1
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
2
|
Malik G, Arora R, Chaturvedi R, Paul MS. Implementation of Genetic Engineering and Novel Omics Approaches to Enhance Bioremediation: A Focused Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:443-450. [PMID: 33837794 DOI: 10.1007/s00128-021-03218-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Bioremediation itself is considered to be a cost effective soil clean-up technique and preferred over invasive physical and chemical treatments. Besides increasing efficiency, application of genetic engineering has led to reduction in the time duration required to achieve remediation, overcoming the so called 'Achilles heel' of Bioremediation. Omics technologies, namely genomics, transcriptomics, proteomics, and metabolomics, are being employed extensively to gain insights at genetic level. A wise synchronised application of these approaches can help scrutinize complex metabolic pathways, and molecular changes in response to heavy metal stress, and also its fate i.e., uptake, transport, sequestration and detoxification. In the present review, an account of some latest achievements made in the field is presented.
Collapse
Affiliation(s)
| | - Rahul Arora
- The Francis Crick Institute, London, United Kingdom
- Division of Biosciences, University College London, London, United Kingdom
| | | | - Manoj S Paul
- Department of Botany, St. John's College, Agra, U.P, India
| |
Collapse
|
3
|
Singh A, Panwar R, Mittal P, Hassan MI, Singh IK. Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. Int J Biol Macromol 2021; 184:874-886. [PMID: 34175340 DOI: 10.1016/j.ijbiomac.2021.06.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Cytochrome P450s (CYPs) are a versatile group of enzymes and one of the largest families of proteins, controlling various physiological processes via biosynthetic and detoxification pathways. CYPs perform multiple roles through a critical irreversible enzymatic reaction in which an oxygen atom is inserted within hydrophobic molecules, converting them into the reactive and hydro soluble components. During evolution, plants have acquired significantly more number of CYPs and represent about 1% of the encoded genes . CYPs are highly conserved proteins involved in growth, development and tolerance against biotic and abiotic stresses. Furthermore, CYPs reinforce plants' molecular and chemical defense mechanisms by regulating the biosynthesis of secondary metabolites, enhancing reactive oxygen species (ROS) scavenging and controlling biosynthesis and homeostasis of phytohormones, including abscisic acid (ABA) and jasmonates. Thus, they are the critical targets of metabolic engineering for enhancing plant defense against environmental stresses. Additionally, CYPs are also used as biocatalysts in the fields of pharmacology and phytoremediation. Herein, we highlight the role of CYPs in plant stress tolerance and their applications for human welfare.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India.
| | - Ruby Panwar
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
4
|
Chiadò A, Bosco F, Bardelli M, Simonelli L, Pedotti M, Marmo L, Varani L. Rational engineering of the lccβ T. versicolor laccase for the mediator-less oxidation of large polycyclic aromatic hydrocarbons. Comput Struct Biotechnol J 2021; 19:2213-2222. [PMID: 33995914 PMCID: PMC8099718 DOI: 10.1016/j.csbj.2021.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023] Open
Abstract
Computational-assisted protein engineering of the binding pocket of laccases. Mutants have activity increased up to ~ 300% in a broader pH range compared to the WT. Enhanced activity towards bulky PAHs in comparison to the WT enzyme. Ability to oxidize harmful PAH model compounds (dyes) that the WT enzyme cannot modify. Higher oxidation levels without mediators compared to the WT laccase with mediators.
Laccases are among the most sought-after biocatalyst for many green applications, from biosensors to pollution remedial, because they simply need oxygen from the air to oxidize and degrade a broad range of substrates. However, natural laccases cannot process large and toxic polycyclic aromatic hydrocarbons (PAHs) except in the presence of small molecules, called mediators, which facilitate the reaction but are inconvenient for practical on-field applications. Here we exploited structure-based protein engineering to generate rationally modified fungal laccases with increased ability to process bulky PAHs even in a mediator-less reaction. Computational simulations were used to estimate the impact of mutations in the enzymatic binding pocket on the ability to bind and oxidize a selected set of organic compounds. The most promising mutants were produced and their activity was evaluated by biochemical assays with phenolic and non-phenolic substrates. Mutant laccases engineered with a larger binding pocket showed enhanced activity (up to ~ 300% at pH 3.0) in a wider range of pH values (3.0–8.0) in comparison to the wild type enzyme. In contrast to the natural laccase, these mutants efficiently degraded bulky and harmful triphenylmethane dyes such as Ethyl Green (up to 91.64% after 24 h), even in the absence of mediators, with positive implications for the use of such modified laccases in many green chemistry processes (e.g. wastewater treatment).
Collapse
Affiliation(s)
- Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino Corso, Duca degli Abruzzi 24, 10129 Torino, Italy
- Corresponding author.
| | - Francesca Bosco
- Department of Applied Science and Technology, Politecnico di Torino Corso, Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Bardelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
| | - Luca Marmo
- Department of Applied Science and Technology, Politecnico di Torino Corso, Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
| |
Collapse
|
5
|
Mahfouz S, Mansour G, Murphy DJ, Hanano A. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractDioxins are the most toxic known environmental pollutants and are mainly formed by human activities. Due to their structural stability, dioxins persist for extended periods and can be transported over long distances from their emission sources. Thus, dioxins can be accumulated to considerable levels in both human and animal food chains. Along with sediments, soils are considered the most important reservoirs of dioxins. Soil microorganisms are therefore highly exposed to dioxins, leading to a range of biological responses that can impact the diversity, genetics and functional of such microbial communities. Dioxins are very hydrophobic with a high affinity to lipidic macromolecules in exposed organisms, including microbes. This review summarizes the genetic, molecular and biochemical impacts of dioxins on the lipid metabolism of soil microbial communities and especially examines modifications in the composition and architecture of cell membranes. This will provide a useful scientific benchmark for future attempts at soil ecological risk assessment, as well as in identifying potential dioxin-specific-responsive lipid biomarkers. Finally, potential uses of lipid-sequestering microorganisms as a part of biotechnological approaches to the bio-management of environmental contamination with dioxins are discussed.
Collapse
|
6
|
Santes-Palacios R, Camacho-Carranza R, Espinosa-Aguirre JJ. Bacterial mutagenicity of selected procarcinogens in the presence of recombinant human or rat cytochrome P4501A1. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 835:25-31. [DOI: 10.1016/j.mrgentox.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
|
7
|
Navrátilová V, Paloncýová M, Berka K, Mise S, Haga Y, Matsumura C, Sakaki T, Inui H, Otyepka M. Molecular insights into the role of a distal F240A mutation that alters CYP1A1 activity towards persistent organic pollutants. Biochim Biophys Acta Gen Subj 2017; 1861:2852-2860. [DOI: 10.1016/j.bbagen.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023]
|
8
|
Mammalian cytochrome P450-dependent metabolism of polychlorinated dibenzo-p-dioxins and coplanar polychlorinated biphenyls. Int J Mol Sci 2014; 15:14044-57. [PMID: 25123135 PMCID: PMC4159838 DOI: 10.3390/ijms150814044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 02/02/2023] Open
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and coplanar polychlorinated biphenyls (PCBs) contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP)-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high activities toward monoCDDs, diCDDs, and triCDDs but no detectable activity toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD). Large amino acids located at putative substrate-recognition sites and the F-G loop in rat CYP1A1 contributed to the successful metabolism of 2,3,7,8-tetraCDD. Rat, but not human, CYP1A1 metabolized 3,3',4,4',5-pentachlorobiphenyl (CB126) to two hydroxylated metabolites. These metabolites are probably less toxic than is CB126, due to their higher solubility. Homology models of human and rat CYP1A1s and CB126 docking studies indicated that two amino acid differences in the CB126-binding cavity were important for CB126 metabolism. In this review, the importance of CYPs in the metabolism of dioxins and PCBs in mammals and the species-based differences between humans and rats are described. In addition, the authors reveal the molecular mechanism behind the binding modes of dioxins and PCBs in the heme pocket of CYPs.
Collapse
|
9
|
Sakaki T, Yamamoto K, Ikushiro S. Possibility of application of cytochrome P450 to bioremediation of dioxins. Biotechnol Appl Biochem 2013; 60:65-70. [PMID: 23586993 DOI: 10.1002/bab.1067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/20/2012] [Indexed: 11/07/2022]
Abstract
Dioxins, including polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans, and coplanar polychlorinated biphenyls, are known to be metabolized by enzymes such as cytochrome (CYP) P450, angular dioxygenase, lignin peroxidase, and dehalogenase. It is noted that all of these enzymes have metal ions in their active centers, and the enzyme systems except for peroxidase each have a distinct electron transport chain. Among these enzyme systems, we have focused on cytochrome P450-dependent metabolism of dioxins from the viewpoint of practical use for bioremediation. Mammalian and fungal cytochromes P450 showed remarkable activity toward low-chlorinated PCDDs. In particular, mammalian cytochromes P450 belonging to the CYP1 family showed high activity. Rat CYP1A1 showed high activity toward 2,3,7-trichloro-dibenzo-p-dioxin but no detectable activity for 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD). On the basis of these results, we assumed that enlarging the space of the substrate-binding pocket of rat CYP1A1 might generate TCDD-metabolizing enzyme. Large-sized amino acids located at putative substrate-recognition sites and F-G loop were substituted for alanine by site-directed mutagenesis. Finally, we successfully generated 2,3,7,8-TCDD-metabolizing enzyme by site-directed mutagenesis of rat CYP1A1. We hope that recombinant microorganisms harboring genetically engineered cytochrome P450 will be used for bioremediation of soil contaminated with PCDDs, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls in the future.
Collapse
Affiliation(s)
- Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan.
| | | | | |
Collapse
|
10
|
Enzyme systems for biodegradation of polychlorinated dibenzo-p-dioxins. Appl Microbiol Biotechnol 2010; 88:23-30. [DOI: 10.1007/s00253-010-2765-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
|
11
|
Kumar S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 2010; 6:115-31. [PMID: 20064075 DOI: 10.1517/17425250903431040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE OF THE FIELD Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: i) synthesis of novel drugs and drug metabolites; ii) targeted cancer gene therapy; iii) biosensor design; and iv) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. AREAS COVERED IN THIS REVIEW In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of the above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency and utilization of alternate oxidants. WHAT THE READER WILL GAIN The review provides a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine and bioremediation. TAKE HOME MESSAGE Because of its wide applications, academic and pharmaceutical researchers, environmental scientists and healthcare providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology and Toxicology, 2464 Charlotte St., Kansas City, MO 64108, USA.
| |
Collapse
|
12
|
Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 2010; 86:773-80. [DOI: 10.1007/s00253-009-2413-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Hayashi K, Sugimoto H, Shinkyo R, Yamada M, Ikeda S, Ikushiro S, Kamakura M, Shiro Y, Sakaki T. Structure-Based Design of a Highly Active Vitamin D Hydroxylase from Streptomyces griseolus CYP105A1. Biochemistry 2008; 47:11964-72. [DOI: 10.1021/bi801222d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keiko Hayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugimoto
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Raku Shinkyo
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masato Yamada
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinnosuke Ikeda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshitsugu Shiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Goldstone HMH, Stegeman JJ. Molecular Mechanisms of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Cardiovascular Embryotoxicity. Drug Metab Rev 2008; 38:261-89. [PMID: 16684661 DOI: 10.1080/03602530600570099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons are widespread environmental contaminants and potent developmental toxicants. Hallmarks of embryonic exposure include edema, hemorrhage, and mortality. Recent studies in zebrafish and chicken have revealed direct impairment of cardiac muscle growth that may underlie these overt symptoms. TCDD toxicity is mediated by the aryl hydrocarbon receptor, but downstream targets remain unclear. Oxidative stress and growth factor modulation have been implicated in TCDD cardiovascular toxicity. Gene expression profiling is elucidating additional pathways by which TCDD might act. We review our understanding of the mechanism of TCDD embryotoxicity at morphological and molecular levels.
Collapse
Affiliation(s)
- Heather M H Goldstone
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
15
|
Tanaka N, Miyasho T, Shinkyo R, Sakaki T, Yokota H. cDNA cloning and characterization of feline CYP1A1 and CYP1A2. Life Sci 2006; 79:2463-73. [PMID: 17097115 DOI: 10.1016/j.lfs.2006.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 09/20/2006] [Accepted: 08/11/2006] [Indexed: 11/20/2022]
Abstract
Deficiency of drug glucuronidation in the cat is one of the major reasons why this animal is highly sensitive to the side effects of drugs. The characterization of cytochrome P450 isoforms belonging to the CYP1A subfamily, which exhibit important drug oxidation activities such as activation of pro-carcinogens, was investigated. Two cDNAs, designated CYP1A-a and CYP1A-b, corresponding to the CYP1A subfamily were obtained from feline liver. CYP1A-a and CYP1A-b cDNAs comprise coding regions of 1554 bp and 1539 bp, and encode predicted amino acid sequences of 517 and 512 residues, respectively. These amino acid sequences contain a heme-binding cysteine and a conserved threonine. The cDNA identities, as well as the predicted amino acid sequences containing six substrate recognition sites, suggest that CYP1A-a and CYP1A-b correspond to CYP1A1 and CYP1A2, respectively. This was confirmed by the kinetic parameters of the arylhydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase activities of expressed CYPs in yeast AH22 cells and by the tissue distribution of each mRNA. However, theophylline 3-demethylation is believed to be catalyzed by CYP1A1 in cats, based on the high V(max) and low K(m) seen, in contrast to other animals. Because feline CYP1A2 had a higher K(m) for phenacetin O-deethylase activity with acetaminophen, which cannot be conjugated with glucuronic acid due to UDP-glucuronosyltransferase deficiency, it is supposed that the side effects of phenacetin as a result of toxic intermediates are severe and prolonged in cats.
Collapse
MESH Headings
- Amino Acid Sequence
- Analgesics, Non-Narcotic/metabolism
- Analgesics, Non-Narcotic/pharmacokinetics
- Animals
- Cats/genetics
- Cats/metabolism
- Cloning, Molecular
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Cytochrome P-450 CYP1A2/genetics
- Cytochrome P-450 CYP1A2/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Inactivation, Metabolic
- Kinetics
- Microsomes, Liver/enzymology
- Microsomes, Liver/metabolism
- Mixed Function Oxygenases/metabolism
- Models, Biological
- Molecular Sequence Data
- Phenacetin/metabolism
- Phenacetin/pharmacokinetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Nagako Tanaka
- Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | |
Collapse
|
16
|
Shinkyo R, Kamakura M, Ikushiro SI, Inouye K, Sakaki T. Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant. Appl Microbiol Biotechnol 2006; 72:584-90. [PMID: 16489453 DOI: 10.1007/s00253-005-0286-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
Among polychlorinated dibenzo-p-dioxins (PCDDs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is the most toxic one. Recently, we reported that rat CYP1A1 mutant, F240A, expressed in yeast showed metabolic activity toward 2,3,7,8-TetraCDD. In this study, we successfully expressed N-terminal truncated P450s (Delta1A1 and DeltaF240A) in Escherichia coli cells. Kinetic analysis using membrane fractions prepared from the recombinant E. coli cells revealed that DeltaF240A has enzymatic properties similar to F240A expressed in yeast. The metabolism of PCDDs by recombinant E. coli cells expressing both DeltaF240A and human NADPH-P450 reductase was also examined. When 2,3,7-TriCDD was added to the E. coli cell culture at a final concentration of 10 microM, approximately 90% of the 2,3,7-TriCDD was converted into multiple metabolites within 8 h. These results indicate the possible application of prokaryotic cells expressing DeltaF240A to the bioremediation of PCDD-contaminated soil.
Collapse
Affiliation(s)
- Raku Shinkyo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
17
|
Kasai N, Sakaki T, Shinkyo R, Ikushiro SI, Iyanagi T, Kamao M, Okano T, Ohta M, Inouye K. Sequential metabolism of 2,3,7-trichlorodibenzo-p-dioxin (2,3,7-triCDD) by cytochrome P450 and UDP-glucuronosyltransferase in human liver microsomes. Drug Metab Dispos 2004; 32:870-5. [PMID: 15258113 DOI: 10.1124/dmd.32.8.870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) was examined using a recombinant enzyme system and human liver microsomes. We analyzed the glucuronidation of 2,3,7-trichlorodibenzo-p-dioxin (2,3,7-triCDD) by rat CYP1A1 expressed in yeast microsomes and human UGT expressed in baculovirus-infected insect cells. Multiple UGT isozymes showed glucuronidation activity toward 8-hydroxy-2,3,7-triCDD (8-OH-2,3,7-triCDD), which was produced by CYP1A1. Of these UGTs, UGT1A1, 1A9, and 2B7, which are constitutively expressed in human livers, showed remarkable activity toward 8-OH-2,3,7-triCDD. The apparent kinetic parameters of glucuronidation, K(m) and k(cat), were estimated to be 0.8 microM and 1.8 min(-1), respectively, for UGT1A1, 0.8 microM and 1.8 min(-1), respectively, for UGT1A9, and 3.9 microM and 7.0 min(-1), respectively, for UGT2B7. In human liver microsomes with NADPH and UDP-glucuronic acid, 2,3,7-triCDD was first converted to 8-OH-2,3,7-triCDD, then further converted to its glucuronide. We compared the ability of 10 human liver microsomes to metabolize 2,3,7-triCDD and observed a significant difference in the glucuronidation of 2,3,7-triCDD that originated from the difference of the P450-dependent hydroxylation of 2,3,7-triCDD.
Collapse
Affiliation(s)
- Noriyuki Kasai
- Graduate School of Agrculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|