1
|
Ferguson R, Holloway DE, Chandrasekhar A, Acharya KR, Subramanian V. The catalytic activity and secretion of zebrafish RNases are essential for their in vivo function in motor neurons and vasculature. Sci Rep 2019; 9:1107. [PMID: 30710110 PMCID: PMC6358602 DOI: 10.1038/s41598-018-37140-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenin (hANG), a member of the Ribonuclease A superfamily has angiogenic, neurotrophic and neuroprotective activities. Mutations in hANG have been found in patients with Amyotrophic lateral sclerosis (ALS). The zebrafish (Danio rerio) rnasel-1, 2 and 3 are orthologues of hANG and of these only Rnasel-1 and Rnasel-2 have been shown to be angiogenic. Herein we show that NCI-65828, a potent and specific small molecule inhibitor of hANG inhibits Rnasel-1 to a similar extent. Treatment of early zebrafish embryos with NCI-65828, or with terrein, a fungal metabolite which prevents the secretion of hANG, resulted in spinal neuron aberrations as well defects in trunk vasculature. Our detailed expression analysis and inhibitor studies suggest that Rnasel-1 plays important roles in neuronal migration and pathfinding as well as in angiogenesis in zebrafish. Our studies suggest the usefulness of the zebrafish as a model to dissect the molecular consequences of the ANG ALS variants.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Daniel E Holloway
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
2
|
Povysheva T, Shmarov M, Logunov D, Naroditsky B, Shulman I, Ogurcov S, Kolesnikov P, Islamov R, Chelyshev Y. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG. J Neurosurg Spine 2017; 27:105-115. [PMID: 28452633 DOI: 10.3171/2016.9.spine15959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The most actively explored therapeutic strategy for overcoming spinal cord injury (SCI) is the delivery of genes encoding molecules that stimulate regeneration. In a mouse model of amyotrophic lateral sclerosis and in preliminary clinical trials in patients with amyotrophic lateral sclerosis, the combined administration of recombinant adenoviral vectors (Ad5-VEGF+Ad5-ANG) encoding the neurotrophic/angiogenic factors vascular endothelial growth factor ( VEGF) and angiogenin ( ANG) was found to slow the development of neurological deficits. These results suggest that there may be positive effects of this combination of genes in posttraumatic spinal cord regeneration. The objective of the present study was to determine the effects of Ad5-VEGF+Ad5-ANG combination therapy on motor function recovery and reactivity of astrocytes in a rat model of SCI. METHODS Spinal cord injury was induced in adult Wistar rats by the weight-drop method. Rats (n = 51) were divided into 2 groups: the experimental group (Ad5-VEGF+Ad5-ANG) and the control group (Ad5-GFP [green fluorescent protein]). Recovery of motor function was assessed using the Basso, Beattie, and Bresnahan scale. The duration and intensity of infectivity and gene expression from the injected vectors were assessed by immunofluorescent detection of GFP. Reactivity of glial cells was assessed by changes in the number of immunopositive cells expressing glial fibrillary acidic protein (GFAP), S100β, aquaporin 4 (AQP4), oligodendrocyte transcription factor 2, and chondroitin sulfate proteoglycan 4. The level of S100β mRNA expression in the spinal cord was estimated by real-time polymerase chain reaction. RESULTS Partial recovery of motor function was observed 30 days after surgery in both groups. However, Basso, Beattie, and Bresnahan scores were 35.9% higher in the Ad5-VEGF+Ad5-ANG group compared with the control group. Specific GFP signal was observed at distances of up to 5 mm in the rostral and caudal directions from the points of injection. A 1.5 to 2.0-fold increase in the number of GFAP+, S100β+, and AQP4+ cells was observed in the white and gray matter at a distance of up to 5 mm from the center of the lesion site in the caudal and rostral directions. At 30 days after injury, a 2-fold increase in S100β transcripts was observed in the Ad5-VEGF+Ad5-ANG group compared with the control group. CONCLUSIONS Intraspinal injection of recombinant adenoviral vectors encoding VEGF and ANG stimulates functional recovery after traumatic SCI. The increased number of S100β+ astrocytes induced by this approach may be a beneficial factor for maintaining the survival and function of neurons. Therefore, gene therapy with Ad5-VEGF+Ad5-ANG vectors is an effective therapeutic method for SCI treatment.
Collapse
Affiliation(s)
| | - Maksim Shmarov
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Denis Logunov
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Boris Naroditsky
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya Shulman
- Department of Neurosurgery, Republican Clinical Hospital, Kazan; and
| | - Sergey Ogurcov
- Department of Neurosurgery, Republican Clinical Hospital, Kazan; and
| | | | | | | |
Collapse
|
3
|
Angiogenin expression during early human placental development; association with blood vessel formation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:781632. [PMID: 25093183 PMCID: PMC4100457 DOI: 10.1155/2014/781632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/19/2014] [Indexed: 02/02/2023]
Abstract
The placenta is a transient organ essential for fetal development. During human placental development, chorionic villi grow in coordination with a large capillary network resulting from both vasculogenesis and angiogenesis. Angiogenin is one of the most potent inducers of neovascularisation in experimental models in vivo. We and others have previously mapped angiogenin expression in the human term placenta. Here, we explored angiogenin involvement in early human placental development. We studied, angiogenin expression by in situ hybridisation and/or by RT-PCR in tissues and primary cultured trophoblastic cells and angiogenin cellular distribution by coimmunolabelling with cell markers: CD31 (PECAM-1), vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), Tie-2, von Willebrand factor, CD34, erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Extravillous and villous cytotrophoblasts, isolated and differentiated in vitro, expressed and secreted angiogenin. Angiogenin was detected in villous trophoblastic layers, and structured and nascent fetal vessels. In decidua, it was expressed by glandular epithelial cells, vascular cells and macrophages. The observed pattern of angiogenin expression is compatible with a role in blood vessel formation and in cross-talk between trophoblasts and endothelial cells. In view of angiogenin properties, we suggest that angiogenin may participate in placental vasculogenesis and organogenesis.
Collapse
|
4
|
Pyatibratov MG, Kostyukova AS. New insights into the role of angiogenin in actin polymerization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:175-98. [PMID: 22449490 DOI: 10.1016/b978-0-12-394306-4.00011-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiogenin is a potent stimulator of angiogenesis. It interacts with endothelial cells and induces a wide range of cellular responses initiating a process of blood vessel formation. One important target of angiogenin is endothelial cell-surface actin, and their interaction might be one of crucial steps in angiogenin-induced neovascularization. Recently, it was shown that angiogenin inhibits polymerization of G-actin and changes the physical properties of F-actin. These observations suggest that angiogenin may cause changes in the cell cytoskeleton. This chapter reviews the current state of the literature regarding angiogenin structure and function and discusses the relationship between the angiogenin and actin and possible functional roles of their interaction.
Collapse
Affiliation(s)
- Mikhail G Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
5
|
Juillerat-jeanneret L, And PD, Janzer RC. Heterogeneity of Microvascular Endothelial Cells of the Brain: A Comparison of the Effects of Extracellular Matrix and Soluble Astrocytic Factors. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329309102314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Shi H, Han C, Mao Z, Ma L, Gao C. Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng Part A 2009; 14:1775-85. [PMID: 18950270 DOI: 10.1089/ten.tea.2007.0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artificial dermis lacks a vascular network, and angiogenesis is slow in vivo. Controlled delivery of angiogenin (ANG), a potent inducer of angiogenesis, should promote angiogenesis in artificial dermis. In this study, a porous collagen-chitosan scaffold was fabricated and heparinized using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) with a freeze-drying method. Using radioiodine labeling, the effect of heparin on the binding of ANG to the scaffold was studied. The release of ANG from the heparinized scaffold was investigated using a radioiodine labeling method or an enzyme-linked immunosorbent assay method. In vivo angiogenesis of the scaffold was studied for 28 days. All scaffolds possess three-dimensional porous structures, and their mean pore sizes increase upon EDC-NHS cross-linking. The binding of ANG to the scaffold showed a linear correlation with ANG concentration. With ANG concentrations of 160 ng/mL, the binding of ANG to the heparinized scaffold was 36.5%. In vitro, ANG was released from the heparinized scaffold in a controlled manner. The presence of ANG enhanced the angiogenesis of the heparinized scaffold after subcutaneous implantation into rabbits. The results of this study indicate that a porous collagen-chitosan scaffold loaded with ANG may be valuable in the development of artificial dermis requiring enhanced angiogenesis.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Burn, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
7
|
Pavlov N, Hatzi E, Bassaglia Y, Frendo JL, Evain-Brion D, Badet J. Angiogenin distribution in human term placenta, and expression by cultured trophoblastic cells. Angiogenesis 2004; 6:317-30. [PMID: 15166501 PMCID: PMC1997312 DOI: 10.1023/b:agen.0000029412.95244.81] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human angiogenin is a 14-kDa secreted protein with angiogenic and ribonucleolytic activities. Angiogenin is associated with tumour development but is also present in normal biological fluids and tissues. To further address the physiological role of angiogenin, we studied its expression in situ and in vitro, using the human term placenta as a model of physiological angiogenesis. Angiogenin was immunodetected by light and transmission electron microscopy, and its cellular distribution was established by double immunolabelling with cell markers including von Willebrand factor, platelet/endothelial cell adhesion molecule-1 (PECAM-1), CD34, Tie-2, vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Angiogenin immunoreactivity was detected in villous and extravillous trophoblasts, the trophoblast basement membrane, the endothelial basal lamina, foetal blood vessels, foetal and maternal red blood cells, and amnionic cells. Its expression was confirmed by in situ hybridisation with a digoxygenin-labelled cDNA probe and reverse transcriptase-polymerase chain reaction amplification. Villous cytotrophoblasts, isolated and differentiated in vitro into a functional syncytiotrophoblast, expressed and secreted angiogenin. Given its known biological activities in vitro and its observed pattern of expression, these data suggest that, in human placenta, angiogenin has a role not only in angiogenesis but also in vascular and tissue homeostasis, maternal immune tolerance of the foetus, and host defences.
Collapse
Affiliation(s)
- Nadine Pavlov
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | | | - Yann Bassaglia
- Laboratoire de recherche sur la croissance cellulaire, la réparation et la régénération tissulaires
CNRS : FRE2412Université Paris XII Val de MarneFaculté des sciences
61 Av du général de Gaulle
94000 CRETEIL,FR
| | - Jean-Louis Frendo
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | - Danièle Evain-Brion
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | - Josette Badet
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
- * Correspondence should be adressed to: Josette Badet
| |
Collapse
|
8
|
Hatzi E, Bassaglia Y, Badet J. Internalization and processing of human angiogenin by cultured aortic smooth muscle cells. Biochem Biophys Res Commun 2000; 267:719-25. [PMID: 10673358 DOI: 10.1006/bbrc.1999.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human angiogenin is a 14-kDa plasma protein with angiogenic and ribonucleolytic activities. Angiogenin binds specifically to aortic smooth muscle cells, activates second messenger pathways, and inhibits their proliferation. Human and bovine aortic smooth muscle cells were used to study the internalization and intracellular fate of human angiogenin at 37 degrees C. Using a specific antibody against angiogenin, we found that the internalized native protein was localized in the perinuclear region at 30 min and then dispersed throughout the cytoplasm. In conditions favoring receptor-mediated endocytosis, internalization of iodinated angiogenin showed a first peak at 5 min and then further increased for up to 24 h. The half-life of the molecule, calculated as 12 h in chase experiments, could contribute to its intracellular accumulation. In cell extracts, in addition to the 14-kDa protein, a 8.7-kDa fragment was observed at 24 h, and three fragments with molecular mass of 10.5, 8.7, and 6. 1 kDa were detected at 48 h. Our data point to a specific internalization and processing of human angiogenin by aortic smooth muscle cells.
Collapse
Affiliation(s)
- E Hatzi
- Laboratoire de Recherche sur la Croissance Cellulaire, Université Paris XII-Val de Marne, Créteil, 94 010, France
| | | | | |
Collapse
|
9
|
Hatzi E, Badet J. Expression of receptors for human angiogenin in vascular smooth muscle cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:825-32. [PMID: 10103013 DOI: 10.1046/j.1432-1327.1999.00222.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human angiogenin is a plasma protein with angiogenic and ribonucleolytic activities. Angiogenin inhibited both DNA replication and proliferation of aortic smooth muscle cells. Binding of 125I-angiogenin to bovine aortic smooth muscle cells at 4 degrees C was specific, saturable, reversible and involved two families of interactions. High-affinity binding sites with an apparent dissociation constant of 0.2 nm bound 1 x 104 molecules per cell grown at a density of 3 x 104.cm-2. Low-affinity binding sites with an apparent dissociation constant of 0.1 micrometer bound 4 x 106 molecules.cell-1. High-affinity binding sites decreased as cell density increased and were not detected at confluence. 125I-angiogenin bound specifically to cells routinely grown in serum-free conditions, indicating that the angiogenin-binding components were cell-derived. Affinity labelling of sparse bovine smooth muscle cells yielded seven major specific complexes of 45, 52, 70, 87, 98, 210 and 250-260 kDa. The same pattern was obtained with human cells. Potential modulators of angiogenesis such as protamine, heparin and the placental ribonuclease inhibitor competed for angiogenin binding to the cells. Together these data suggest that cultured bovine and human aortic smooth muscle cells express specific receptors for human angiogenin.
Collapse
Affiliation(s)
- E Hatzi
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation Tissulaires, Université Paris XII-Val de Marne, Crétil, France
| | | |
Collapse
|
10
|
Abstract
Copper ions stimulate proliferation of human umbilical artery and vein endothelial cells but not human dermal fibroblasts or arterial smooth muscle cells. Incubation of human umbilical vein endothelial cells for 48 h with 500 microM CuSO4 in a serum-free medium in the absence of exogenous growth factors results in a twofold increase in cell number, similar to the cell number increase induced by 20 ng/ml of basic fibroblast growth factor under the same conditions. Copper-induced proliferation of endothelial cells is not inhibited by 10% fetal bovine serum or by the presence of antibodies against a variety of angiogenic, growth, and chemotactic factors including angiogenin, fibroblast growth factors, epidermal growth factor, platelet-derived growth factor, tumor necrosis factor-alpha, transforming growth factor-beta, macrophage/monocyte chemotactic and activating factor, and macrophage inflammatory protein-1alpha. Moreover, despite the previous observations that copper increased total specific binding of 125I-angiogenin to endothelial cells, binding to the 170 kDa receptor is not changed; hence, the mitogenic activity of angiogenin is not altered by copper. Copper-induced proliferation, along with early reports that copper induces migration of endothelial cells, may suggest a possible mechanism for the involvement of copper in the process of angiogenesis.
Collapse
Affiliation(s)
- G F Hu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
11
|
Soncin F, Guitton JD, Cartwright T, Badet J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem Biophys Res Commun 1997; 236:604-10. [PMID: 9245697 DOI: 10.1006/bbrc.1997.7018] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Angiogenin is a potent inducer of blood-vessel formation with ribonucleolytic activity. Angiogenin binds to high affinity endothelial cell receptors and with lower affinity to extracellular matrix components. Here we report the effect of copper and zinc on these interactions. There was a 4.3-fold increase in angiogenin binding to calf pulmonary artery endothelial cells in the presence of Cu2+ in vitro. A 3.8-fold increase was observed with Zn2+, whereas Ni2+, Co2+, or Li+ had no effect. Specific angiogenin binding to the lower affinity matrix sites was increased by 2.7- and 1.9-fold in the presence of Cu2+ and Zn2+ respectively. Metal ion affinity chromatography and atomic absorption spectrometry were used to show the direct interaction of angiogenin with copper and zinc ions. Angiogenin bound 2.4 mol of copper per mole of protein. We suggest that copper, a modulator of angiogenesis in vivo, may be involved in the regulation of the biological activity of angiogenin.
Collapse
Affiliation(s)
- F Soncin
- Centre National de la Recherche Scientifique, Unité 1813, Institut National de la Santé et de la Recherche Médicale, Université Paris XII-Val de Marne, Créteil, France
| | | | | | | |
Collapse
|
12
|
Eliseeva LS, Mertvetsov NP. Antigenic response in the presence of high levels of angiogenin. Bull Exp Biol Med 1997. [DOI: 10.1007/bf02766190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Hu GF, Riordan JF, Vallee BL. A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc Natl Acad Sci U S A 1997; 94:2204-9. [PMID: 9122172 PMCID: PMC20065 DOI: 10.1073/pnas.94.6.2204] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Angiogenin stimulates both [3H]thymidine incorporation and proliferation of human endothelial cells in sparse cultures. Under these conditions, a 170-kDa cell surface protein can be detected that binds angiogenin specifically. Angiogenin-stimulated cell growth is concentration-dependent and is completely inhibited by an anti-angiogenin monoclonal antibody, but not by a nonimmune control antibody. It is not affected by the nonangiogenic homolog, RNase A, nor by other angiogenic proteins, such as basic fibroblast growth factor and its antibody. Results suggest that under specific conditions, endothelial cells express an angiogenin receptor that may mediate angiogenin-stimulated DNA synthesis and proliferation and play an important role in angiogenin-induced angiogenesis.
Collapse
Affiliation(s)
- G F Hu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
14
|
Moses MA, Klagsbrun M, Shing Y. The role of growth factors in vascular cell development and differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 161:1-48. [PMID: 7558689 DOI: 10.1016/s0074-7696(08)62495-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The control of vascular growth and differentiation is a complex system of activity and interaction between positive and negative modulators of these processes. A number of important stimulators and inhibitors of both smooth muscle cells and endothelial cells have now been purified and biochemically characterized. Imbalances in the activity of these factors can result in serious pathologies. In this chapter, we briefly discuss the biology of blood vessel development and growth, review the current literature which describes these stimulators and inhibitors, and discuss current therapeutic strategies designed around these growth modulators.
Collapse
Affiliation(s)
- M A Moses
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R. Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 1994; 126:465-73. [PMID: 8034745 PMCID: PMC2200038 DOI: 10.1083/jcb.126.2.465] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In contrast to the endothelial cells in large vessels where LDL receptors are downregulated, brain capillary endothelial cells in vivo express an LDL receptor. Using a cell culture model of the blood-brain barrier consisting of a coculture of brain capillary endothelial cells and astrocytes, we observed that the capacity of endothelial cells to bind LDL is enhanced threefold when cocultured with astrocytes. We next investigated the ability of astrocytes to modulate endothelial cell LDL receptor expression. We have shown that the lipid requirement of astrocytes increases the expression of endothelial cell LDL receptors. Experiments with dialysis membranes of different pore size showed that this effect is mediated by a soluble factor(s) with relative molecular mass somewhere between 3,500 and 14,000. Substituting astrocytes with smooth muscle cells or brain endothelium with endothelium from the aorta or the adrenal cortex did not enhance the luminal LDL receptor expression on endothelial cells, demonstrating the specificity of the interactions. This factor(s) is exclusively secreted by astrocytes cocultured with brain capillary endothelial cells, but it also upregulates the LDL receptor on other cell types. This study confirms the notion that the final fine tuning of cell differentiation is under local control.
Collapse
Affiliation(s)
- B Dehouck
- Institut National de la Santé et de la Recherche Médicale U325 Service d'Etude et de Recherche sur les Lipoprotéines et l'Atherosclérose, Institut Pasteur, Lille, France
| | | | | | | |
Collapse
|
16
|
Purkiss JR, West D, Wilkes LC, Scott C, Yarrow P, Wilkinson GF, Boarder MR. Stimulation of phospholipase C in cultured microvascular endothelial cells from human frontal lobe by histamine, endothelin and purinoceptor agonists. Br J Pharmacol 1994; 111:1041-6. [PMID: 8032588 PMCID: PMC1910155 DOI: 10.1111/j.1476-5381.1994.tb14849.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Cultures of endothelial cells derived from the microvasculature of human frontal lobe have been investigated for phospholipase C (PLC) responses to histamine, endothelins and purinoceptor agonists. 2. Using cells prelabelled with [3H]-inositol and measuring total [3H]-inositol (poly)phosphates, histamine acting at H1 receptors stimulated a substantial response with an EC50 of about 10 microM. 3. Endothelin-1 also gave a clear stimulation of phosphoinositide-specific phospholipase C. Both concentration-response curves and binding curves showed effective responses and binding in the rank order of endothelin-1 > sarafotoxin S6b > endothelin-3, suggesting an ETA receptor. 4. Assay of total [3H]-inositol (poly)phosphates showed no response to the purinoceptor agonists, 2-methylthioadenosine 5'-trisphosphate (2MeSATP), adenosine 5'-O-(3-thiotrisphosphate) (ATP gamma S) or beta,gamma-methylene ATP. Both ATP and UTP gave a small PLC response. 5. Similarly, when formation of [32P]-phosphatidic acid from cells prelabelled with 32Pi was used as an index of both PLC and phospholipase D, a small response to ATP and UTP was seen but there was no response to the other purinoceptor agonists tested. 6. Study by mass assay of stimulation by ATP of inositol (1,4,5) trisphosphate accumulation revealed a transient response in the first few seconds, a decline to basal, followed by a small sustained response. 7. These results show that human brain endothelial cells in culture are responsive to histamine and endothelins in a manner which may regulate brain capillary permeability. Purines exert a lesser influence.
Collapse
Affiliation(s)
- J R Purkiss
- Department of Pharmacology and Therapeutics, University of Leicester
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhou HM, Strydom DJ. The amino acid sequence of human ribonuclease 4, a highly conserved ribonuclease that cleaves specifically on the 3' side of uridine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:401-10. [PMID: 8223579 DOI: 10.1111/j.1432-1033.1993.tb18259.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A ribonuclease (RNase) that cleaves specifically on the 3' side of uridine [Shapiro, R., Fett, J. W., Strydom, D. J. & Vallee, B. L. (1986a) Biochemistry 25, 7255-7264] was purified from human plasma and its amino acid sequence was determined. This protein is a 119-residue single-chain polypeptide cross-linked by four disulfide bonds and has an amino-terminal pyroglutaminyl residue. No post-translational modifications were observed during extensive sequence studies on peptide fragments, except for the amino-terminal pyroglutamic acid and a possible deamidation of Asn66. The protein is homologous to the pancreatic ribonucleases and angiogenin, but differs substantially from both of these proteins; the protein sequence has 43% identity with human pancreatic ribonuclease and 39% identity with human angiogenin, as compared to 35% identity between human angiogenin and pancreatic ribonuclease. It is referred to as RNase 4, based on the nomenclature currently used for the genes of pancreatic RNase (RNase 1) and the eosinophil-derived RNases (RNase 2 and RNase 3). Virtually all of the RNase active-site components, including the catalytic residues His12, His119 and Lys41, are preserved. However, some invariant residues of RNase 1 are replaced, e.g. Lys7 by arginine, Asp14 by histidine, and Pro42 by arginine. RNase 4 contains a unique two-residue deletion at the position corresponding to amino acids 77 and 78 of pancreatic RNase, and its carboxyterminal sequence is truncated at position 122. The deletion in angiogenin at position 21 is also found in RNase 4. RNase 4 is very similar to two RNases isolated from bovine and porcine liver, and together they form a new family in the RNase superfamily. The degree of inter-species similarity (90%) is much greater than within the pancreatic RNase and angiogenin families, which suggests that this ribonuclease could possess a physiologically important function other than general RNA catabolism.
Collapse
Affiliation(s)
- H M Zhou
- Center for Biochemical and Biophysical Sciences and Medicine, Boston, MA 02115
| | | |
Collapse
|
18
|
Badet J, Soncin F, Barritault D. Angiogenin and endothelial cells. EXS 1992; 61:235-8. [PMID: 1377535 DOI: 10.1007/978-3-0348-7001-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J Badet
- Laboratoire de Biotechnologie des Cellules Eucaryotes, Université Paris, Créteil, France
| | | | | |
Collapse
|
19
|
|
20
|
Abstract
Recent advances in our knowledge of the blood-brain barrier (BBB) have in part been made by studying the properties and function of cerebral endothelial cells in vitro. After an era of working with a fraction, enriched in cerebral microvessels by centrifugation, the next generation of in vitro BBB model systems was introduced, when the conditions for routinely culturing the endothelial cells were established. This review summarizes the results obtained from this rapidly growing field. It can be stated with certainty that, in addition to providing a better insight into the chemical composition of cerebral endothelial cells, much has been learned from these studies about the characteristics of transport processes and cell-to-cell interactions during the last 12 years. With the application of new technologies, the approach offers a new means of investigation, applicable not only to biochemistry and physiology but also to the drug research, and may improve the transport of substances through the BBB. The in vitro approach has been and should remain an excellent model of the BBB to help unravel the complex molecular interactions underlying and regulating the permeability of the cerebral endothelium.
Collapse
Affiliation(s)
- F Joó
- Laboratory of Molecular Neurobiology, Biological Research Center, Hungarian Academy of Sciences, Szeged
| |
Collapse
|
21
|
McCarthy SA, Kuzu I, Gatter KC, Bicknell R. Heterogeneity of the endothelial cell and its role in organ preference of tumour metastasis. Trends Pharmacol Sci 1991; 12:462-7. [PMID: 1792690 DOI: 10.1016/0165-6147(91)90637-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The vascular endothelium is a remarkably heterogeneous organ. In addition to well-characterized anatomical diversity in situ, specific differences are increasingly being recognized between surface antigens on endothelial cells from different tissues, including absence of the classic endothelial marker factor VIII-related antigen (von Willebrand factor) from many endothelial cells. Microvascular heterogeneity extends to properties of endothelial cells thought to be involved in tumour angiogenesis and metastasis, such as growth factor responsiveness and expression of cell adhesion molecules. These findings are not only of relevance to the unambiguous identification and characterization of cultured endothelial cells, but, as Roy Bicknell and colleagues discuss, may explain the phenomenon of preferential organ tumour metastasis and provide novel opportunities for antitumour therapy.
Collapse
Affiliation(s)
- S A McCarthy
- Nuffield Dept of Pathology, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | |
Collapse
|