor. CSN5 is a component of the COP9 Signalosome (CSN) which is a multi-subunit protein that has high homology to the lid of the 19S lid of 26S proteasome. The exact function of the CSN5 interaction with pVHL and HIF-1alpha remains to be fully elucidated, but it is clear that the interaction is both oxygen dependent and that CSN5 may play different roles under oxic and hypoxic responses. Further, evidence has also been published indicating that pVHL can be potentially post-translationally modified by CSN5 (de-neddylation) and that CSN5 transcription is regulated by hypoxia as are many of the key pVHL/HIF-1alpha regulatory genes such as the PHDs and OS-9. This review will give a broad overview of known CSN5 and COP9 Signalosome functions and how these functions impact the pVHL/HIF-1alpha signaling complex and potentially other oxygen-sensitive response networks.
Collapse
Affiliation(s)
- Peter Mikus
- Department of Radiation Oncology, Baxter Research Bldg II, Room 204C (Lab 215), 580 S. Preston Street, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wayne Zundel
- Department of Radiation Oncology, Baxter Research Bldg II, Room 204C (Lab 215), 580 S. Preston Street, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- The J.G. Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Corresponding author. Tel.: +1 502 852 3445 (O)/+1 502 852 3446 (Lab)/+1 502 852 3744 (Mobile); fax: +1 502 852 4649. (W. Zundel)
| |
Collapse
|
35
|
Wu JT, Chan YR, Chien CT. Protection of cullin-RING E3 ligases by CSN-UBP12. Trends Cell Biol 2006; 16:362-9. [PMID: 16762551 DOI: 10.1016/j.tcb.2006.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/11/2006] [Accepted: 05/22/2006] [Indexed: 11/29/2022]
Abstract
Neddylation, a process that conjugates the ubiquitin-like polypeptide NEDD8 to cullin proteins, activates cullin-RING ubiquitin ligases (CRLs). Deneddylation, in which the COP9 signalosome (CSN) removes NEDD8 from cullins, inactivates CRLs. However, genetic studies of CSN function conclude that deneddylation also promotes CRL activity. It has been proposed that a cyclic transition through neddylation and deneddylation is required for the regulation of CRL activity in vivo. Recent discoveries suggest that an additional level of complexity exists, whereby CRL components are targets for degradation, mediated either by autocatalytic ubiquitination or by unknown mechanisms. Deneddylation by CSN and deubiquitylation by CSN-associated ubiquitin-specific protease 12 protect CRL components from cellular depletion, thus maintaining the physiological CRL activities.
Collapse
Affiliation(s)
- June-Tai Wu
- Institute of Molecular Biology, Academia Sinica, 115 Taipei, Taiwan
| | | | | |
Collapse
|
36
|
Chen X, Zhang J, Lee J, Lin PS, Ford JM, Zheng N, Zhou P. A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins. Mol Cell 2006; 22:489-99. [PMID: 16713579 DOI: 10.1016/j.molcel.2006.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/02/2005] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
Damaged DNA binding proteins (DDBs) play a critical role in the initial recognition of UV-damaged DNA and mediate recruitment of nucleotide excision repair factors. Previous studies identified DDB2 as a target of the CUL-4A ubiquitin ligase. However, the biochemical mechanism governing DDB proteolysis and its underlying physiological function in the removal of UV-induced DNA damage are largely unknown. Here, we report that the c-Abl nonreceptor tyrosine kinase negatively regulates the repair of UV-induced photolesions on genomic DNA. Biochemical studies revealed that c-Abl promotes CUL-4A-mediated DDB ubiquitination and degradation in a manner that does not require its tyrosine kinase activity both under normal growth conditions and following UV irradiation. Moreover, c-Abl activates DDB degradation in part by alleviating the inhibitory effect of CAND1/TIP120A on CUL-4A. These results revealed a kinase-independent function of c-Abl in a ubiquitin-proteolytic pathway that regulates the damage recognition step of nucleotide excision repair.
Collapse
Affiliation(s)
- Xiaoai Chen
- Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Bowerman B, Kurz T. Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during earlyC. elegansembryogenesis. Development 2006; 133:773-84. [PMID: 16469970 DOI: 10.1242/dev.02276] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitin protein conjugation system tags proteins with the small polypeptide ubiquitin. Most poly-ubiquitinated proteins are recognized and degraded by the proteasome, a large multi-subunit protease. Ubiquitin-dependent protein degradation is used as a regulatory tool for many essential processes, the best studied of which is eukaryotic cell cycle progression. More recently, genetic studies in C. elegans have identified multiple roles for the ubiquitin system in early development, where ubiquitin-dependent protein degradation governs such diverse events as passage through meiosis, cytoskeletal regulation and cell fate determination.
Collapse
Affiliation(s)
- Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, 97403, USA
| | | |
Collapse
|
38
|
Min KW, Kwon MJ, Park HS, Park Y, Yoon SK, Yoon JB. CAND1 enhances deneddylation of CUL1 by COP9 signalosome. Biochem Biophys Res Commun 2005; 334:867-74. [PMID: 16036220 DOI: 10.1016/j.bbrc.2005.06.188] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 06/28/2005] [Indexed: 11/30/2022]
Abstract
Cullin-RING ligases (CRLs) regulate diverse cellular functions such as cell cycle progression and cytokine signaling by ubiquitinating key regulatory proteins. The activity of CRLs is controlled by Nedd8 modification of the cullin subunits. Recent reports have suggested that CAND1, which specifically binds to unmodified CUL1 but not to neddylated one, is required for the in vivo function of SCFs, the CUL1-containing CRLs. We show here that CAND1 and COP9 signalosome (CSN), the major deneddylase of cullins, bind to unneddylated CUL1 in a mutually exclusive way. The suppression of CAND1 expression by small inhibitory RNA enhanced the interaction between CUL1 and CSN, suggesting that CAND1 inhibited the binding of CSN to CUL1. We found that the binding of CSN to CUL1 required the four helix bundle in CUL1 C-terminal domain, which was wrapped around by CAND1 in the CAND1-CUL1-Rbx1 complex. CAND1 greatly facilitated CSN-mediated deneddylation of CUL1 in vitro, which was dependent on its binding to CUL1. Our data suggest that enhancement of CSN-mediated deneddylation by CAND1 may contribute to its function as a positive regulator of SCFs in vivo.
Collapse
Affiliation(s)
- Kyoeng-Woo Min
- Department of Biochemistry and Protein Network Research Center, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cullin-RING complexes comprise the largest known class of ubiquitin ligases. Owing to the great diversity of their substrate-receptor subunits, it is possible that there are hundreds of distinct cullin-RING ubiquitin ligases in eukaryotic cells, which establishes these enzymes as key mediators of post-translational protein regulation. In this review, we focus on the composition, regulation and function of cullin-RING ligases, and describe how these enzymes can be characterized by a set of general principles.
Collapse
Affiliation(s)
- Matthew D Petroski
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
| | | |
Collapse
|
40
|
Willems AR, Schwab M, Tyers M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:133-70. [PMID: 15571813 DOI: 10.1016/j.bbamcr.2004.09.027] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase family was discovered through genetic requirements for cell cycle progression in budding yeast. In these multisubunit enzymes, an invariant core complex, composed of the Skp1 linker protein, the Cdc53/Cul1 scaffold protein and the Rbx1/Roc1/Hrt1 RING domain protein, engages one of a suite of substrate adaptors called F-box proteins that in turn recruit substrates for ubiquitination by an associated E2 enzyme. The cullin-RING domain-adaptor architecture has diversified through evolution, such that in total many hundreds of distinct SCF and SCF-like complexes enable degradation of myriad substrates. Substrate recognition by adaptors often depends on posttranslational modification of the substrate, which thus places substrate stability under dynamic regulation by intracellular signaling events. SCF complexes control cell proliferation through degradation of critical regulators such as cyclins, CDK inhibitors and transcription factors. A plethora of other processes in development and disease are controlled by other SCF-like complexes, including those based on Cul2-SOCS-box adaptor protein and Cul3-BTB domain adaptor protein combinations. Recent structural insights into SCF-like complexes have begun to illuminate aspects of substrate recognition and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Andrew R Willems
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada, M5G 1X5
| | | | | |
Collapse
|
41
|
Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 2004; 119:517-28. [PMID: 15537541 DOI: 10.1016/j.cell.2004.10.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 09/07/2004] [Accepted: 09/13/2004] [Indexed: 12/01/2022]
Abstract
The SCF ubiquitin ligase complex regulates diverse cellular functions by ubiquitinating numerous protein substrates. Cand1, a 120 kDa HEAT repeat protein, forms a tight complex with the Cul1-Roc1 SCF catalytic core, inhibiting the assembly of the multisubunit E3 complex. The crystal structure of the Cand1-Cul1-Roc1 complex shows that Cand1 adopts a highly sinuous superhelical structure, clamping around the elongated SCF scaffold protein Cul1. At one end, a Cand1 beta hairpin protrusion partially occupies the adaptor binding site on Cul1, inhibiting its interactions with the Skp1 adaptor and the substrate-recruiting F box protein subunits. At the other end, two Cand1 HEAT repeats pack against a conserved Cul1 surface cleft and bury a Cul1 lysine residue, whose modification by the ubiquitin-like protein, Nedd8, is able to block Cand1-Cul1 association. Together with biochemical evidence, these structural results elucidate the mechanisms by which Cand1 and Nedd8 regulate the assembly-disassembly cycles of SCF and other cullin-dependent E3 complexes.
Collapse
Affiliation(s)
- Seth J Goldenberg
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Parry G, Estelle M. Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol 2004; 15:221-9. [PMID: 15209382 DOI: 10.1016/j.semcdb.2003.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of the ubiquitin related protein Nedd8/RUB is essential for growth in most organisms. Nedd8/RUB has been shown to modify the cullin subunit of culling-based ubiquitin protein ligases (E3). Neddylation acts to regulate the function of these E3s and organisms with lesions in the neddylation process exhibit severe growth defects. In this review we describe the proteins that participate in neddylation and discuss a model for Nedd8/RUB regulation of ubiquitin ligase function.
Collapse
Affiliation(s)
- Geraint Parry
- Department of Biology, Indiana University, Myers Hall 150, 915 East Third Street, Bloomington, IN 47405, USA
| | | |
Collapse
|
43
|
Akiyoshi H, Hatakeyama S, Pitkänen J, Mouri Y, Doucas V, Kudoh J, Tsurugaya K, Uchida D, Matsushima A, Oshikawa K, Nakayama KI, Shimizu N, Peterson P, Matsumoto M. Subcellular expression of autoimmune regulator is organized in a spatiotemporal manner. J Biol Chem 2004; 279:33984-91. [PMID: 15150263 DOI: 10.1074/jbc.m400702200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autoimmune regulator (AIRE) is responsible for the development of organ-specific autoimmune disease in a monogenic fashion. Rare and low levels of tissue expression together with the lack of AIRE-expressing cell lines have hampered a detailed analysis of the molecular dynamics of AIRE. Here we have established cell lines stably transfected with AIRE and studied the regulatory mechanisms for its subcellular expression. We found that nuclear body (NB) formation by AIRE was dependent on the cell cycle. Biochemical fractionation revealed that a significant proportion of AIRE is associated with the nuclear matrix, which directs the functional domains of chromatin to provide sites for gene regulation. Upon proteasome inhibition, AIRE NBs were increased with concomitant reduced expression in the cytoplasm, suggesting that subcellular targeting of AIRE is regulated by a ubiquitin-proteasome pathway. We also found that AIRE NBs compete for cAMP-response element-binding protein-binding protein/p300, a common coactivator of transcription, with the promyelocytic leukemia gene product. These results suggest that the transcriptional regulating activities of AIRE within a cell are controlled and organized in a spatiotemporal manner.
Collapse
Affiliation(s)
- Hiroko Akiyoshi
- Division of Molecular Immunology, Institute for Enzyme Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheng Y, Dai X, Zhao Y. AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:1020-6. [PMID: 15181201 PMCID: PMC514136 DOI: 10.1104/pp.104.044495] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 04/13/2004] [Accepted: 04/15/2004] [Indexed: 05/19/2023]
Abstract
Auxin affects many aspects of plant growth and development. We previously used chemical genetics to dissect auxin-signaling mechanisms and identified a small molecule, sirtinol, that constitutively activated auxin signaling (Y. Zhao et al. [2003], Science 301: 1107-1110). Here we describe the isolation, characterization, and cloning of an Arabidopsis mutant Atcand1-1 that emerged from a genetic screen for mutants insensitive to sirtinol. Loss-of-function mutants of AtCAND1 were resistant to sirtinol and auxin, but not to gibberellins or brassinolide. Atcand1 displayed developmental phenotypes similar to those of axr1, namely, short petioles, downwardly curling leaves, short inflorescence, and reduced fertility. AtCAND1 is homologous to human CAND1, a protein that is composed almost entirely of HEAT-repeat units and has been implicated in regulating the assembly and disassembly of the SCF protein degradation machinery. Taken together with previous biochemical studies, this work helps to elucidate the roles of AtCAND1 in protein degradation and auxin signaling.
Collapse
Affiliation(s)
- Youfa Cheng
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0116, USA
| | | | | |
Collapse
|
45
|
Pan ZQ, Kentsis A, Dias DC, Yamoah K, Wu K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 2004; 23:1985-97. [PMID: 15021886 DOI: 10.1038/sj.onc.1207414] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review summarizes recent advances concerning the Nedd8 regulatory pathway in four areas. One, substantial progress has been made in delineating the role of cullin family proteins, the only known substrates of the Nedd8 modification system. Cullins are molecular scaffolds responsible for assembling the ROC1/Rbx1 RING-based E3 ubiquitin ligases, of which several play a direct role in tumorigenesis. Two, a large body of work has helped elucidate the molecular details underlying the Nedd8 modification reaction, which results in covalent conjugation of a Nedd8 moiety onto a conserved cullin lysine residue. Three, studies using a variety of genetic model systems have established an essential role for Nedd8 in cell cycle control and in embryogenesis by upregulating the activities of cullin-based E3 ligases. In vitro experiments have revealed a direct role for Nedd8 in activating ubiquitination. Construction of a model of the ROC1/Rbx1-CUL1-Nedd8 structure suggests a mechanism by which the cullin-linked Nedd8 may assist the neighboring ROC1/Rbx1 in landing and positioning the E2 conjugating enzyme for the ubiquitin transfer reaction. Finally, increasing evidence indicates that removal of Nedd8 from its cullin targets, by the action of COP9 Signalosome and possibly other proteases, plays a significant role in the regulation of cullin-mediated proteolysis.
Collapse
Affiliation(s)
- Zhen-Qiang Pan
- Derald H Ruttenberg Cancer Center, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | | | | | |
Collapse
|
46
|
Wolf DA, Zhou C, Wee S. The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat Cell Biol 2003; 5:1029-33. [PMID: 14647295 DOI: 10.1038/ncb1203-1029] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex implicated in diverse biological functions that involve ubiquitin-mediated proteolysis. Paradoxically, conserved enzymatic activities associated with CSN inhibit cullin ubiquitin ligase activity in vitro, whereas mutational analysis suggests that CSN promotes cullin-dependent proteolysis in vivo. This apparent paradox can be resolved in a model that proposes CSN-mediated cullin inhibition is a prerequisite for the proper assembly and maintenance of active cullin ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Dieter A Wolf
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | |
Collapse
|
47
|
Abstract
COP9 Signalosome (CSN) is a fascinating protein complex whose biochemical and physiological functions are only beginning to be understood. It is conserved throughout eukaryotes and is critical to the proper development of all multicellular organisms in which its function has been explored. Recent work suggests that CSN plays a key role in sustaining the activity of SCF and other cullin-based ubiquitin ligases, which may account for its essential roles in development. Here, we summarize what is known about CSN, and discuss hypotheses for how CSN promotes the activity of SCF ubiquitin ligases.
Collapse
Affiliation(s)
- Gregory A Cope
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | |
Collapse
|