1
|
Brady S, Poulton J, Muller S. Inclusion body myositis: Correcting impaired mitochondrial and lysosomal autophagy as a potential therapeutic strategy. Autoimmun Rev 2024; 23:103644. [PMID: 39306221 DOI: 10.1016/j.autrev.2024.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Inclusion body myositis (IBM) is a late onset sporadic myopathy with a characteristic clinical presentation, but as yet unknown aetiology or effective treatment. Typical clinical features are early predominant asymmetric weakness of finger flexor and knee extensor muscles. Muscle biopsy shows endomysial inflammatory infiltrate, mitochondrial changes, and protein aggregation. Proteostasis (protein turnover) appears to be impaired, linked to potentially dysregulated chaperone-mediated autophagy and mitophagy (a type of mitochondrial quality control). In this review, we bring together the most recent clinical and biological data describing IBM. We then address the question of diagnosing this pathology and the relevance of the current biological markers that characterize IBM. In these descriptions, we put a particular emphasis on data related to the deregulation of autophagic processes and to the mitochondrial-lysosomal crosstalk. Finally, after a short description of current treatments, an overview is provided pointing towards novel therapeutic targets and emerging regulatory molecules that are being explored for treating IBM. Special attention is paid to autophagy inhibitors that may offer innovative breakthrough therapies for patients with IBM.
Collapse
Affiliation(s)
- Stefen Brady
- Oxford Adult Muscle Service, John Radcliffe Hospital, Oxford University Hospital Trust, Oxford, UK
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Sylviane Muller
- CNRS and Strasbourg University Unit Biotechnology and Cell signalling/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
2
|
Pelaez MC, Fiore F, Larochelle N, Dabbaghizadeh A, Comaduran MF, Arbour D, Minotti S, Marcadet L, Semaan M, Robitaille R, Nalbantoglu JN, Sephton CF, Durham HD. Reversal of cognitive deficits in FUS R521G amyotrophic lateral sclerosis mice by arimoclomol and a class I histone deacetylase inhibitor independent of heat shock protein induction. Neurotherapeutics 2024; 21:e00388. [PMID: 38972779 PMCID: PMC11579874 DOI: 10.1016/j.neurot.2024.e00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
Protein misfolding and mislocalization are common to both familial and sporadic forms of amyotrophic lateral sclerosis (ALS). Maintaining proteostasis through induction of heat shock proteins (HSP) to increase chaperoning capacity is a rational therapeutic strategy in the treatment of ALS. However, the threshold for upregulating stress-inducible HSPs remains high in neurons, presenting a therapeutic obstacle. This study used mouse models expressing the ALS variants FUSR521G or SOD1G93A to follow up on previous work in cultured motor neurons showing varied effects of the HSP co-inducer, arimoclomol, and class I histone deacetylase (HDAC) inhibitors on HSP expression depending on the ALS variant being expressed. As in cultured neurons, neither expression of the transgene nor drug treatments induced expression of HSPs in cortex, spinal cord or muscle of FUSR521G mice, indicating suppression of the heat shock response. Nonetheless, arimoclomol, and RGFP963, restored performance on cognitive tests and improved cortical dendritic spine densities. In SOD1G93A mice, multiple HSPs were upregulated in hindlimb skeletal muscle, but not in lumbar spinal cord with the exception of HSPB1 associated with astrocytosis. Drug treatments improved contractile force but reduced the increase in HSPs in muscle rather than facilitating their expression. The data point to mechanisms other than amplification of the heat shock response underlying recovery of cognitive function in ALS-FUS mice by arimoclomol and class I HDAC inhibition and suggest potential benefits in counteracting cognitive impairment in ALS, frontotemporal dementia and related disorders.
Collapse
Affiliation(s)
- Mari Carmen Pelaez
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC Canada.
| | - Frédéric Fiore
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montréal, QC Canada.
| | - Nancy Larochelle
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Afrooz Dabbaghizadeh
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Mario Fernández Comaduran
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Danielle Arbour
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montréal, QC Canada.
| | - Sandra Minotti
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Laetitia Marcadet
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC Canada.
| | - Martine Semaan
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montréal, QC Canada.
| | - Richard Robitaille
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montréal, QC Canada.
| | - Josephine N Nalbantoglu
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC Canada.
| | - Heather D Durham
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| |
Collapse
|
3
|
Fernández Comaduran M, Minotti S, Jacob-Tomas S, Rizwan J, Larochelle N, Robitaille R, Sephton CF, Vera M, Nalbantoglu JN, Durham HD. Impact of histone deacetylase inhibition and arimoclomol on heat shock protein expression and disease biomarkers in primary culture models of familial ALS. Cell Stress Chaperones 2024; 29:359-380. [PMID: 38570009 PMCID: PMC11015512 DOI: 10.1016/j.cstres.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)G348C, fused in sarcoma (FUS)R521G, or superoxide dismutase I (SOD1)G93A. All variants were poor inducers of Hspa1a, and reduced levels of Hspa8 mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of Hspa1a and Hspa8, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve Hspa8 mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.
Collapse
Affiliation(s)
- Mario Fernández Comaduran
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sandra Minotti
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nancy Larochelle
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Richard Robitaille
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montreal, Quebec, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Josephine N Nalbantoglu
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heather D Durham
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Didiasova M, Cesaro S, Feldhoff S, Bettin I, Tiegel N, Füssgen V, Bertoldi M, Tikkanen R. Functional Characterization of a Spectrum of Genetic Variants in a Family with Succinic Semialdehyde Dehydrogenase Deficiency. Int J Mol Sci 2024; 25:5237. [PMID: 38791277 PMCID: PMC11121183 DOI: 10.3390/ijms25105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Succinic semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme involved in the catabolism of the neurotransmitter γ-amino butyric acid. Pathogenic variants in the gene encoding this enzyme cause SSADH deficiency, a developmental disease that manifests as hypotonia, autism, and epilepsy. SSADH deficiency patients usually have family-specific gene variants. Here, we describe a family exhibiting four different SSADH variants: Val90Ala, Cys93Phe, and His180Tyr/Asn255Asp (a double variant). We provide a structural and functional characterization of these variants and show that Cys93Phe and Asn255Asp are pathogenic variants that affect the stability of the SSADH protein. Due to the impairment of the cofactor NAD+ binding, these variants show a highly reduced enzyme activity. However, Val90Ala and His180Tyr exhibit normal activity and expression. The His180Tyr/Asn255Asp variant exhibits a highly reduced activity as a recombinant species, is inactive, and shows a very low expression in eukaryotic cells. A treatment with substances that support protein folding by either increasing chaperone protein expression or by chemical means did not increase the expression of the pathogenic variants of the SSADH deficiency patient. However, stabilization of the folding of pathogenic SSADH variants by other substances may provide a treatment option for this disease.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Nana Tiegel
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Vera Füssgen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| |
Collapse
|
5
|
Servín Muñoz IV, Ortuño-Sahagún D, Griñán-Ferré C, Pallàs M, González-Castillo C. Alterations in Proteostasis Mechanisms in Niemann-Pick Type C Disease. Int J Mol Sci 2024; 25:3806. [PMID: 38612616 PMCID: PMC11011983 DOI: 10.3390/ijms25073806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and β-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.
Collapse
Affiliation(s)
- Iris Valeria Servín Muñoz
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red (CiberNed), Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red (CiberNed), Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Celia González-Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Mexico
| |
Collapse
|
6
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Ahmed M, Spicer C, Harley J, Taylor JP, Hanna M, Patani R, Greensmith L. Amplifying the Heat Shock Response Ameliorates ALS and FTD Pathology in Mouse and Human Models. Mol Neurobiol 2023; 60:6896-6915. [PMID: 37516663 PMCID: PMC10657827 DOI: 10.1007/s12035-023-03509-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are now known as parts of a disease spectrum with common pathological features and genetic causes. However, as both conditions are clinically heterogeneous, patient groups may be phenotypically similar but pathogenically and genetically variable. Despite numerous clinical trials, there remains no effective therapy for these conditions, which, in part, may be due to challenges of therapy development in a heterogeneous patient population. Disruption to protein homeostasis is a key feature of different forms of ALS and FTD. Targeting the endogenous protein chaperone system, the heat shock response (HSR) may, therefore, be a potential therapeutic approach. We conducted a preclinical study of a known pharmacological amplifier of the HSR, called arimoclomol, in mice with a mutation in valosin-containing protein (VCP) which causes both ALS and FTD in patients. We demonstrate that amplification of the HSR ameliorates the ALS/FTD-like phenotype in the spinal cord and brain of mutant VCP mice and prevents neuronal loss, replicating our earlier findings in the SOD1 mouse model of ALS. Moreover, in human cell models, we demonstrate improvements in pathology upon arimoclomol treatment in mutant VCP patient fibroblasts and iPSC-derived motor neurons. Our findings suggest that targeting of the HSR may have therapeutic potential, not only in non-SOD1 ALS, but also for the treatment of FTD.
Collapse
Affiliation(s)
- Mhoriam Ahmed
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Charlotte Spicer
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Jasmine Harley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, USA
| | - Michael Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
8
|
Machado PM, McDermott MP, Blaettler T, Sundgreen C, Amato AA, Ciafaloni E, Freimer M, Gibson SB, Jones SM, Levine TD, Lloyd TE, Mozaffar T, Shaibani AI, Wicklund M, Rosholm A, Carstensen TD, Bonefeld K, Jørgensen AN, Phonekeo K, Heim AJ, Herbelin L, Barohn RJ, Hanna MG, Dimachkie MM. Safety and efficacy of arimoclomol for inclusion body myositis: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2023; 22:900-911. [PMID: 37739573 DOI: 10.1016/s1474-4422(23)00275-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Inclusion body myositis is the most common progressive muscle wasting disease in people older than 50 years, with no effective drug treatment. Arimoclomol is an oral co-inducer of the cellular heat shock response that was safe and well-tolerated in a pilot study of inclusion body myositis, reduced key pathological markers of inclusion body myositis in two in-vitro models representing degenerative and inflammatory components of this disease, and improved disease pathology and muscle function in mutant valosin-containing protein mice. In the current study, we aimed to assess the safety, tolerability, and efficacy of arimoclomol in people with inclusion body myositis. METHODS This multicentre, randomised, double-blind, placebo-controlled study enrolled adults in specialist neuromuscular centres in the USA (11 centres) and UK (one centre). Eligible participants had a diagnosis of inclusion body myositis fulfilling the European Neuromuscular Centre research diagnostic criteria 2011. Participants were randomised (1:1) to receive either oral arimoclomol 400 mg or matching placebo three times daily (1200 mg/day) for 20 months. The randomisation sequence was computer generated centrally using a permuted block algorithm with randomisation numbers masked to participants and trial staff, including those assessing outcomes. The primary endpoint was the change from baseline to month 20 in the Inclusion Body Myositis Functional Rating Scale (IBMFRS) total score, assessed in all randomly assigned participants, except for those who were randomised in error and did not receive any study medication, and those who did not meet inclusion criteria. Safety analyses included all randomly assigned participants who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov, number NCT02753530, and is completed. FINDINGS Between Aug 16, 2017 and May 22, 2019, 152 participants with inclusion body myositis were randomly assigned to arimoclomol (n=74) or placebo (n=78). One participant was randomised in error (to arimoclomol) but not treated, and another (assigned to placebo) did not meet inclusion criteria. 150 participants (114 [76%] male and 36 [24%] female) were included in the efficacy analyses, 73 in the arimoclomol group and 77 in the placebo group. 126 completed the trial on treatment (56 [77%] and 70 [90%], respectively) and the most common reason for treatment discontinuation was adverse events. At month 20, mean IBMFRS change from baseline was not statistically significantly different between arimoclomol and placebo (-3·26, 95% CI -4·15 to -2·36 in the arimoclomol group vs -2·26, -3·11 to -1·41 in the placebo group; mean difference -0·99 [95% CI -2·23 to 0·24]; p=0·12). Adverse events leading to discontinuation occurred in 13 (18%) of 73 participants in the arimoclomol group and four (5%) of 78 participants in the placebo group. Serious adverse events occurred in 11 (15%) participants in the arimoclomol group and 18 (23%) in the placebo group. Elevated transaminases three times or more of the upper limit of normal occurred in five (7%) participants in the arimoclomol group and one (1%) in the placebo group. Tubulointerstitial nephritis was observed in one (1%) participant in the arimoclomol group and none in the placebo group. INTERPRETATION Arimoclomol did not improve efficacy outcomes, relative to placebo, but had an acceptable safety profile in individuals with inclusion body myositis. This is one of the largest trials done in people with inclusion body myositis, providing data on disease progression that might be used for subsequent clinical trial design. FUNDING US Food and Drug Administration Office of Orphan Products Development and Orphazyme.
Collapse
Affiliation(s)
- Pedro M Machado
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Anthony A Amato
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Miriam Freimer
- Department of Neurology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Summer B Gibson
- Neuromuscular Division, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sarah M Jones
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Todd D Levine
- Department of Neurology, HonorHealth, Phoenix, AZ, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Tahseen Mozaffar
- Division of Neuromuscular Disorders, University of California, Irvine, Orange, CA, USA
| | - Aziz I Shaibani
- Nerve and Muscle Center of Texas, Baylor College of Medicine, Houston, TX, USA
| | - Matthew Wicklund
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | - Andrew J Heim
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura Herbelin
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Richard J Barohn
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
9
|
Voicu V, Tataru CP, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Corlatescu AD, Ciurea AV. Decoding Neurodegeneration: A Comprehensive Review of Molecular Mechanisms, Genetic Influences, and Therapeutic Innovations. Int J Mol Sci 2023; 24:13006. [PMID: 37629187 PMCID: PMC10455143 DOI: 10.3390/ijms241613006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders often acquire due to genetic predispositions and genomic alterations after exposure to multiple risk factors. The most commonly found pathologies are variations of dementia, such as frontotemporal dementia and Lewy body dementia, as well as rare subtypes of cerebral and cerebellar atrophy-based syndromes. In an emerging era of biomedical advances, molecular-cellular studies offer an essential avenue for a thorough recognition of the underlying mechanisms and their possible implications in the patient's symptomatology. This comprehensive review is focused on deciphering molecular mechanisms and the implications regarding those pathologies' clinical advancement and provides an analytical overview of genetic mutations in the case of neurodegenerative disorders. With the help of well-developed modern genetic investigations, these clinically complex disturbances are highly understood nowadays, being an important step in establishing molecularly targeted therapies and implementing those approaches in the physician's practice.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Calin Petre Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
10
|
Las Heras M, Szenfeld B, Ballout RA, Buratti E, Zanlungo S, Dardis A, Klein AD. Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine. NPJ Genom Med 2023; 8:21. [PMID: 37567876 PMCID: PMC10421955 DOI: 10.1038/s41525-023-00365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.
Collapse
Affiliation(s)
- Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Benjamín Szenfeld
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Rami A Ballout
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, 75235, USA
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330033, Chile
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100, Udine, Italy
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile.
| |
Collapse
|
11
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
12
|
Gupta S, Lee HO, Wang L, Kruger WD. Examination of two different proteasome inhibitors in reactivating mutant human cystathionine β-synthase in mice. PLoS One 2023; 18:e0286550. [PMID: 37319242 PMCID: PMC10270616 DOI: 10.1371/journal.pone.0286550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Classic homocystinuria is an inborn error of metabolism caused mainly by missense mutations leading to misfolded and/or unstable human cystathionine β-synthase (CBS) protein, causing the accumulation of excess total homocysteine (tHcy) in tissues. Previously, it has been shown that certain missense containing human CBS proteins can be functionally rescued in mouse models of CBS deficiency by treatment with proteasome inhibitors. The rescue by proteasome inhibitors is thought to work both by inhibiting the degradation of misfolded CBS protein and by inducing the levels of heat-shock chaperone proteins in the liver. Here we examine the effectiveness of two FDA approved protease inhibitors, carfilzomib and bortezomib, on various transgenic mouse models of human CBS deficiency. Our results show that although both drugs are effective in inducing the liver chaperone proteins Hsp70 and Hsp27, and are effective in inhibiting proteasome function, bortezomib was somewhat more robust in restoring the mutant CBS function. Moreover, there was no significant correlation between proteasome inhibition and CBS activity, suggesting that some of bortezomib's effects are via other mechanisms. We also test the use of low-doses of bortezomib and carfilzomib on various mouse models for extended periods of time and find that while low-doses are less toxic, they are also less effective at restoring CBS function. Overall, these results show that while restoration of mutant CBS function is possible with proteasome inhibitors, the exact mechanism is complicated and it will likely be too toxic for long-term patient treatment.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Hyung-Ok Lee
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Liqun Wang
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Warren D. Kruger
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| |
Collapse
|
13
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Jeon YM, Kwon Y, Lee S, Kim HJ. Potential roles of the endoplasmic reticulum stress pathway in amyotrophic lateral sclerosis. Front Aging Neurosci 2023; 15:1047897. [PMID: 36875699 PMCID: PMC9974850 DOI: 10.3389/fnagi.2023.1047897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
The endoplasmic reticulum (ER) is a major organelle involved in protein quality control and cellular homeostasis. ER stress results from structural and functional dysfunction of the organelle, along with the accumulation of misfolded proteins and changes in calcium homeostasis, it leads to ER stress response pathway such as unfolded protein response (UPR). Neurons are particularly sensitive to the accumulation of misfolded proteins. Thus, the ER stress is involved in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, prion disease and motor neuron disease (MND). Recently, the complex involvement of ER stress pathways has been demonstrated in experimental models of amyotrophic lateral sclerosis (ALS)/MND using pharmacological and genetic manipulation of the unfolded protein response (UPR), an adaptive response to ER stress. Here, we aim to provide recent evidence demonstrating that the ER stress pathway is an essential pathological mechanism of ALS. In addition, we also provide therapeutic strategies that can help treat diseases by targeting the ER stress pathway.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
16
|
Naddaf E. Inclusion body myositis: Update on the diagnostic and therapeutic landscape. Front Neurol 2022; 13:1020113. [PMID: 36237625 PMCID: PMC9551222 DOI: 10.3389/fneur.2022.1020113] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Inclusion body myositis (IBM) is a progressive muscle disease affecting patients over the age of 40, with distinctive clinical and histopathological features. The typical clinical phenotype is characterized by prominent involvement of deep finger flexors and quadriceps muscles. Less common presentations include isolated dysphagia, asymptomatic hyper-CKemia, and axial or limb weakness beyond the typical pattern. IBM is associated with marked morbidity as majority of patients eventually become wheelchair dependent with limited use of their hands and marked dysphagia. Furthermore, IBM mildly affects longevity with aspiration pneumonia and respiratory complications being the most common cause of death. On muscle biopsy, IBM is characterized by a peculiar combination of endomysial inflammation, rimmed vacuoles, and protein aggregation. These histopathological features are reflective of the complexity of underlying disease mechanisms. No pharmacological treatment is yet available for IBM. Monitoring for swallowing and respiratory complications, exercise, and addressing mobility issues are the mainstay of management. Further research is needed to better understand disease pathogenesis and identify novel therapeutic targets.
Collapse
|
17
|
Quantitative Comparison of HSF1 Activators. Mol Biotechnol 2022; 64:873-887. [PMID: 35218516 PMCID: PMC9259536 DOI: 10.1007/s12033-022-00467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
The heat shock response (HSR) pathway is a highly conserved rescue mechanism, which protects the cells from harmful insults disturbing the cellular protein homeostasis via expression of chaperones. Furthermore, it was demonstrated to play crucial roles in various diseases like neurodegeneration and cancer. For neurodegenerative diseases, an overexpression of chaperones is a potential therapeutic approach to clear the cells from non-functional protein aggregates. Therefore, activators of the HSR pathway and its master regulator HSF1 are under close observation. There are numerous HSR activators published in the literature using different model systems, experimental designs, and readout assays. The aim of this work was to provide a quantitative comparison of a broad range of published activators using a newly developed HSF responsive dual-luciferase cell line. Contrary to natural target genes, which are regulated by multiple input pathways, the artificial reporter exclusively reacts to HSF activity. In addition, the results were compared to endogenous heat shock protein expression. As a result, great differences in the intensity of pathway activation were observed. In addition, a parallel viability assessment revealed high variability in the specificity of the drugs. Furthermore, the differences seen compared to published data indicate that some activators exhibit tissue-specific differences leading to interesting assumptions about the regulation of HSF1.
Collapse
|
18
|
Odeh HM, Fare CM, Shorter J. Nuclear-Import Receptors Counter Deleterious Phase Transitions in Neurodegenerative Disease. J Mol Biol 2022; 434:167220. [PMID: 34464655 PMCID: PMC8748273 DOI: 10.1016/j.jmb.2021.167220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023]
Abstract
Nuclear-import receptors (NIRs) engage nuclear-localization signals (NLSs) of polypeptides in the cytoplasm and transport these cargo across the size-selective barrier of the nuclear-pore complex into the nucleoplasm. Beyond this canonical role in nuclear transport, NIRs operate in the cytoplasm to chaperone and disaggregate NLS-bearing clients. Indeed, NIRs can inhibit and reverse functional and deleterious phase transitions of their cargo, including several prominent neurodegenerative disease-linked RNA-binding proteins (RBPs) with prion-like domains (PrLDs), such as TDP-43, FUS, EWSR1, TAF15, hnRNPA1, and hnRNPA2. Importantly, elevated NIR expression can mitigate degenerative phenotypes connected to aberrant cytoplasmic aggregation of RBPs with PrLDs. Here, we review recent discoveries that NIRs can also antagonize aberrant interactions and toxicity of arginine-rich, dipeptide-repeat proteins that are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) caused by G4C2 hexanucleotide repeat expansions in the first intron of C9ORF72. We also highlight recent findings that multiple NIR family members can prevent and reverse liquid-liquid phase separation of specific clients bearing RGG motifs in an NLS-independent manner. Finally, we discuss strategies to enhance NIR activity or expression, which could have therapeutic utility for several neurodegenerative disorders, including ALS, FTD, multisystem proteinopathy, limbic-predominant age-related TDP-43 encephalopathy, tauopathies, and related diseases.
Collapse
Affiliation(s)
- Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. https://twitter.com/CharlotteFare
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Shah S, Dooms MM, Amaral-Garcia S, Igoillo-Esteve M. Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Front Pharmacol 2022; 12:768023. [PMID: 34992533 PMCID: PMC8724568 DOI: 10.3389/fphar.2021.768023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rare diseases are life-threatening or chronically debilitating low-prevalent disorders caused by pathogenic mutations or particular environmental insults. Due to their high complexity and low frequency, important gaps still exist in their prevention, diagnosis, and treatment. Since new drug discovery is a very costly and time-consuming process, leading pharmaceutical companies show relatively low interest in orphan drug research and development due to the high cost of investments compared to the low market return of the product. Drug repurposing–based approaches appear then as cost- and time-saving strategies for the development of therapeutic opportunities for rare diseases. In this article, we discuss the scientific, regulatory, and economic aspects of the development of repurposed drugs for the treatment of rare neurodegenerative disorders with a particular focus on Huntington’s disease, Friedreich’s ataxia, Wolfram syndrome, and amyotrophic lateral sclerosis. The role of academia, pharmaceutical companies, patient associations, and foundations in the identification of candidate compounds and their preclinical and clinical evaluation will also be discussed.
Collapse
Affiliation(s)
- Sweta Shah
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
20
|
Kurop MK, Huyen CM, Kelly JH, Blagg BSJ. The heat shock response and small molecule regulators. Eur J Med Chem 2021; 226:113846. [PMID: 34563965 PMCID: PMC8608735 DOI: 10.1016/j.ejmech.2021.113846] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response (HSR) is a highly conserved cellular pathway that is responsible for stress relief and the refolding of denatured proteins [1]. When a host cell is exposed to conditions such as heat shock, ischemia, or toxic substances, heat shock factor-1 (HSF-1), a transcription factor, activates the genes that encode for the heat shock proteins (Hsps), which are a family of proteins that work alongside other chaperones to relieve stress and refold proteins that have been denatured (Burdon, 1986) [2]. Along with the refolding of denatured proteins, Hsps facilitate the removal of misfolded proteins by escorting them to degradation pathways, thereby preventing the accumulation of misfolded proteins [3]. Research has indicated that many pathological conditions, such as diabetes, cancer, neuropathy, cardiovascular disease, and aging have a negative impact on HSR function and are commonly associated with misfolded protein aggregation [4,5]. Studies indicate an interplay between mitochondrial homeostasis and HSF-1 levels can impact stress resistance, proteostasis, and malignant cell growth, which further support the role of Hsps in pathological and metabolic functions [6]. On the other hand, Hsp activation by specific small molecules can induce the heat shock response, which can afford neuroprotection and other benefits [7]. This review will focus on the modulation of Hsps and the HSR as therapeutic options to treat these conditions.
Collapse
Affiliation(s)
- Margaret K Kurop
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cormac M Huyen
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - John H Kelly
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
21
|
Sitarska D, Tylki-Szymańska A, Ługowska A. Treatment trials in Niemann-Pick type C disease. Metab Brain Dis 2021; 36:2215-2221. [PMID: 34596813 PMCID: PMC8580890 DOI: 10.1007/s11011-021-00842-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 10/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is a genetically determined neurodegenerative metabolic disease. It belongs to the lysosomal storage diseases and its main cause is impaired cholesterol transport in late endosomes or lysosomes. It is an autosomal recessive inherited disease that results from mutations in the NPC1 or NPC2 genes. The treatment efforts are focused on the slowing its progression. The only registered drug, devoted for NPC patients is Miglustat. Effective treatment is still under development. NPC disease mainly affects the nervous system, and the crossing of the blood-brain barrier by medicines is still a challenge, therefore the combination therapies of several compounds are increasingly being worked on. The aim of this paper is to present the possibilities in treatment of Niemann-Pick type C disease. The discussed research results relate to animal studies.
Collapse
Affiliation(s)
- Dominika Sitarska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| | - Anna Tylki-Szymańska
- Department of Pediatric Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
22
|
Glaubitz S, Zeng R, Rakocevic G, Schmidt J. Update on Myositis Therapy: from Today's Standards to Tomorrow's Possibilities. Curr Pharm Des 2021; 28:863-880. [PMID: 34781868 DOI: 10.2174/1381612827666211115165353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
Inflammatory myopathies, in short, myositis, are heterogeneous disorders that are characterized by inflammation of skeletal muscle and weakness of arms and legs. Research over the past few years has led to a new understanding regarding the pathogenesis of myositis. The new insights include different pathways of the innate and adaptive immune response during the pathogenesis of myositis. The importance of non-inflammatory mechanisms such as cell stress and impaired autophagy has been recently described. New target-specific drugs for myositis have been developed and are currently being tested in clinical trials. In this review, we discuss the mechanisms of action of pharmacological standards in myositis and provide an outlook of future treatment approaches.
Collapse
Affiliation(s)
- Stefanie Glaubitz
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen. Germany
| | - Rachel Zeng
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen. Germany
| | - Goran Rakocevic
- Department of Neurology, Neuromuscular Division, University of Virginia, Charlottesville. United States
| | - Jens Schmidt
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen. Germany
| |
Collapse
|
23
|
Darling AL, Shorter J. Combating deleterious phase transitions in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118984. [PMID: 33549703 PMCID: PMC7965345 DOI: 10.1016/j.bbamcr.2021.118984] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases. However, the mechanism that induces pathogenic aggregation is not well understood. Recently, it has emerged that several of the pathological proteins found in an aggregated or mislocalized state in neurodegenerative diseases are also able to undergo liquid-liquid phase separation (LLPS) under physiological conditions. Although these phase transitions are likely important for various physiological functions, neurodegenerative disease-related mutations and conditions can alter the LLPS behavior of these proteins, which can elicit toxicity. Therefore, therapeutics that antagonize aberrant LLPS may be able to mitigate toxicity and aggregation that is ubiquitous in neurodegenerative disease. Here, we discuss the mechanisms by which aberrant protein phase transitions may contribute to neurodegenerative disease. We also outline potential therapeutic strategies to counter deleterious phases. State without borders: Membrane-less organelles and liquid-liquid phase transitions edited by Vladimir N Uversky.
Collapse
Affiliation(s)
- April L Darling
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Webster JM, Darling AL, Uversky VN, Blair LJ. Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Front Pharmacol 2019; 10:1047. [PMID: 31619995 PMCID: PMC6759932 DOI: 10.3389/fphar.2019.01047] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Misfolding, aggregation, and aberrant accumulation of proteins are central components in the progression of neurodegenerative disease. Cellular molecular chaperone systems modulate proteostasis, and, therefore, are primed to influence aberrant protein-induced neurotoxicity and disease progression. Molecular chaperones have a wide range of functions from facilitating proper nascent folding and refolding to degradation or sequestration of misfolded substrates. In disease states, molecular chaperones can display protective or aberrant effects, including the promotion and stabilization of toxic protein aggregates. This seems to be dependent on the aggregating protein and discrete chaperone interaction. Small heat shock proteins (sHsps) are a class of molecular chaperones that typically associate early with misfolded proteins. These interactions hold proteins in a reversible state that helps facilitate refolding or degradation by other chaperones and co-factors. These sHsp interactions require dynamic oligomerization state changes in response to diverse cellular triggers and, unlike later steps in the chaperone cascade of events, are ATP-independent. Here, we review evidence for modulation of neurodegenerative disease-relevant protein aggregation by sHsps. This includes data supporting direct physical interactions and potential roles of sHsps in the stewardship of pathological protein aggregates in brain. A greater understanding of the mechanisms of sHsp chaperone activity may help in the development of novel therapeutic strategies to modulate the aggregation of pathological, amyloidogenic proteins. sHsps-targeting strategies including modulators of expression or post-translational modification of endogenous sHsps, small molecules targeted to sHsp domains, and delivery of engineered molecular chaperones, are also discussed.
Collapse
Affiliation(s)
- Jack M Webster
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - April L Darling
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
26
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. The Major Human Stress Protein Hsp70 as a Factor of Protein Homeostasis and a Cytokine-Like Regulator. Mol Biol 2019. [DOI: 10.1134/s0026893319020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Abstract
The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, frontotemporal lobar degeneration, and the motor neuron diseases, with AD affecting approximately 6% of people aged 65 years and older, and PD affecting approximately 1% of people aged over 60 years. Specific proteins are associated with these neurodegenerative diseases, as determined by both immunohistochemical studies on post-mortem tissue and genetic screening, where protein misfolding and aggregation are key hallmarks. Many of these proteins are shown to misfold and aggregate into soluble non-native oligomers and large insoluble protein deposits (fibrils and plaques), both of which may exert a toxic gain of function. Proteotoxicity has been examined intensively in cell culture and in in vivo models, and clinical trials of methods to attenuate proteotoxicity are relatively new. Therapies to enhance cellular protein quality control mechanisms such as upregulation of chaperones and clearance/degradation pathways, as well as immunotherapies against toxic protein conformations, are being actively pursued. In this article, we summarize the common pathophysiology of neurodegenerative disease, and review therapies in early-phase clinical trials that target the proteotoxic component of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke McAlary
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
28
|
Naddaf E, Barohn RJ, Dimachkie MM. Inclusion Body Myositis: Update on Pathogenesis and Treatment. Neurotherapeutics 2018; 15:995-1005. [PMID: 30136253 PMCID: PMC6277289 DOI: 10.1007/s13311-018-0658-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inclusion body myositis is the most common acquired myopathy after the age of 50. It is characterized by progressive asymmetric weakness predominantly affecting the quadriceps and/or finger flexors. Loss of ambulation and dysphagia are major complications of the disease. Inclusion body myositis can be associated with cytosolic 5'-nucleotidase 1A antibodies. Muscle biopsy usually shows inflammatory cells surrounding and invading non-necrotic muscle fibers, rimmed vacuoles, congophilic inclusions, and protein aggregates. Disease pathogenesis remains poorly understood and consists of an interplay between inflammatory and degenerative pathways. Antigen-driven, clonally restricted, cytotoxic T cells represent a main feature of the inflammatory component, whereas abnormal protein homeostasis with protein misfolding, aggregation, and dysfunctional protein disposal is the hallmark of the degenerative component. Inclusion body myositis remains refractory to treatment. Better understanding of the disease pathogenesis led to the identification of novel therapeutic targets, addressing both the inflammatory and degenerative pathways.
Collapse
Affiliation(s)
- Elie Naddaf
- Neuromuscular Medicine Division, Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Richard J Barohn
- Neuromuscular Medicine Division, Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, 66103, USA
| | - Mazen M Dimachkie
- Neuromuscular Medicine Division, Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, 66103, USA.
| |
Collapse
|
29
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
30
|
Benatar M, Wuu J, Andersen PM, Atassi N, David W, Cudkowicz M, Schoenfeld D. Randomized, double-blind, placebo-controlled trial of arimoclomol in rapidly progressive SOD1 ALS. Neurology 2018; 90:e565-e574. [PMID: 29367439 PMCID: PMC5818014 DOI: 10.1212/wnl.0000000000004960] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023] Open
Abstract
Objective To examine the safety and tolerability as well as the preliminary efficacy of arimoclomol, a heat shock protein co-inducer that promotes nascent protein folding, in patients with rapidly progressive SOD1 amyotrophic lateral sclerosis (ALS). Methods This was a double-blind, placebo-controlled trial in which patients with rapidly progressive SOD1-mutant ALS were randomized 1:1 to receive arimoclomol 200 mg tid or matching placebo for up to 12 months. Study procedures were performed using a mix of in-person and remote assessments. Primary outcome was safety and tolerability. Secondary outcome was efficacy, with survival as the principal measure. Additional efficacy measures were the rates of decline of the Revised ALS Functional Rating Scale (ALSFRS-R) and percent predicted forced expiratory volume in 6 seconds (FEV6), and the Combined Assessment of Function and Survival (CAFS). Results Thirty-eight participants were randomized. Thirty-six (19 placebo, 17 arimoclomol) were included in the prespecified intent-to-treat analysis. Apart from respiratory function, groups were generally well-balanced at baseline. Adverse events occurred infrequently, and were usually mild and deemed unlikely or not related to study drug. Adjusting for riluzole and baseline ALSFRS-R, survival favored arimoclomol with a hazard ratio of 0.77 (95% confidence interval [CI] 0.32–1.80). ALSFRS-R and FEV6 declined more slowly in the arimoclomol group, with treatment differences of 0.5 point/month (95% CI −0.63 to 1.63) and 1.24 percent predicted/month (95% CI −2.77 to 5.25), respectively, and the CAFS similarly favored arimoclomol. Conclusions This study provides Class II evidence that arimoclomol is safe and well-tolerated at a dosage of 200 mg tid for up to 12 months. Although not powered for therapeutic effect, the consistency of results across the range of prespecified efficacy outcome measures suggests a possible therapeutic benefit of arimoclomol. Clinicaltrials.gov identifier NCT00706147. Classification of evidence This study provides Class II evidence that arimoclomol is safe and well-tolerated at a dosage of 200 mg tid for up to 12 months. The study lacked the precision to conclude, or to exclude, an important therapeutic benefit of arimoclomol.
Collapse
Affiliation(s)
- Michael Benatar
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA.
| | - Joanne Wuu
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - Peter M Andersen
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - Nazem Atassi
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - William David
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - Merit Cudkowicz
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - David Schoenfeld
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| |
Collapse
|
31
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int J Mol Sci 2018; 19:E325. [PMID: 29361800 PMCID: PMC5796267 DOI: 10.3390/ijms19010325] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| |
Collapse
|
32
|
Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 2017; 17:133-150. [PMID: 29147032 DOI: 10.1038/nrd.2017.214] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) - designated as 'orphan' diseases - are inborn errors of metabolism caused by defects in genes that encode proteins involved in various aspects of lysosomal homeostasis. For many years, LSDs were viewed as unattractive targets for the development of therapies owing to their low prevalence. However, the development and success of the first commercial biologic therapy for an LSD - enzyme replacement therapy for type 1 Gaucher disease - coupled with regulatory incentives rapidly catalysed commercial interest in therapeutically targeting LSDs. Despite ongoing challenges, various therapeutic strategies for LSDs now exist, with many agents approved, undergoing clinical trials or in preclinical development.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
33
|
Gottlieb RA. Delivering Instant Heat: Shocking the Heart. J Am Coll Cardiol 2017; 70:1493-1495. [PMID: 28911513 DOI: 10.1016/j.jacc.2017.07.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
|
34
|
Budzyński MA, Crul T, Himanen SV, Toth N, Otvos F, Sistonen L, Vigh L. Chaperone co-inducer BGP-15 inhibits histone deacetylases and enhances the heat shock response through increased chromatin accessibility. Cell Stress Chaperones 2017; 22:717-728. [PMID: 28474205 PMCID: PMC5573690 DOI: 10.1007/s12192-017-0798-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 01/20/2023] Open
Abstract
Defects in cellular protein homeostasis are associated with many severe and prevalent pathological conditions such as neurodegenerative diseases, muscle dystrophies, and metabolic disorders. One way to counteract these defects is to improve the protein homeostasis capacity through induction of the heat shock response. Despite numerous attempts to develop strategies for chemical activation of the heat shock response by heat shock transcription factor 1 (HSF1), the underlying mechanisms of drug candidates' mode of action are poorly understood. To lower the threshold for the heat shock response activation, we used the chaperone co-inducer BGP-15 that was previously shown to have beneficial effects on several proteinopathic disease models. We found that BGP-15 treatment combined with heat stress caused a substantial increase in HSF1-dependent heat shock protein 70 (HSPA1A/B) expression already at a febrile range of temperatures. Moreover, BGP-15 alone inhibited the activity of histone deacetylases (HDACs), thereby increasing chromatin accessibility at multiple genomic loci including the stress-inducible HSPA1A. Intriguingly, treatment with well-known potent HDAC inhibitors trichostatin A and valproic acid enhanced the heat shock response and improved cytoprotection. These results present a new pharmacological strategy for restoring protein homeostasis by inhibiting HDACs, increasing chromatin accessibility, and lowering the threshold for heat shock response activation.
Collapse
Affiliation(s)
- Marek A Budzyński
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Tim Crul
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Noemi Toth
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Ferenc Otvos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland.
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland.
| | - Laszlo Vigh
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary.
| |
Collapse
|
35
|
Webster CP, Smith EF, Shaw PJ, De Vos KJ. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities? Front Mol Neurosci 2017; 10:123. [PMID: 28512398 PMCID: PMC5411428 DOI: 10.3389/fnmol.2017.00123] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis), the correct balance between production and degradation of proteins, is essential for the health and survival of cells. Proteostasis requires an intricate network of protein quality control pathways (the proteostasis network) that work to prevent protein aggregation and maintain proteome health throughout the lifespan of the cell. Collapse of proteostasis has been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disorder. Here, we review the evidence linking dysfunctional proteostasis to the etiology of ALS and discuss how ALS-associated insults affect the proteostasis network. Finally, we discuss the potential therapeutic benefit of proteostasis network modulation in ALS.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
36
|
Bose S, Cho J. Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders. Ageing Res Rev 2017; 35:155-175. [PMID: 27702699 DOI: 10.1016/j.arr.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Protein misfolding, which is known to cause several serious diseases, is an emerging field that addresses multiple therapeutic areas. Misfolding of a disease-specific protein in the central nervous system ultimately results in the formation of toxic aggregates that may accumulate in the brain, leading to neuronal cell death and dysfunction, and associated clinical manifestations. A large number of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, Huntington's, and prion diseases, are primarily caused by protein misfolding and aggregation. Notably, the cellular system is equipped with a protein quality control system encompassing chaperones, ubiquitin proteasome system, and autophagy, as a defense mechanism that monitors protein folding and eliminates inappropriately folded proteins. As the intrinsic molecular mechanisms of protein misfolding become more clearly understood, the novel therapeutic approaches in this arena are gaining considerable interest. The present review will describe the chaperones network and different approaches as the therapeutic targets for neurodegenerative diseases. Current and emerging therapeutic approaches to combat neurodegenerative diseases, addressing the roles of molecular, chemical, and pharmacological chaperones, as well as heat shock factor-1 and the unfolded protein response, are also discussed in detail.
Collapse
Affiliation(s)
- Shambhunath Bose
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
37
|
Deane CAS, Brown IR. Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperones 2016; 21:837-48. [PMID: 27273088 PMCID: PMC5003800 DOI: 10.1007/s12192-016-0708-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 01/19/2023] Open
Abstract
Few effective therapies exist for the treatment of neurodegenerative diseases that have been characterized as protein misfolding disorders. Upregulation of heat shock proteins (Hsps) mitigates against the accumulation of misfolded, aggregation-prone proteins and synaptic dysfunction, which is recognized as an early event in neurodegenerative diseases. Enhanced induction of a set of Hsps in differentiated human SH-SY5Y neuronal cells was observed following co-application of celastrol and arimoclomol, compared to their individual application. The dosages employed did not affect cell viability or neuronal process morphology. The induced Hsps included the little studied HSPA6 (Hsp70B'), a potentially neuroprotective protein that is present in the human genome but not in rat and mouse and hence is missing in current animal models of neurodegenerative disease. Enhanced induction of HSPA1A (Hsp70-1), DNAJB1 (Hsp40), HO-1 (Hsp32), and HSPB1 (Hsp27) was also observed. Celastrol activates heat shock transcription factor 1 (HSF1), the master regulator of Hsp gene transcription, and also exhibits potent anti-inflammatory and anti-oxidant activities. Arimoclomol is a co-activator that prolongs the binding of activated HSF1 to heat shock elements (HSEs) in the promoter regions of inducible Hsp genes. Elevated Hsp levels peaked at 10 to 12 h for HSPA6, HSPA1A, DNAJB1, and HO-1 and at 24 h for HSPB1. Co-application of celastrol and arimoclomol induced higher Hsp levels compared to heat shock paired with arimoclomol. The co-application strategy of celastrol and arimoclomol targets multiple neurodegenerative disease-associated pathologies including protein misfolding and protein aggregation, inflammatory and oxidative stress, and synaptic dysfunction.
Collapse
Affiliation(s)
- Catherine A S Deane
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
38
|
Abstract
Diabetes is a chronic disease, and its prevalence continues to rise and can increase the risk for the progression of microvascular (such as nephropathy, retinopathy and neuropathy) and also macrovascular complications. Diabetes is a condition in which the oxidative stress and inflammation rise. Heat shock proteins (HSPs) are a highly conserved family of proteins that are expressed by all cells exposed to environmental stress, and they have diverse functions. In patients with diabetes, the expression and levels of HSPs decrease, but these chaperones can aid in improving some complications of diabetes, such as oxidative stress and inflammation. (The suppression of some HSPs is associated with a generalized increase in tissue inflammation.) In this review, we summarize the current understanding of HSPs in diabetes as well as their complications, and we also highlight their potential role as therapeutic targets in diabetes.
Collapse
|
39
|
Blasco H, Patin F, Andres CR, Corcia P, Gordon PH. Amyotrophic Lateral Sclerosis, 2016: existing therapies and the ongoing search for neuroprotection. Expert Opin Pharmacother 2016; 17:1669-82. [PMID: 27356036 DOI: 10.1080/14656566.2016.1202919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS), one in a family of age-related neurodegenerative disorders, is marked by predominantly cryptogenic causes, partially elucidated pathophysiology, and elusive treatments. The challenges of ALS are illustrated by two decades of negative drug trials. AREAS COVERED In this article, we lay out the current understanding of disease genesis and physiology in relation to drug development in ALS, stressing important accomplishments and gaps in knowledge. We briefly consider clinical ALS, the ongoing search for biomarkers, and the latest in trial design, highlighting major recent and ongoing clinical trials; and we discuss, in a concluding section on future directions, the prion-protein hypothesis of neurodegeneration and what steps can be taken to end the drought that has characterized drug discovery in ALS. EXPERT OPINION Age-related neurodegenerative disorders are fast becoming major public health problems for the world's aging populations. Several agents offer promise in the near-term, but drug development is hampered by an interrelated cycle of obstacles surrounding etiological, physiological, and biomarkers discovery. It is time for the type of government-funded, public-supported offensive on neurodegenerative disease that has been effective in other fields.
Collapse
Affiliation(s)
- H Blasco
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - F Patin
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - C R Andres
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - P Corcia
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,d Centre SLA, Service de Neurologie , CHRU Bretonneau , Tours , France
| | - P H Gordon
- e Northern Navajo Medical Center , Neurology Unit , Shiprock , NM , USA
| |
Collapse
|
40
|
Parseghian MH, Hobson ST, Richieri RA. Targeted heat shock protein 72 for pulmonary cytoprotection. Ann N Y Acad Sci 2016; 1374:78-85. [PMID: 27152638 DOI: 10.1111/nyas.13059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Heat shock protein 72 (HSP72) is perhaps the most important member of the HSP70 family of proteins, given that it is induced in a wide variety of tissues and cells to combat stress, particularly oxidative stress. Here, we review independent observations of the critical role this protein plays as a pulmonary cytoprotectant and discuss the merits of developing HSP72 as a therapeutic for rapid delivery to cells and tissues after a traumatic event. We also discuss the fusion of HSP72 to a cell-penetrating single-chain Fv antibody fragment derived from mAb 3E10, referred to as Fv-HSP70. This fusion construct has been validated in vivo in a cerebral infarction model and is currently in testing as a clinical therapeutic to treat ischemic events and as a fieldable medical countermeasure to treat inhalation of toxicants caused by terrorist actions or industrial accidents.
Collapse
Affiliation(s)
| | - Stephen T Hobson
- Rubicon Biotechnology, Lake Forest, California.,Seacoast Science, Inc, Carlsbad, California
| | | |
Collapse
|
41
|
Ahmed M, Machado PM, Miller A, Spicer C, Herbelin L, He J, Noel J, Wang Y, McVey AL, Pasnoor M, Gallagher P, Statland J, Lu CH, Kalmar B, Brady S, Sethi H, Samandouras G, Parton M, Holton JL, Weston A, Collinson L, Taylor JP, Schiavo G, Hanna MG, Barohn RJ, Dimachkie MM, Greensmith L. Targeting protein homeostasis in sporadic inclusion body myositis. Sci Transl Med 2016; 8:331ra41. [PMID: 27009270 PMCID: PMC5043094 DOI: 10.1126/scitranslmed.aad4583] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 11/02/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is the commonest severe myopathy in patients more than 50 years of age. Previous therapeutic trials have targeted the inflammatory features of sIBM but all have failed. Because protein dyshomeostasis may also play a role in sIBM, we tested the effects of targeting this feature of the disease. Using rat myoblast cultures, we found that up-regulation of the heat shock response with arimoclomol reduced key pathological markers of sIBM in vitro. Furthermore, in mutant valosin-containing protein (VCP) mice, which develop an inclusion body myopathy, treatment with arimoclomol ameliorated disease pathology and improved muscle function. We therefore evaluated arimoclomol in an investigator-led, randomized, double-blind, placebo-controlled, proof-of-concept trial in sIBM patients and showed that arimoclomol was safe and well tolerated. Although arimoclomol improved some IBM-like pathology in the mutant VCP mouse, we did not see statistically significant evidence of efficacy in the proof-of-concept patient trial.
Collapse
Affiliation(s)
- Mhoriam Ahmed
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Pedro M Machado
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Adrian Miller
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Charlotte Spicer
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Laura Herbelin
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Jianghua He
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Janelle Noel
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yunxia Wang
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - April L McVey
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Philip Gallagher
- Department of Health, Sport, and Exercise Science, The University of Kansas, Lawrence, KS 66045-7567, USA
| | - Jeffrey Statland
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Ching-Hua Lu
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bernadett Kalmar
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stefen Brady
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Huma Sethi
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, UCL Hospitals, Queen Square, London WC1N 3BG, UK
| | - George Samandouras
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, UCL Hospitals, Queen Square, London WC1N 3BG, UK
| | - Matt Parton
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Janice L Holton
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Anne Weston
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Lucy Collinson
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - J Paul Taylor
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Giampietro Schiavo
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael G Hanna
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA.
| | - Linda Greensmith
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
42
|
The Role of the Protein Quality Control System in SBMA. J Mol Neurosci 2015; 58:348-64. [PMID: 26572535 DOI: 10.1007/s12031-015-0675-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/01/2015] [Indexed: 12/13/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is an X-linked disease associated with the expansion of the CAG triplet repeat present in exon 1 of the androgen receptor (AR) gene. This results in the production of a mutant AR containing an elongated polyglutamine tract (polyQ) in its N-terminus. Interestingly, the ARpolyQ becomes toxic only after its activation by the natural androgenic ligands, possibly because of aberrant androgen-induced conformational changes of the ARpolyQ, which generate misfolded species. These misfolded ARpolyQ species must be cleared from motoneurons and muscle cells, and this process is mediated by the protein quality control (PQC) system. Experimental evidence suggested that failure of the PQC pathways occurs in disease, leading to ARpolyQ accumulation and toxicity in the target cells. In this review, we summarized the overall impact of mutant and misfolded ARpolyQ on the PQC system and described how molecular chaperones and the degradative pathways (ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and the unfolded protein response (UPR), which activates the endoplasmic reticulum-associated degradation (ERAD)) are differentially affected in SBMA. We also extensively and critically reviewed several molecular and pharmacological approaches proposed to restore a global intracellular activity of the PQC system. Collectively, these data suggest that the fine and delicate equilibrium existing among the different players of the PQC system could be restored in a therapeutic perspective by the synergic/additive activities of compounds designed to tackle sequential or alternative steps of the intracellular defense mechanisms triggered against proteotoxic misfolded species.
Collapse
|
43
|
Furukawa A, Koriyama Y. A role of Heat Shock Protein 70 in Photoreceptor Cell Death: Potential as a Novel Therapeutic Target in Retinal Degeneration. CNS Neurosci Ther 2015; 22:7-14. [PMID: 26507240 DOI: 10.1111/cns.12471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023] Open
Abstract
Retinal degenerative diseases (RDs) such as retinitis pigmentosa (RP) are a genetically heterogeneous group of disorders characterized by night blindness and peripheral vision loss, which caused by the dysfunction and death of photoreceptor cells. Although many causative gene mutations have been reported, the final common end stage is photoreceptor cell death. Unfortunately, no effective treatments or therapeutic agents have been discovered. Heat shock protein 70 (HSP70) is highly conserved and has antiapoptotic activities. A few reports have shown that HSP70 plays a role in RDs. Thus, we focused on the role of HSP70 in photoreceptor cell death. Using the N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death model in mice, we could examine two stages of the novel cell death mechanism; the early stage, including HSP70 cleavage through protein carbonylation by production of reactive oxygen species, lipid peroxidation and Ca(2+) influx/calpain activation, and the late stage of cathepsin and/or caspase activation. The upregulation of intact HSP70 expression by its inducer is likely to protect photoreceptor cells. In this review, we focus on the role of HSP70 and the novel cell death signaling process in RDs. We also describe candidate therapeutic agents for RDs.
Collapse
Affiliation(s)
- Ayako Furukawa
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
44
|
Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J. The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 2015; 78:243-73. [PMID: 25487025 DOI: 10.1007/978-3-319-11731-7_12] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the HSP70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has become evident that the HSP70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several HSP70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the HSP70 chaperone system to human disease.
Collapse
Affiliation(s)
- Emma J Duncan
- Molecular Endocrinology Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charter House Square, EC1M 6BQ, London, UK,
| | | | | | | |
Collapse
|
45
|
Knippenberg S, Rath KJ, Böselt S, Thau-Habermann N, Schwarz SC, Dengler R, Wegner F, Petri S. Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. J Tissue Eng Regen Med 2015; 11:751-764. [PMID: 25641599 DOI: 10.1002/term.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Klaus Jan Rath
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Nadine Thau-Habermann
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Sigrid C Schwarz
- German Centre for Neurodegenerative Diseases (DZNE), Technical University of Munich, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
46
|
Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab 2014; 3:781-93. [PMID: 25379403 PMCID: PMC4216407 DOI: 10.1016/j.molmet.2014.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background From their initial, accidental discovery 50 years ago, the highly conserved Heat Shock Proteins (HSPs) continue to exhibit fundamental roles in the protection of cell integrity. Meanwhile, in the midst of an obesity epidemic, research demonstrates a key involvement of low grade inflammation, and mitochondrial dysfunction amongst other mechanisms, in the pathology of insulin resistance and type 2 diabetes mellitus (T2DM). In particular, tumor necrosis factor alpha (TNFα), endoplasmic reticulum (ER) and oxidative stress all appear to be associated with obesity and stimulate inflammatory kinases such as c jun amino terminal kinase (JNK), inhibitor of NF-κβ kinase (IKK) and protein kinase C (PKC) which in turn, inhibit insulin signaling. Mitochondrial dysfunction in skeletal muscle has also been proposed to be prominent in the pathogenesis of T2DM either by reducing the ability to oxidize fatty acids, leading to the accumulation of deleterious lipid species in peripheral tissues such as skeletal muscle and liver, or by altering the cellular redox state. Since HSPs act as molecular chaperones and demonstrate crucial protective functions in stressed cells, we and others have postulated that the manipulation of HSP expression in metabolically relevant tissues represents a therapeutic avenue for obesity-induced insulin resistance. Scope of Review This review summarizes the literature from both animal and human studies, that has examined how HSPs, particularly the inducible HSP, Heat Shock Protein 72 (Hsp72) alters glucose homeostasis and the possible approaches to modulating Hsp72 expression. A summation of the role of chemical chaperones in metabolic disorders is also included. Major Conclusions Targeted manipulation of Hsp72 or use of chemical chaperiones may have clinical utility in treating metabolic disorders such as insulin resistance and T2DM.
Collapse
|
47
|
Goyal NA, Mozaffar T. Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin Investig Drugs 2014; 23:1541-51. [DOI: 10.1517/13543784.2014.933807] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Parfitt DA, Aguila M, McCulley CH, Bevilacqua D, Mendes HF, Athanasiou D, Novoselov SS, Kanuga N, Munro PM, Coffey PJ, Kalmar B, Greensmith L, Cheetham ME. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death Dis 2014; 5:e1236. [PMID: 24853414 PMCID: PMC4047904 DOI: 10.1038/cddis.2014.214] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases that cause blindness due to the progressive death of rod and cone photoreceptors in the retina. There are currently no effective treatments for RP. Inherited mutations in rhodopsin, the light-sensing protein of rod photoreceptor cells, are the most common cause of autosomal-dominant RP. The majority of mutations in rhodopsin, including the common P23H substitution, lead to protein misfolding, which is a feature in many neurodegenerative disorders. Previous studies have shown that upregulating molecular chaperone expression can delay disease progression in models of neurodegeneration. Here, we have explored the potential of the heat-shock protein co-inducer arimoclomol to ameliorate rhodopsin RP. In a cell model of P23H rod opsin RP, arimoclomol reduced P23H rod opsin aggregation and improved viability of mutant rhodopsin-expressing cells. In P23H rhodopsin transgenic rat models, pharmacological potentiation of the stress response with arimoclomol improved electroretinogram responses and prolonged photoreceptor survival, as assessed by measuring outer nuclear layer thickness in the retina. Furthermore, treated animal retinae showed improved photoreceptor outer segment structure and reduced rhodopsin aggregation compared with vehicle-treated controls. The heat-shock response (HSR) was activated in P23H retinae, and this was enhanced with arimoclomol treatment. Furthermore, the unfolded protein response (UPR), which is induced in P23H transgenic rats, was also enhanced in the retinae of arimoclomol-treated animals, suggesting that arimoclomol can potentiate the UPR as well as the HSR. These data suggest that pharmacological enhancement of cellular stress responses may be a potential treatment for rhodopsin RP and that arimoclomol could benefit diseases where ER stress is a factor.
Collapse
Affiliation(s)
- D A Parfitt
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - M Aguila
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - C H McCulley
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Bevilacqua
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - H F Mendes
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Athanasiou
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - S S Novoselov
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - N Kanuga
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - P M Munro
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - P J Coffey
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - B Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - L Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - M E Cheetham
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
49
|
Literáti-Nagy B, Tory K, Peitl B, Bajza Á, Korányi L, Literáti-Nagy Z, Hooper PL, Vígh L, Szilvássy Z. Improvement of insulin sensitivity by a novel drug candidate, BGP-15, in different animal studies. Metab Syndr Relat Disord 2014; 12:125-31. [PMID: 24386957 DOI: 10.1089/met.2013.0098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Insulin resistance has been recognized as the most significant predictor of further development of type 2 diabetes mellitus (T2DM). Here we investigated the effect of a heat shock protein (HSP) co-inducer, BGP-15, on insulin sensitivity in different insulin-resistant animal models and compared its effect with insulin secretagogues and insulin sensitizers. METHODS Insulin sensitivity was assessed by the hyperinsulinemic euglycemic glucose clamp technique in normal and cholesterol-fed rabbits and in healthy Wistar and Goto-Kakizaki (GK) rats in dose-ranging studies. We also examined the effect of BGP-15 on streptozotocin-induced changes in the vasorelaxation of the aorta in Sprague-Dawley rats. RESULTS BGP-15 doses of 10 and 30 mg/kg increased insulin sensitivity by 50% and 70%, respectively, in cholesterol-fed but not in normal rabbits. After 5 days of treatment with BGP-15, the glucose infusion rate was increased in a dose-dependent manner in genetically insulin-resistant GK rats. The most effective dose was 20 mg/kg, which showed a 71% increase in insulin sensitivity compared to control group. Administration of BGP-15 protected against streptozotocin-induced changes in vasorelaxation, which was similar to the effect of rosiglitazone. CONCLUSION Our results indicate that the insulin-sensitizing effect of BGP-15 is comparable to conventional insulin sensitizers. This might be of clinical utility in the treatment of T2DM.
Collapse
|
50
|
The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. Pharmacol Ther 2014; 141:40-54. [DOI: 10.1016/j.pharmthera.2013.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
|