1
|
Li K, Cai J, Jiang Z, Meng Q, Meng Z, Xiao H, Chen G, Qiao C, Luo L, Yu J, Li X, Wei Y, Li H, Liu C, Shen B, Wang J, Feng J. Unveiling novel insights into human IL-6 - IL-6R interaction sites through 3D computer-guided docking and systematic site mutagenesis. Sci Rep 2024; 14:18293. [PMID: 39112658 PMCID: PMC11306327 DOI: 10.1038/s41598-024-69429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The cytokine interleukin-6 (IL-6) plays a crucial role in autoimmune and inflammatory diseases. Understanding the precise mechanism of IL-6 interaction at the amino acid level is essential to develop IL-6-inhibiting compounds. In this study, we employed computer-guided drug design tools to predict the key residues that are involved in the interaction between IL-6 and its receptor IL-6R. Subsequently, we generated IL-6 mutants and evaluated their binding affinity to IL-6R and the IL-6R - gp130 complex, as well as monitoring their biological activities. Our findings revealed that the R167A mutant exhibited increased affinity for IL-6R, leading to enhanced binding to IL-6R - gp130 complex and subsequently elevated intracellular phosphorylation of STAT3 in effector cells. On the other hand, although E171A reduced its affinity for IL-6R, it displayed stronger binding to the IL-6R - gp130 complex, thereby enhancing its biological activity. Furthermore, we identified the importance of R178 and R181 for the precise recognition of IL-6 by IL-6R. Mutants R181A/V failed to bind to IL-6R, while maintaining an affinity for the IL-6 - gp130 complex. Additionally, deletion of the D helix resulted in complete loss of IL-6 binding affinity for IL-6R. Overall, this study provides valuable insights into the binding mechanism of IL-6 and establishes a solid foundation for future design of novel IL-6 inhibitors.
Collapse
Affiliation(s)
- Kaitong Li
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Junyu Cai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Zhiyang Jiang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qingbin Meng
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhao Meng
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - He Xiao
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Guojiang Chen
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Chunxia Qiao
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Longlong Luo
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jijun Yu
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xinying Li
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Chenghua Liu
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Beifen Shen
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jing Wang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jiannan Feng
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
2
|
Zanetta JP, Vergoten G. Lectin domains on cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 535:107-24. [PMID: 14714892 DOI: 10.1007/978-1-4615-0065-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Jean-Pierre Zanetta
- CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
3
|
Cebo C, Durier V, Lagant P, Maes E, Florea D, Lefebvre T, Strecker G, Vergoten G, Zanetta JP. Function and molecular modeling of the interaction between human interleukin 6 and its HNK-1 oligosaccharide ligands. J Biol Chem 2002; 277:12246-52. [PMID: 11788581 DOI: 10.1074/jbc.m106816200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin 6 (IL-6) is endowed with a lectin activity for oligosaccharide ligands possessing the HNK-1 epitope (3-sulfated glucuronic acid) found on some mammalian glycoprotein N-glycans (Cebo, C., Dambrouck, T., Maes, E., Laden, C., Strecker, G., Michalski, J. C., and Zanetta, J. P. (2001) J. Biol. Chem. 276, 5685-5691). Using high affinity oligosaccharide ligands, it is demonstrated that this lectin activity is responsible for the early dephosphorylation of tyrosine residues found on specific proteins induced by interleukin 6 in human resting lymphocytes. The gp130 glycoprotein, the signal-transducing molecule of the IL-6 pathway, is itself a molecule possessing the HNK-1 epitope. This indicates that IL-6 is a bi-functional molecule able to extracellularly associate its alpha-receptor with the gp130 surface complex. Computational modeling indicates that the lower energy conformers of the high affinity ligands of IL-6 have a common structure. Docking experiments of these conformers suggest that the carbohydrate recognition domain of IL-6 is localized in the domain previously identified as site 3 of IL-6 (Somers, W., Stahl, M., and Seehra, J. S. (1997) EMBO J. 16, 989-997), already known to be involved in interactions with gp130.
Collapse
Affiliation(s)
- Christelle Cebo
- CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologie de Lille Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Simpson RJ, Hammacher A, Smith DK, Matthews JM, Ward LD. Interleukin-6: structure-function relationships. Protein Sci 1997; 6:929-55. [PMID: 9144766 PMCID: PMC2143693 DOI: 10.1002/pro.5560060501] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that plays a central role in host defense due to its wide range of immune and hematopoietic activities and its potent ability to induce the acute phase response. Overexpression of IL-6 has been implicated in the pathology of a number of diseases including multiple myeloma, rheumatoid arthritis, Castleman's disease, psoriasis, and post-menopausal osteoporosis. Hence, selective antagonists of IL-6 action may offer therapeutic benefits. IL-6 is a member of the family of cytokines that includes interleukin-11, leukemia inhibitory factor, oncostatin M, cardiotrophin-1, and ciliary neurotrophic factor. Like the other members of this family, IL-6 induces growth or differentiation via a receptor-system that involves a specific receptor and the use of a shared signaling subunit, gp130. Identification of the regions of IL-6 that are involved in the interactions with the IL-6 receptor, and gp130 is an important first step in the rational manipulation of the effects of this cytokine for therapeutic benefit. In this review, we focus on the sites on IL-6 which interact with its low-affinity specific receptor, the IL-6 receptor, and the high-affinity converter gp130. A tentative model for the IL-6 hexameric receptor ligand complex is presented and discussed with respect to the mechanism of action of the other members of the IL-6 family of cytokines.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/physiology
- Arthritis, Rheumatoid/immunology
- Castleman Disease/immunology
- Chromosome Mapping
- Chromosomes, Human, Pair 7
- Cytokines/physiology
- Female
- Growth Hormone/chemistry
- Humans
- Interleukin-6/biosynthesis
- Interleukin-6/chemistry
- Interleukin-6/physiology
- Models, Biological
- Models, Structural
- Molecular Sequence Data
- Multiple Myeloma/immunology
- Osteoporosis, Postmenopausal/immunology
- Protein Structure, Secondary
- Psoriasis/immunology
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/physiology
- Receptors, Interleukin-6
- Receptors, Somatotropin/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- R J Simpson
- Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research, (Melbourne Tumour Biology Branch), Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
5
|
Abstract
Ciliary neurotrophic factor (CNTF) shares structural and functional properties with members of the hematopoietic cytokine family. It is composed of a four-helix bundle structure and shares the transmembrane signal transducing proteins, glycoprotein-130 (gp130) and leukemia inhibitory factor receptor (LIF-R). Structure-function analysis showed that the gp130-interactive proteins bind in a similar manner to that of growth hormone (site I and II). In addition, gp130-interactive proteins and granulocyte colony-stimulating factor (G-CSF) utilize another binding site (site III) at the boundary between CD loop and helix D. CNTF triggers the association of receptor components, resulting in activation of a signal transduction cascade mediated by specific intracellular protein tyrosine kinases. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and Ras/mitogen-activated protein kinase (MAPK) signaling pathways have been characterized in terms of gp130-interactive protein, and there should be other pathways and some crosstalk between them to enhance, prolong, or specify the signals.
Collapse
Affiliation(s)
- M Inoue
- Sumitomo Pharmaceuticals Research Center, Osaka, Japan
| | | | | |
Collapse
|
6
|
Hammacher A, Ward LD, Weinstock J, Treutlein H, Yasukawa K, Simpson RJ. Structure-function analysis of human IL-6: identification of two distinct regions that are important for receptor binding. Protein Sci 1994; 3:2280-93. [PMID: 7538847 PMCID: PMC2142761 DOI: 10.1002/pro.5560031213] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that plays an important role in host defense. It has been predicted that IL-6 may fold as a 4 alpha-helix bundle structure with up-up-down-down topology. Despite a high degree of sequence similarity (42%) the human and mouse IL-6 polypeptides display distinct species-specific activities. Although human IL-6 (hIL-6) is active in both human and mouse cell assays, mouse IL-6 (mIL-6) is not active on human cells. Previously, we demonstrated that the 5 C-terminal residues of mIL-6 are important for activity, conformation, and stability (Ward LD et al., 1993, Protein Sci 2:1472-1481). To further probe the structure-function relationship of this cytokine, we have constructed several human/mouse IL-6 hybrid molecules. Restriction endonuclease sites were introduced and used to ligate the human and mouse sequences at junction points situated at Leu-62 (Lys-65 in mIL-6) in the putative connecting loop AB between helices A and B, at Arg-113 (Val-117 in mIL-6) at the N-terminal end of helix C, at Lys-150 (Asp-152 in mIL-6) in the connecting loop CD between helices C and D, and at Leu-178 (Thr-180 in mIL-6) in helix D. Hybrid molecules consisting of various combinations of these fragments were constructed, expressed, and purified to homogeneity. The conformational integrity of the IL-6 hybrids was assessed by far-UV CD. Analysis of their biological activity in a human bioassay (using the HepG2 cell line), a mouse bioassay (using the 7TD1 cell line), and receptor binding properties indicates that at least 2 regions of hIL-6, residues 178-184 in helix D and residues 63-113 in the region incorporating part of the putative connecting loop AB through to the beginning of helix C, are critical for efficient binding to the human IL-6 receptor. For human IL-6, it would appear that interactions between residues Ala-180, Leu-181, and Met-184 and residues in the N-terminal region may be critical for maintaining the structure of the molecule; replacement of these residues with the corresponding 3 residues in mouse IL-6 correlated with a significant loss of alpha-helical content and a 200-fold reduction in activity in the mouse bioassay. A homology model of mIL-6 based on the X-ray structure of human granulocyte colony-stimulating factor is presented.
Collapse
Affiliation(s)
- A Hammacher
- Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research/Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Morton CJ, Simpson RJ, Norton RS. Solution structure of synthetic peptides corresponding to the C-terminal helix of interleukin-6. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:97-107. [PMID: 8307040 DOI: 10.1111/j.1432-1033.1994.tb19919.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two synthetic peptides corresponding to the C-terminal 19 residues of human and murine interleukin-6, respectively, have been synthesized and their structures in solution investigated using high-resolution 1H-NMR spectroscopy. Both peptides show a marked dependence of chemical-shift dispersion on pH, with a greater degree of structure apparent above pH 4.5, where their glutamate carboxyl groups are ionised. In purely aqueous solution, neither peptide adopts a well-defined structure, although the murine peptide has characteristics of a nascent helix. Titration of the murine peptide with trifluoroethanol produced a significant increase in structure, which was then investigated using two-dimensional NMR. In 50% (by vol.) trifluoroethanol the murine peptide consists of a well-defined central helix of 12 residues with unstructured N-terminal and C-terminal regions. These observations lend experimental support to the current model of the interleukin-6 structure, which proposes a four-helical bundle with the last helix encompassing the C-terminal 20-30 residues. Furthermore, the fact that synthetic peptides corresponding to part of the putative receptor-binding surface of interleukin-6 are able to adopt a similar conformation in solution to that proposed for the intact protein suggests that such peptide analogues should be useful starting points in the design of peptide agonists and antagonists of interleukin-6.
Collapse
Affiliation(s)
- C J Morton
- Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research, Parkville, Australia
| | | | | |
Collapse
|
8
|
Ward LD, Hammacher A, Zhang JG, Weinstock J, Yasukawa K, Morton CJ, Norton RS, Simpson RJ. Role of the C-terminus in the activity, conformation, and stability of interleukin-6. Protein Sci 1993; 2:1472-81. [PMID: 8401231 PMCID: PMC2142456 DOI: 10.1002/pro.5560020911] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Two murine interleukin-6 (mIL-6) variants were constructed using the polymerase chain reaction (PCR), one lacking the last five residues (183-187) at the C-terminus (pMC5) and another with the last five residues of mIL-6 substituted by the corresponding residues of human IL-6 (pMC5H). The growth stimulatory activity of pMC5 on the mouse hybridoma cell line 7TD1 was < 0.05% of mIL-6, whereas pMC5H and mIL-6 were equipotent. The loss of biological activity of pMC5 correlated with its negligible receptor binding affinity on 7TD1 cells, while the binding of pMC5H was comparable to that of mIL-6. Both pMC5 and pMC5H, like mIL-6, failed to interact with recombinant soluble human IL-6 receptor when assayed by surface plasmon resonance-based biosensor analysis. These studies suggest that the C-terminal seven amino acids of human IL-6, alone, do not define species specificity for receptor binding. A variety of biophysical techniques, as well as the binding of a conformational-specific monoclonal antibody, indicated that the global fold of the mIL-6 variants was similar to that of mIL-6, although small changes in the NMR spectra, particularly for pMC5, were observed. Some of these changes involved residues widely separated in the primary structure. For instance, interactions involving Tyr-22 were influenced by the C-terminal amino acids suggesting that the N- and C-termini of mIL-6 are in close proximity. Equilibrium unfolding experiments indicated that pMC5 was 0.8 kcal/mol less stable than mIL-6, whereas pMC5H was 1.4 kcal/mol more stable. These studies emphasize the structural importance of the C-terminal amino acids of IL-6 and suggest that truncation or mutation of this region could lead to small but significant alterations in other regions of the molecule.
Collapse
Affiliation(s)
- L D Ward
- Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|